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Abstract

OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and
interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect
the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin
genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73
Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line
assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y.
kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A
significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our
analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection.
However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive
diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene
covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive
selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different
among Yersinia species.
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Introduction

The genus Yersinia, a member of the Enterobacteriaceae family, is

currently composed of 14 known species: Y. pestis, Y. pseudotuber-

culosis, Y. enterocolitica Y. aldovae, Y. aleksiciae, Y. bercovieri, Y.

frederiksenii, Y. intermedia, Y. kristensenii, Y. massiliensis, Y. mollaretii, Y.

rohdei, Y. ruckeri, and Y. similis [1–3]. Three of them are well

documented human pathogens. Y. pestis is the etiologic agent of

plague while Y. pseudotuberculosis and Y. enterocolitica are known to

cause a variety of gastrointestinal symptoms [4]. The character-

ization of the remaining 11 species is more limited. However, these

species accepted as human nonpathogenic possess novel virulence

mechanisms, and some of them have been associated with human

cases [5,6]. Yersinia are disseminated all over the world in terrestrial

and aquatic environments, and associated with many different

hosts (plants, animals, insects, fish and so on). Despite recent

advances in our understanding of the pathobiology of Yersinia, the

molecular-genetic mechanisms by which Yersinia colonizes and

adapts to various host or environmental conditions are still poorly

understood. In this context, membrane surface molecules are

considered the major targets of the membrane-environment

interaction.

General bacterial porins (GBPs) are one of the most abundant

proteins (up to 105 copies per cell) in the outer membrane of the

gram-negative bacteria [7,8]. Structurally, a typical GBP subunit

consists of 16 antiparallel b-strands forming a b-barrel, with short

turns facing the periplasmic space and long loops facing the

external surface of bacterial membrane [9–11]. Three porin

subunits are assembled into stable homotrimers. The best-studied

GBPs, which include OmpF, OmpC and PhoE of E. coli, differ in

their solute selectivity, porin activity and gene expression in

response to many environmental factors, such as osmotic pressure,

temperature and pH [12–14]. Porins are one of the first molecules

responding to environmental changes and at least for some

bacteria have been found to reflect their ecological niche by the

sequence type [15,16]. As the major components of the outer

membrane, some pore-forming proteins play a role in bacterial

pathogenesis, such as adherence, invasion, and serum resistance

[17–20].

Little is known about evolution and diversity of GBPs of the

Enterobacteriaceae at all and the Yersinia especially. Scattered reports

showed that Yersinia’s major porin is the b-structured protein

resistant to high temperature, proteases, and detergents [21–23].

Primary structure and topology of the OmpF porin of pathogenic

Yersinia was determined and demonstrated 55% homology with E.

coli and 70% homology with Serratia marcescens OmpFs, respectively

[24,25]. Here we conducted an in-depth study of the ompF gene

diversity in all currently known Yersinia paying special attention to
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evolution inference and phylogenetic relationships of these

bacteria.

Results and Discussion

16S rDNA and gyrB sequence variations and genetic
relationships among Yersinia species

To justify evolutionary relationships and taxonomic position,

16S rDNA and gyrB genes sequences were analysed in all Yersinia

strains used in this study (Table 1). The 16S rDNA gene

sequencing has definitely allowed Yersinia identification [26] and

recognizing novel species and subspecies within the genus

[3,27,28]. However, the 16S rDNA sequence analysis cannot

resolve the phylogenetic relationships between closely related

Yersinia species [2,29]. Recently, gyrB has been successfully applied

to characterization of Y. frederiksenii genomospecies [30] and was

included as one of the MLST gene targets for studying genetic

relationships among Yersinia species [29].

In this study, the total number of Yersinia strains was 65,

covering all Yersinia species, and originating from different sources

and geographic locations (Table 1). 16S rDNA and gyrB sequences

from all the above strains were PCR amplified and sequenced.

Eight additional sequences of each gene were obtained from

publicly available Yersinia genomes (http://www.ncbi.nlm.nih.

gov). In total 73 16S rDNA and gyrB sequences were analysed.

The sequences were aligned and adjusted to 750 bp for 16S rDNA

and to 838 bp for gyrB. Each unique sequence, differing in one or

more nucleotide or amino acids sites, was assigned as a distinctive

allele, resulting in 31 alleles for 16S rDNA and 48 alleles for gyrB

or 21 alleles for GyrB (Table 1). The number of the detected alleles

was ranged from 1 of 16S rDNA per species (Y. pestis, Y.

pseudotuberculosis, Y. enterocolitica subsp. palearctica and Y. aldovae) or

GyrB (Y. mollaretii, Y. pestis, Y. pseudotuberculosis, Y. similis Y. ruckeri, Y.

rohdei and Y. bercovieri) and to 13 alleles of gyrB (Y. intermedia). The

number of allele variants slightly varied from those published

previously [29] possibly because of inclusion of more distant strains

and/or increasing the lengths of the analyzed fragments.

In order to correctly identify each strain examined, a

neighbour-joining tree was constructed from the 16S rDNA-gyrB

concatenated sequences (Fig. 1). Ten Yersinia species (Y. aldovae, Y.

bercovieri, Y. enterocolitica, Y. intermedia, Y. mollaretii, Y. pestis, Y.

pseudotuberculosis, Y. similis, Y. rohdei and Y. ruckeri) were clearly

grouped into relatively distinct clusters. The intraspecies genetic

distance means of these species were up to 0.012. Y. pestis strains

clustered tightly with the Y. pseudotuberculosis strains and the

distance mean for this group was 0,001. Since, only one Y. similis

strain was examined, the genetic distance of that species could not

be estimated. Y. similis is a novel species in Yersinia, recently

separated from its nearest phylogenetic neighbor Y. pseudotubercu-

losis [3]. As expected, Y. similis Y239 was clustered with Y.

pseudotuberculosis and Y. pestis, forming a distinctive long branch.

Strains of Y. enterocolitica were divided into three groups mainly

caused by gyrB sequences, while 16S rDNA sequences separated

strains into two subspecies (Y. enterocolitica subsp. enterocolitica and Y.

enterocolitica subsp. palearctica), previously described by Neubauer et

al., 2000 [28]. Strain Y. frederiksenii 2043 did not group with other

five isolates of this species. It branched with Y. aleksiciae, Y. bercovieri

and Y. mollaretii. Based on these results phylogenetic relations and

BLAST (data not shown), Y. frederiksenii 2043 was more closely

related to Y. massiliensis. Similar partition was observed for Y.

kristensenii, three of which (991, Y332 and 6266) diverged from the

other eight strains (6572, 8914, H17-36/83, 5868, 6032, 5862,

5306 and 5932) with a genetic distance about 0.055 and clustered

with Y. aleksiciae Y159, sharing the genetic distance by 0,005. The

data definitely indicated that these uncommon strains of Y.

kristensenii and Y. frederiksenii might be members of Y. aleksiciae sp.

nov. and Y. massiliensis sp. nov., since, Y. aleksiciae was recently

separated from Y. kristensenii [1] and Y. massiliensis is more closely

related to Y. frederiksenii [2]. Therefore, these strains were

designated as Y. aleksiciae-like and Y. massiliensis-like, respectively.

Based on the 16S rDNA-gyrB tree, most Y. intermedia clustered

together into one of two branches; four Russian strains (6044,

5934, 6270 and 601) were located on the line leading to the rest Y.

intermedia, shared the intraspecies distances up to 0.007.

Taken together, species identification of Yersinia strains based on

the 16S rDNA-gyrB concatenated tree was in relative agreement

with the MLST tree reported previously [29]. Three Y. kristensenii

strains (991, Y332 and 6266) were designated as Y. aleksiciae-like

and one Y. frederiksenii strain (2043) was as Y. massiliensis –like. Six

Yersinia species (Y. pestis, Y. pseudotuberculosis, Y. bercovieri, Y. ruckeri, Y.

rohdei and Y. aldovae) were genetically more homogeneous then the

rest of species (Y. enterocolitica, Y. frederiksenii, Y. mollaretii, Y. intermedia

and Y. kristensenii).

Phylogenetic and recombination analyses of the ompF
gene

We investigated phylogenetic relationships and recombination

of the ompF gene from all Yersinia strains (Table 1). The ompF gene

was amplified, using primers, derived from a CLUSTALX

alignment of the published ompF nucleotide sequences. 73

complete coding nucleotide sequences of the ompF gene were

aligned to infer ompF phylogenetic tree. We found 62 unique

nucleotide alleles of the ompF gene (table 1), which clustered into

18 groups on the tree (Fig. 2). Though different algorithms and

clustering methods produced similar topologies of the ompF tree,

phylogenetic clustering of the strains performed by neighbor-

joining method with Kimura 2-parameter algorithm gave the

highest bootstrap values. With the exception of five species, Y.

similis, Y. intermedia, Y. mollaretii, Y. frederiksenii and Y. aleksiciae, all

strains that belong to the same Yersinia species were clustered in

one group. Five strains of Y. ruckeri clustered together in a distinct

group V and showed the intragroup distance mean by 0.002 and

the largest intergroup genetic distance means from 0.166 to 0.197.

It reaffirmed that Y. ruckeri has been fairly clonal and genetically

the most distant species within the genus [26,29]. For Y.

enterocolitica (group VII) the intraspecies genetic distance mean

was 0.029, and the groups means of 0.097–0.166. Phylogenetic

grouping of Y. enterocolitica ompF genes exactly replicated that of 16S

rDNA-gyrB sequences with division in two subspecies, Y.

enterocolitica subsp. palearctica (Y11, 1234, 2974/81, 6579, 1245,

2720/87, and 1215) and Y. enterocolitica subsp. enterocolitica (WA220

and ATCC 8081), supported by a high bootstrap value (100%).

Interestingly, in both phylogenetic trees, Y. enterocolitica subsp.

palearctica clearly splits into two lines (bootstrap value 100%), one of

them was only formed by Y. enterocolitica strains (1215, 1234, and

1245) isolated in Russian Far-East. Strains of Y. kristensenii formed

group X with intragroup distance mean 0.020, and intergroup

distance means 0.072–0.183. The Y. bercovieri (group VI), Y. rohdei

(group XIV) and Y. aldovae (group IV) were represented by only

two strains and the within and between group distance means were

up to 0.009 and 0.068–0.188, respectively. The strains of Y. pestis,

Y. pseudotuberculosis and Y. similis grouped together (group VIII) with

intragroup distance mean of 0.037, and between group distance

means being 0.138–0.196. The VIII group splits into two

subgroups with bootstrap value of 100%. One of these subgroups

included two Y. pseudotuberculosis strains IP32953, IP31758 and Y.

similis Y239, while the other-all Y. pestis strains and Y.

pseudotuberculosis YPIII. This ompF tree topology did not correlate

Evolution of ompF Gene in the Genus Yersinia
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Table 1. Yersinia strains and the distribution of their 16S rDNA, gyrB and ompF gene alleles.

Species Strain Serotype Source Country Allele type (NT/AT)A

16S RNA gyrB ompF

Y. aldovae Y112 1 16/11 10/14

ATCC 35236 Water Czechoslovakia 1 46/20 58/14

Y. aleksiciae Y159 Germany 2 15/1 11/15

Y. bercovieri ATCC 43970 Human feces France 17 1/2 13/16

H632-36/85 14 1/2 12/17

Y. enterocolitica subsp.
palearctica

Y11 O:3 3 2/3 1/1

1234 O:3 Russia 3 3/4 15/18

2974/81 O:9 3 2/3 17/1

6579 O:3 Russia 3 2/3 1/1

1245 Human feces Russia 3 3/4 19/2

2720/87 O:9 3 17/3 16/1

1215 Human feces Russia 3 3/4 14/2

subsp. enterocolitica WA220 O:8 4 4/4 2/3

ATCC 8081 O:8 Human USA 4 4/4 18/19

Y. frederiksenii H56-36/81 O:60 Germany 5 18/5 20/20

4648 Human feces Russia 5 5/6 22/21

4849 Russia 5 20/13 24/22

ATCC 33641 Sewage Denmark 18 19/12 21/23

176–36 19 5/6 23/24

Y. massiliensisB 2043 Russia 20 21/14 25/25

Y. intermedia 5631 Lemming Russia 1 6/7 37/26

5934 Citellus Russia 1 14/7 30/27

6325 Lemming Russia 1 27/7 6/7

ATCC 29909 Human urine 6 7/7 28/28

5373 Water Russia 6 6/7 L

6390 Lemming Russia 6 9/7 5/6

5593 Lemming Russia 6 24/16 5/6

5986 Field mouse Russia 6 7/7 34/29

H357/85 O:3 6 10/7 35/30

Nr27/84 52,53:2q Water Germany 6 9/7 5/6

H9-36/83 O:17 Germany 6 7/7 26/31

Nr13/84 37:q Human Germany 7 8/7 27/32

1948 Water Russia 7 25/7 4/5

5828 Field mouse Russia 7 8/7 36/33

6043 Russia 7 26/7 38/34

5375 Water Russia 7 8/7 4/5

5638 Lemming Russia 7 6/7 L

6270 Lemming Russia 13 14/7 29/35

6044 Field mouse Russia 13 23/15 33/36

Nr9/83 17:q Human Germany 21 10/7 31/37

601 Russia 22 22/7 32/38

6276 Lemming Russia 23 28/17 6/7

Y. kristensenii 5306 Sorex araneus Russia 15 35/8 42/9

5862 Field mouse Russia 15 34/8 7/9

5932 Field mouse Russia 15 36/8 43/40

6032 Sorex araneus Russia 16 33/8 7/9

5868 Anas acuta Russia 16 32/8 7/9

6572 Carrot Russia 24 31/8 41/41

Evolution of ompF Gene in the Genus Yersinia
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with the 16S rDNA-gyrB tree branching, possibly indicating

interspecies recombination between Y. pseudotuberculosis and Y.

similis, or/and diversification of the ompF gene of Y. pseudotuberculosis

before emergence of Y. pestis by adaptive evolution.

The ompF sequences of the remaining species, Y. intermedia, Y.

mollaretii, Y. frederiksenii and Y. aleksiciae, exhibited different

phylogenetic relationships and produced incongruent molecular

phylogenies with the 16S rDNA-gyrB tree. The Y. frederiksenii

strains, that were genetically distinct and not closely related to

each other according to the 16S rDNA-gyrB tree, split into three

groups; two groups (XI and XII) were presented by single strains,

and IX group was by strains with intragroup of 0.043 and

intergroup from 0.112 to 0.178 distance means. From previously

characterized Y. frederiksenii genomic groups [31], Y. frederiksenii IX

and XI groups of ompF could corresponded to genomic groups 1b

and 1a, respectively, and XII group (Y. massiliensis)-to genomos-

pecies 2. A mixed branching pattern was found in Y. mollaretii and

Y. aleksiciae strains. Two Y. aleksiciae strains (Y159 and Y332)

grouped together with three Y. mollaretii strains (H279-36/85,

Nr850/89 and ATCC43969), whereas two others Y. aleksiciae

strains (991 and 6266)-with three other Y. mollaretii (87-36/87,

H87/82 and Nr846/89). Therefore, Y. aleksiciae (groups XVI and

XVII) and Y. mollaretii (groups XV and XVIII) strains split into two

relatively distinct groups with intragroup distance means up to

0.007, and intergroup distance means of 0.048–0.197. Interest-

ingly, Y. aleksiciae recently isolated from Y kristensenii was more

closely related to Y. bercovieri and Y. mollaretii than to Y kristensenii,

and that was confirmed by the 16S rDNA-gyrB tree. Previously,

based on the concatenated tufA-tufB tree, Y. aleksiciae type strain

LMG 22254 was found to be distinct from the Y. kristensenii cluster

and clearly grouped with Y. bercovieri and Y. mollaretii [32]. The

most genetically heterogeneous was Y. intermedia that formed four

different groups (I-III, XIII) with intragroup distance means up to

0.039, and with between groups means being 0.076–0.195.

Moreover, XIII group, formed by five Y. intermedia strains (601,

Nr12/84, 1948, 5375 and 5631) was separated from the rest Y.

intermedia groups by a number of genetic clades.

As mentioned above, some species produced incongruent 16S

rDNA-gyrB and ompF phylogenies. A mix branching pattern can be

a sign of recombination, whereas in the case of mutation the gene

trees look the same [33]. To verify this assumption, we used four

tests (RDP, MaxChi, Chimera, and Geneconv) in the RDP3.34

package for investigation of the ompF gene of all Yersinia groups.

We detected four recombination events with brake-points

involving three species, Y. intermedia (groups I, II, XIII), Y. aleksiciae

(groups XVI and XVII) and Y. mollaretii (groups XVIII and XV)

Species Strain Serotype Source Country Allele type (NT/AT)A

16S RNA gyrB ompF

H17-36/83 O:12,25 Germany 25 37/8 44/9

ATCC 33638 Human urin 25 42/21 59/48

Y. aleksiciaeB Y332 2 15/1 45/39

6266 Russia 8 30/18 40/8

991 Russia 8 29/1 39/8

Y. mollaretii Nr850/89 6,30,47:x: Water Germany 9 41/2 51/42

Nr846/89 62:x: Water Germany 9 39/2 48/10

H279-36/86 O:59 Germany 9 11/2 50/11

87-36/87 10 40/2 49/10

H87/82 O:3 10 38/2 46/10

ATCC 43969 Soil USA 26 11/2 47/11

Y. pestis 91001 11 12/9 8/12

CO92 Human USA 11 12/9 52/43

Pestoides F 11 12/9 8/12

Y. pseudotuberculosis IP 32953 1 Human France 11 44/9 55/44

IP 31758 1B Human Russia 11 43/9 54/45

YpIII USA 11 43/9 53/46

Y. rohdei H274-36/78 O:76 Germany 28 45/19 57/47

ATCC 43380 Dog feces 29 47/19 60/47

Y. ruckeri Nr 34/85 Fish Germany 12 13/10 9/13

H528-36/85 12 13/10 9/13

H529-36/85 Germany 12 13/10 9/13

H527-36/85 27 13/10 56/13

ATCC 29473 Fish 30 13/10 61/49

Y. similis Y239 Germany 31 48/21 62/50

Total allele number 31 48/21 62/50

A–NT-nucleotide sequence type, AT-amino acid sequence type.
B–Species identity corrected by 16S-gyrB genotype.
doi:10.1371/journal.pone.0020546.t001

Table 1. Cont.
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(Fig. 3). From the ompF tree, one can suppose that a recombination

event between ompFs of Y. aleksiciae and Y. mollaretii occurred twice.

In the first case ompF of Y. mollaretii group XV served as a donor

and ompF of Y. aleksiciae group XVII was a recipient, producing a

recombinant ompF allele of Y. aleksiciae group XVI. And vice versa,

ompF of Y. aleksiciae group XVII served as a donor and ompF of Y.

mollaretii group XV was a recipient, giving a recombinant ompF

allele of Y. mollaretii group XVIII. This explanation comes from

comparison of the branch length and sequence diversity of the

group members. To our data, interspecies intragenic recombina-

tion was detected for the first time in the genus Yersinia. We

observed a complex pattern of recombination in Y. intermedia ompF

(groups I, II, XIII). Group I mainly played a parental role in

different recombination events, giving ompF variants of Y. intermedia

groups II and XIII; other players of the events were not identified

in this analysis. It should be noted, that group I strains are most

numerous and widely geographically distributed. So it can be

supposed, that this ompF variant is more spread and successful in

coexistence with mammals including evolutionary newcomers,

humans. Acquisition of regions of a successful allele by

recombination can be preferred for minor variants (groups II

and XIII) when bacterium get into a new niche such as mammals.

Interestingly, an extraordinary position of the XIII group on the

phylogenetic tree indicates a new origin of the ompF gene not

represented by any known Yersinia species. The fact, that this group

includes a human isolate (Nr13/84) may be an evidence of

occurrence in new niche, human. Noteworthy, it was extremely

difficult to reconstruct a scenario of recombination events for all Y.

Figure 1. Phylogenetic relationships among 16S rDNA-gyrB sequences of Yersinia. The unrooted dendrogram was generated using
neighbour-joining algorithm. The evolutionary distances were computed using the Kimura 2-parameter method and are expressed in number of base
substitutions per site. The percentages of replicate trees in which the associated taxa clustered together in the bootstrap test are shown in nodes.
doi:10.1371/journal.pone.0020546.g001

Evolution of ompF Gene in the Genus Yersinia
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intermedia ompF. This might be a subject of further research, as well

as investigation of associations within a specific niche.

It is very interesting to note that one of the brake-points of all

recombinant ompF is located in the same region (431–501 bp),

corresponding to 6-th b-strand of OmpF. The reconstruction of

the ompF tree for the region 1–501 bp produced very similar

branch pattern with that of the 16S rDNA-gyrB tree (data not

shown). We suspect that significant nucleotide similarity in this

region (with the exception of the external loops) reflects a strong

selective pressure (purifying selection) due to an important

functional role of this region as a zone of monomer̀s contacts in

a porin trimer. This might be an evident example of protein

structural constraints.

Examples of the homologous recombination in porin genes have

been recognized for some bacteria, mainly for naturally trans-

formable species as Pseudomonas (OprD), Neisseria (PorB, OmpA),

Chlamydia (OmpA), and Leptospira (OmpL1) [16,34–38]. For these

genes different mosaic patterns have been identified. The

intragenic recombination has been frequently observed within

species due to the transfer of a portion or an entire gene. As a rule,

the exchanges occur only in the loop regions and do not affect the

transmembrane domains. Moreover, rare cases of interspecies

recombination of porin genes have been described in literature. It

was suggested that porB2, an allele of porB, arose in meningococci

by interspecies recombination between ancestral pathogenic and

commensal Neisseria species [39]. Also, an interspecies recombina-

tion in ompA between a mouse strain of C. trachomatis and a horse

strain of C. pneumoniae was documented [35]. Multiple interspecies

recombination patterns were observed among ompL1 genes,

belonging to four different Leptospira species [38].

The phylogenetic analysis of ompF sequences placed most of the

Yersinia strains in the same line assigned by 16S rDNA-gyrB tree with

the exception of six species, Y. pseudotuberculosis, Y. similis, Y.

frederiksenii, Y. intermedia, Y. mollaretii, and Y. aleksiciae. The

incongruence of ompF and 16S rDNA-gyrB trees indicated the

inter- and intraspecies recombination. Despite extensive recombi-

Figure 2. Phylogenetic relationships among ompF sequences of Yersinia. The unrooted dendrogram was generated using neighbour-joining
algorithm. The evolutionary distances were computed using the Kimura 2-parameter method and are expressed in number of base substitutions per
site. The percentages of replicate trees in which the associated taxa clustered together in the bootstrap test are shown in nodes.
doi:10.1371/journal.pone.0020546.g002

Evolution of ompF Gene in the Genus Yersinia
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nation events in the Yersinia ompF genes, this seems to happen not

so often to remove all phylogenetic signals.

Adaptive evolution of the ompF gene in Yersinia
As it was shown above, the ompF gene of Yersinia is more

divergent than the 16S rDNA and gyrB genes. The nucleotide

diversity for all ompF genes (0,13160,005) is twofold higher than

for housekeeping genes (0,05160,004). The common alignment of

73 ompF sequences contain 40% (479/1200 bp) of polymorphic

nucleotide sites, which distributed strikingly nonrandom and

formed hypervariable and conserved regions (Fig. 4). We have

divided yersinia’s ompF gene into 18 regions, according to domain

organization of Escherichia coli OmpF protein [9]. Loops L2, L4–L7

were characterized by nucleotide deletions and/or insertions.

Comparative analysis of surface-exposed loops exhibited signifi-

cant heterogeneity of L4 and L5 (4664.5%). The highest

homology was conserved in L3 (8.261.6%). The same nonrandom

heterogeneity with characteristic conserved regions forming the b-

barrel structure of the proteins, and variable regions, making up

the putative surface-exposed loops, has been shown in some other

porins [39,40].

To estimate deviation in codon usage, the codon adaptation

index (CAI) was calculated for the ompF gene. CAI is a measure of

the relative adaptiveness of the codon usage of a gene towards the

codon usage of highly expressed genes of that organism: the higher

the index value, the greater the codon usage bias [41]. As a

reference for highly expressed genes, we used the 27 concatenated

ribosomal genes for ten Yersinia species. The genes of the ribosomal

proteins had a CAI value from 0.52 to 0.56 for all species, but CAI

values for the ompF gene were higher (from 0.64 to 0.75).

Therefore, there is a strong codon usage bias in the ompF gene in

all Yersinia species, as expected for highly expressed genes. This is

another reason to assume that the high level of ompF transcription

may be also responsible for nonrandom heterogeneity in the gene.

To determine how the level of selective constraint varies along

the ompF gene, we estimated the numbers of synonymous

substitutions per synonymous site (dS) and nonsynonymous

substitutions per nonsynonymous site (dN) and calculated the

dS/dN ratio for the ompF gene. If purifying selection has occurred,

a gene has a dS/dN.1. Absence of selection should generate dS/

dN = 1. A ratio dS/dN,1 indicates diversifying selection or

accelerated evolution [42,43]. We excluded Yersinia groups with

recombination events from analysis and dealt only with six ompF

groups of Yersinia (VII, VIII, IX, I, X, XIII). The dS/dN ratio was

calculated as an average over all of the codon sites in each ompF

group using the Nei-Gojobori method by MEGA 4 of Jukes-

Cantor model. Statistical significance was tested by Codon-based

Z-test. For all groups we detected approximately identical dS/dN

Figure 4. Nucleotide divergence (Pi) in 73 ompF sequences. The regions predicted to correspond to the external loops (L1–L8) are colored
green, regions putatively exposed to the periplasm and predicted transmembrane strands (1-16b) are indicated by black shading, the signal
sequence (Sig.s.) is colored blue.
doi:10.1371/journal.pone.0020546.g004

Figure 3. Schematic representation of recombination events with brake-points location in the ompF gene of Yersinia.
doi:10.1371/journal.pone.0020546.g003
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means from 4.224 to 5.748 with p,0.05 of purifying selection.

Thus, ompF gene is under strong purifying selection in all six

Yersinia groups. Neilsen and Yang method [44], compiled in

Sitewise likehood ratio estimation programme [45], was used to

identify the sites with the evidence of positive selection in selected

ompF groups. The porin protein structures for these groups have

been simulated and sites with weak or strong positive selection

have been located on the models (Fig. 5).

When these selected sites were mapped onto three-dimensional

structural models, it becomes clear that the majority fell within

regions predicted to encode surface-exposed loop regions. It is

important to note that these sites were located in different surface

loops of analyzed Yersinia groups. For example, three residues in

putative loop L1 were shown to be under strong selection in the

group VIII, whereas there is no evidence of positive selected sites

in putative loop L1 for groups VII, XIII, I and X. Smith N.H.

observed unlike distribution of positive selected regions in porB

genes in N. meningitides and N. gonorrhoeae [46]. Authors explained

this by differences in the immune response to these two organisms.

The impact of diversifying selection on ompC, ompF, lamB and fhuA

omp’s genes of Escherichia and Shigella [47,48], ompC, ompS1 and

ompS2 genes of Salmonella [49] has been demonstrated. Authors

proposed that positive selection in omp genes may be an important

mechanism that facilitates adaptation of bacterial pathogens

allowing them to escape recognition by the host immune system,

phages and penetration of antibiotics.

Our analyses demonstrated that the Yersinia ompF gene has

evolved with nonrandom mutational rate under purifying selection

in overall. However, the surface loops of the OmpF porin contain

sites subjected to positive selection. Interestingly, such sites are

located in different surface loops in different Yersinia species. We

suppose that the ompF genes of different Yersinia species have

evolved under individual constraints associated with unlike

environmental challenges. Existence of both positive selection

and recombination in porin genes has previously been reported for

Neisseria porB and porA genes [37,50] as well as for ompA from

Chlamidia [35] and Wolbachia [51]. In case of Yersinia ompF gene we

consider that horizontally acquired fragments of some surface

loops may be fixed by positive selection in process of species

adaptation to new ecological niches. Such recombinant genes

might supply their new hosts with benefits allowing to escape a

deadly response of the immune system as well as lethal attacks of

phages and antimicrobials. This might be more easily achieved by

gene recombination rather than by random mutations. Moreover,

these mechanisms seem to operate in evolution of porins genes of

all taxonomic groups.

Conclusion. Genetic diversity of outer membrane proteins

might result from bacterial adaptation to different ecological

Figure 5. Location of positively selected sites in OmpF porins of Yersinia. Group VII-Y. enterocolitica WA220; Group XIII-Y. intermedia 1948;
Group IX-Y. frederiksenii 4648; Group I-Y. intermedia ATCC 29909; Group X-Y. kristensenii 5868; Group VIII-Y. pseudotuberculosis IP 31758. Sites that
show positive selection (P,0.05) are depicted as yellow spheres and (P,0.01)-as red spheres.
doi:10.1371/journal.pone.0020546.g005
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niches. Porins are surface exposed and their structure strongly

reflects the history of multiple interactions with the environmental

changes in their ecological niches. The evolution of the ompF gene

of Yersinia clearly demonstrates a combination of diversifying

selection (recombination and positive selection) and function-

structure constraint (translational selection and purifying

selection). The data can be important for clarification the role of

porin’s surface exposed loops on bacterial adaptation and

development of broad-spectrum Yersinia vaccine antigens and

serological methods of diagnostics.

Materials and Methods

Bacterial strains, growth conditions, and DNA isolation
A total of 65 Yersinia strains from the collections of Max von

Pettenkofer Institute (Munchen, Germany) and Research institute

of epidemiology and microbiology, Siberian branch of Russian

academy of medical sciences, (Vladivostok, Russia) were used in

this study. Strain selection was intended to include strains of all

known Yersinia species with a high degree of diversity. All strains

were grown overnight at 30uC or 37uC under aerobic conditions

on LB medium. Bacterial DNA was isolated from overnight

cultures of the selected strains using Genomic DNA Purification

Kit (Fermentas, EU). The DNA concentration was determined by

agarose gel electrophoresis. The gels were scanned and the signals

were analyzed with the VersaDoc 4000 MP system (Bio-Rad

Laboratories AG, Switzerland). Additionally, eleven Yersinia strains

for which the genome sequences are available on the GeneBank of

NCBI website were analyzed.

PCR amplification and DNA sequencing
PCR amplification of 16S rDNA gene from all strains of Yersinia

was performed using the primers, BF-20 (59–ATCACGCG-

TAAAAATCT-39) and BR2-22 (59-CCGCAATATCATTGG-

TGGT-39). The expected amplicon size was 1500 bp. The part of

gyrB gene was amplified using primers YgyrF (59-CCCACTTTA-

TACCT-39) and YgyrR (59-CCCACTTTATACCT-39). The

expected amplicon size was 980 bp. The ompF gene was amplified

using primers Fcds-F (59-CCCACTTTATACCT-39) and Fcds-R

(59-CCCACTTTATACCT-39). These were designed by aligning

sequences of ompF genes of Y. enterocolitica 8081 (AM286415), Y.

intermedia ATCC 29909 (AALF02000006), Y. mollaretii ATCC 33641

(NZ_AALD02000003) and Y. frederiksenii ATCC 33641 (NZ_

AALE02000015). The expected amplicon size was 1100 bp. PCR

conditions for all genes were as follows: initial denaturation at 95uC
for 5 min followed by 30 cycles each at 94uC for 30 s, 55uC for 30 s,

72uC for s and a final extension step at 72uC for 5 min. PCR

products were evaluated on a 1,5% agarose gel stained with

ethidium bromide. Unincorporated primers and dNTPs were

removed from PCR products with NucleoSpinH Extract II kit

(Macherey-Nagel). Purified DNA was sequenced using the

dideoxynucleotide chain-termination method with fluorescent

ddNTPs from Applied Biosystems on an ABI 310 Prism automated

DNA sequencer, in accordance with the manufacturer’s instruc-

tions. Sequence data for the appropriate loci from Y. bercovieri ATCC

43970 (NZ_AALC00000000), Y. enterocolitica 8081 (NC_008800), Y.

frederiksenii ATCC 33641 (NZ_AALE00000000), Y. intermedia ATCC

29909 (NZ_AALF00000000), Y. mollaretii ATCC 43969 (NZ_

AALD00000000), Y. pestis 91001 (NC_005810), CO92 (NC_

003143), Pestoides F (NC_009381), Y. pseudotuberculosis IP 31758

(NC_009708), IP 32953 (NC_006155), YPIII (NC_010465), Y.

rohdei ATCC 43380 (NZ_ACCD00000000), Y. kristensenii ATCC

33638 (NZ_ACCA00000000), Y. ruckeri ATCC 29473 (NZ_

ACCC00000000), Y. aldovae ATCC 35236 (NZ_ACCB00000000)

were obtained from GenBank (http://ncbi.nlm.nih.gov) and

analyzed together with other Yersinia isolates (Table 1).

Comparative sequence analysis and phylogeny inference
Nucleotide sequence data from forward- and reverse-strand

chromatograms were assembled into single contiguous sequences

using the Vector NTI Advance 9.1.0 software. Sequences were

aligned by ClustalW 2.0.10 [52]. MEGA version 4.1 [53] was

used to calculate genetic distances between sequences and to

produce phylogenetic trees. To construct the tree from nucleotide

sequences, all three coding positions were examined and the

Neighbour-Joining model with Kimura 2-parameter method [54]

was applied. The reliability of the inferred trees was assessed

using the bootstrap test (1000 replications) [55]. Alignment gaps

were excluded using function ‘‘Pairwise Deletion’’ from all

analyses.

Evolution analyses
Nucleotide divergence (Pi) along ompF sequences was deter-

mined by DnaSP v5 [56] using Sliding window with length of 20

and step size of 7. Adaptive evolution of ompF gene was calculated

as proportion of synonymous (silent; ds) and non-synonymous

(amino acid-changing; dn) substitution rates in MEGA 4 using the

Nei-Gojobori method with Jukes-Cantor correction and SLR [45]

software. Recombinant ompF sequences were detected with the

RDP v3.34 software [57] using four automated recombination

detection methods including RDP [58], Genconv [59], Chimaera

[60], Maximum Chi Square [60,61]. For the RDP method,

internal reference sequences were used, the window size was set to

20, and 0–100 sequence identity was used. For both the MaxChi

and the Chimera methods, the number of variable sites was set to

40. For the GENCONV method, we used standard settings. A

maximum P value of 0.01 and a Bonferroni correction were used.

Results were then checked by visual inspection. CAI index was

calculated by CodonW 1.3 (ftp://molbiol.ox.ac.uk/cu/codonW.

tar.Z) software for 11 Yersinia species (Y. pestis CO92, Y.

pseudotuberculosis IP32953, Y. enterocolitica ATCC 8081, Y. intermedia

ATCC 29909, Y. rohdei ATCC 43380, Y. kristensenii ATCC

33638, Y. frederiksenii ATCC 33641, Y. mollaretii ATCC 43969, Y.

ruckeri ATCC 29473, Y. bercovieri ATCC 43970, Y. aldovae ATCC

35236). As a reference for highly expressed genes, we used the 26

concatenated ribosomal genes for each organism.

Nucleotide sequence accession numbers
The novel sequences determined in this study have been

deposited in GenBank under accession no. GQ421361-GQ4

21424; FJ641877-FJ641894; 146 HM142614-HM142721.
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