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Abstract

A wearable body hydration sensor employing photoplethysmographic and galvanic biosen-

sors was field evaluated using 240 human participants with equal numbers of men and

women volunteers. Monitoring of water mass loss due to perspiration was performed by

medical balance measurements following one of two different treadmill physical exercise

regimens over 90 minutes in 15-minute intervals with intervening 10-minute rest periods.

Participants wore two different models of the dehydration body monitor device mated to

commercially-available smartwatches (Samsung Gear S2 and Samsung Gear Fit2). Device

output was recorded by Bluetooth wireless link to a standard smartphone in 20-second

blocks. Comparison of the devices with the standard measurement method (change in body

mass measured by medical balance) indicated very close agreement between changes in

body water mass and device output (percent normalized mean root square error averaged

approximately 2% for all participants). Bland-Altman analyses of method agreement indi-

cated that <5% of participant values fell outside of the 95% confidence interval limits of

agreement and all measured value differences were normally distributed around the line of

equality. The results of this first-ever field trial of a practical, wearable hydration monitor sug-

gests that this device will be a reliable tool to aid in geriatric hydration monitoring and physi-

cal training scenarios.

Introduction

Adequate hydration is essential for good health and aids in support of all body systems. Low

amounts of water hydration have a variety of negative health effects: mild dehydration mani-

fests in headache, tiredness and thirst while severe cases may lead to fever, hypotension, rapid

heart rate, increased respiration, cognitive impairment, and even unconsciousness [1–3]. States

of dehydration drive thirst response through several sensory mechanisms including hypotha-

lamic osmoreceptors, increases in gastric sodium ions and osmolality, and reduced blood pres-

sure and volume stimulating antidiuretic compensatory increases in antidiuretic hormone,

angiotensin, and renin secretion [4]. However, in thirst response in humans is more
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complicated and is often mitigated by situational and conditioned behavioral factors such as

fluid taste and availability, linked association of drinking with meal times, and patterned drink-

ing habits [5], all of which can suppress perception of thirst. Furthermore, several studies have

demonstrated that conscious perception of thirst has a poor correlation with blood osmolality

[6]. Thirst response alone has been shown to be an inaccurate indication of hydration need [7,

8]. Therefore, there are a variety of situations, such as athletic training or status monitoring of

hospice patients, where a method of measuring hydration or water loss would be useful.

Several types of devices have been designed to monitor drinking frequency and amount in

elderly hospice patients who often will forget to drink [9]. These devices typically involve either

a smartcup that measures fluid volume removal or consists of a wearable inertial sensor that

detects specific wrist movements associated with drinking from a container [10, 11]. These are

inherently problematic as they indirectly measure drinking behavior and not actual hydration.

For people engaged in fitness or for professional athletes, the need for proper hydration moni-

toring is evident but until recently there was a lack of convenient devices to fulfill this need.

Efforts have been made to develop devices around materials technologies using microcapillary

sweat collection systems for volumetric estimates [12, 13] which are still in their development

stages and are prone to variance due to changing environmental use conditions. The portabil-

ity potential of fluid collection-based perspiration monitoring devices as wearables, whether

designed on microcapillary collectors or absorbent pads, is foiled by their inherent bulkiness

and power requirements.

Wearable electrochemical or optical sensors have the potential for repeated use and device

accuracy in producing a useable tool for real-time perspiration monitoring. SpectroPhon

LTD has developed a technology that allows measurement of very small amounts of solutes

contained in sweat using photoplethysmographic sensors covered with a special coating, the

outputs of which are deciphered by unique algorithms. These biosensors can be easily incor-

porated into most commercially-available smartwatches or smartbands for real-time mea-

surements synchronized to consumer smartphones with health monitoring applications.

The present work constitutes the first-ever independently-conducted field test of a wearable

hydration monitor commercial prototype with human volunteers. The main objective of cur-

rent study is to estimate the accuracy of SpectroPhon perspiration biosensors incorporated

in two smartwatches: a Samsung Gear S2 and a Samsung Gear Fit2. The secondary aim of the

study is to also evaluate the safety-in-use of SpectroPhon biosensors.

Methods

Tested device

The Dehydration Body Monitor (DBM) model SP-DBM (Firmware v1.5, SpectroPhon, Ltd.,

Rehovot, Israel) is a label-like, thin layer device affixed to the case back-glass of a smartwatch

with a modified and accessible CMOS interface (Fig 1A). The SpectroPhon devices use a pro-

prietary photoplethysmographic sensor (US20150260656A1, US20170027482A1; patents

pending) that changes optical characteristics in the presence of different metabolites in sweat

(water, lactic acid, pyruvic acid, carbonates, ketones, and monovalent ions such as sodium and

potassium). Differing concentrations of sweat metabolites affect the chemochromic character-

istics of the device and alter signal throughput, which is recorded, algorithmically transformed

in the smartwatch, and transmitted by Bluetooth to a synchronized smartphone. The DBM

specifically is attuned to detect various salts in secreted sweat, estimating sweat volume using

proprietary algorithms, and also employs a galvanic contact system to estimate whole body

skin surface area, which is used to estimate total body water loss. A data flow diagram is pre-

sented in Fig 1B.
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Experimental design

Healthy adults (n = 240) of both sexes in different age groups were recruited and consented for

the study by informed written consent. Modified commercially-available smartwatches (Sam-

sung Gear S2, Samsung Gear Fit2) with the SpectroPhon DBM attached were affixed to the left

and right wrists of study participants prior to physical exertion testing. Each participant was

subjected to moderate physical activity by walking on a treadmill. Data from both smart-

watches were obtained simultaneously, collected to smartphone data caches through a Blue-

tooth wireless interface. Participant weights were monitored using a commercially-available

digital balance (Shekel B-200-P). All experiments were conducted indoors under ambient tem-

perature (18˚C) and humidity (40–60%). The trial was approved by the Institutional Review

Board of Tirat Carmel Mental Health Center (Tirat Carmel, Israel) and registered externally

with NIH under study NCT03229109 (http://clinicaltrials.gov).

Experimental groups

Number of participants: 240, age range: 18–70 (120 men, 120 women). Quartile distributions

by age were as follows (minimum, 25% percentile, median, 75% percentile, maximum): Men

Fig 1. Structural components and data flow of the SpectroPhon-DBM. (A) Component arrangements of PPG sensor and CMOS interface to a

smartwatch, Bluetooth-linked to a smartphone with data interpretation application. (B) Data flow diagram of components. Colors represent: green,

chemochromic film; blue, lighting layer consisting of LED emitters and photodiode detectors; orange, components of the CMOS interface.

https://doi.org/10.1371/journal.pone.0272646.g001
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(19, 26, 38, 50, 70), women (22, 26.5, 38, 49.75, 69). Mean age of participants (±SD): Men,

39.76±13.59; women, 39.90±13.63.

Inclusion criteria.

1. Age: 18 or older, both sexes.

2. Ability and willingness to sign an informed consent document for participation in the

study.

Exclusion criteria.

1. Presence of known cardiovascular disease.

2. Evidence of any other serious medical disorder.

3. Pregnancy.

Procedure

Participants were weighed in triplicate prior to, during each rest break, and after the experi-

ment (no clothing after maximal drying). Study volunteers were subjected to 15 minutes of

physical activity (walking on the treadmill) with intermittent, timed rest breaks of 10 minutes.

Participant skin was examined after the procedure to monitor any allergic reaction or any

other skin reaction related to placement of the DBM.

Activity protocol. Total time for the experiment was 90 minutes, with a total exercise

time of 60 minutes in 15-minute increments. The following exercise and rest intervals were

used (times in minutes [min]):

T0: Initiate exercise; T1: T0+15 min—stop exercise, rest; T2: T0+25 min—initiate exercise;

T3: T0+40 min–stop exercise, rest; T4: T0+50 min—initiate exercise; T5: T0+65 min–stop

exercise, rest; T6: T0+75 min—initiate exercise; T7: T0+90 min–stop exercise. Total duration

of study: 90 min.

Intensity of exercises. Participants could choose high or low intensity of exertion in each

exercise interval based on their level of comfort. We used the following pre-programmed com-

binations of treadmill speeds (in minutes) for each exercise interval:

a. High: 0:00–0:01 –preparation; 0:01–0:05–5.5 km h-1; 0:05–0:10–6.0 km h-1; 0:10–0:15–6.5

km h-1

b. Low: 0:00–0:01 –preparation; 0:01–0:05–5.0 km h-1; 0:05–0:10–5.5 km h-1; 0:10–0:15–6.0

km h-1

The objective of the selected treadmill speed regimens was to gradually transition study par-

ticipants to speed walking without gait transition to running through a series of speed

increases. Treadmill speeds were selected based on the difference between an average preferred

walking speed of 1.4 m/s [14] and a running gait transition speed of 2.0 m/s [15], divided into

4 even speed increments. The bottom 3 speeds (5.04, 5.58, 6.12 m/s) were designated the

“Low” series and the top 3 speeds (5.58, 6.12, 6.66 m/s) were designated the “High” series. The

minimal speed increment of the treadmill model used here was 0.5 km/h; we selected treadmill

speeds in km/h that approximated our walking speed increment calculations.

Data recording

The DBM application recorded sweat mass and total salt in sweat every 20 s and automatically

transmitted results to a data archive on a Bluetooth-linked mobile phone. Manual recording of
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participant weight by use of a digital medical balance (no clothing after maximal drying) was

conducted prior to test initiation and during rest breaks (between phases T1-T2, T3-T4,

T5-T6, and after T7). During the procedure, participants could drink up to 500 mL of water.

The weight of the bottle was measured and recorded after drinking during breaks using a digi-

tal laboratory balance (Ohaus V51P6). Mass of water consumed was used to adjust estimated

body mass water loss. Participants could not urinate after T0 until the end of trial. For partici-

pant safety, we ensured that water weight loss did not exceed 2% of initial measured body mass

during the experiment. Participants could cancel the experiment at any point of the procedure if
desired.

Statistics

SpectroPhon DBM data output and corrected participant water mass loss were analyzed by

Pearson correlation. Data were also used to construct Bland-Altman plots (difference vs. aver-

age) for method agreement value distributions as well as frequency distributions (difference)

with accompanying skewness and kurtosis estimates (using a D’Agostino-Pearson Omnibus

K2 test). The following calculations were performed to compare the DBM and manual weight

results for method agreement: mean bias, mean absolute percentage error (MAPE), percent

normalized root mean square error (%NRMSE), and mean absolute error (MAE). All statistics

were performed using GraphPad Prism 7.0 or Microsoft Excel. Formulae used for calculations

are provided in S1 Table. Non-identifying human participant data is available in a public data-

set archive [16].

Results

Most participants (97%) chose high intensity level of exertion. Only 1 participant was not able

to finish the procedure due to a prior leg trauma (not related to the current experiment). In

the first days of the experiment, there were difficulties with data recording from the Spectro-

Phon DBM incorporated in the Samsung Gear Fit2 due to conflict between DMB software and

software monitoring energy consumption. The problem was quickly solved by a DBM software

update. No adverse skin reactions were observed in any participant following the test.

Pearson correlation analyses of method agreement for DBM-estimated water loss (perspira-

tion) compared with the weight change standard used here (participant change in mass)

yielded Pearson rho (ρ) values (Fig 2) ranging from 0.8885 (for men wearing the DBM Sam-

sung Gear Fit2; Fig 2E) to 0.9511 (for women wearing the DBM Samsung Gear S2; Fig 2C). All

Pearson correlations showed significant positive method correlations (p<0.0001).

Measurement method comparisons by Bland-Altman plots (difference vs. average) indi-

cated normal Gaussian distributions around the line of equality for all participants ([Bias±SD]:

7.531±46.81, DBM Samsung Gear S2, Fig 3A; 3.435±49.73, DBM Samsung Gear Fit2, Fig 4A),

as well as when compared by men only ([Bias±SD]: 8.719±53.13, DBM Samsung Gear S2, Fig

3B; 3.261±56.72, Samsung Gear Fit2, Fig 4B) and women only ([Bias±SD]: 6.342±39.70, DBM

Samsung Gear S2, Fig 3C; 3.608±41.84, Samsung Gear Fit2, Fig 4C). Differences between mea-

surement methods for all participants were low, with only 4.58% (Gear S2) and 4.17% (Gear

Fit2) of DBM estimates falling outside (outlier values) of the 95%CI for the limits of agreement.

Outlier method difference values for men were remarkably low at 1.67% for both devices,

whereas method difference values for women tended to be higher (4.17%, Gear S2; 3.33%,

Gear Fit2).

Frequency distributions of difference values by 30 g bins again yielded normal, Gaussian

value distributions for nearly all participants (DBM Samsung Gear S2: K2 = 5.163, p = 0.0756;

skewness = -0.2977; kurtosis = -0.3552; Fig 3D; DBM Samsung Gear Fit2: K2 = 0.5942,
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p = 0.7430; skewness = -0.0401; kurtosis = -0.2344; Fig 4D), as well as when compared by men

only (DBM Samsung Gear S2: K2 = 4.980, p = 0.0829; skewness = -0.3606; kurtosis = -0.5397;

Fig 3E; DBM Samsung Gear Fit2: K2 = 1.3310, p = 0.5140; skewness = -0.1826; kurtosis =

-0.3428; Fig 4E) and women only (DBM Samsung Gear S2: K2 = 2.2920, p = 0.3179; skewness

= -0.1967; kurtosis = -0.4630; Fig 3F). The only non-Gaussian exception was the difference dis-

tribution of method agreement for women wearing the DBM Samsung Gear Fit2

(K2 = 10.0100, p = 0.0067; skewness = 0.3288; kurtosis = -0.7943; Fig 4F), which presented a

narrowed, peaked distribution that was slightly left-skewed.

Table 1 summarizes method comparison statistics for the DBM Samsung Gear S2 device

and the standard (mass loss) measurement method. Mean bias percentage for all participants

was low (1.77%) and similar values were measured for men (1.87%) and women (1.63%), indi-

cating close method agreement. MAPE values were similarly low, approximately 10%, also

indicating that the DBM device output to the Samsung Gear S2 smartwatch was also in close

agreement with our standard mass loss measurement method (mean±95%CI: all participants,

9.56±0.91; men, 10.16±1.36; women, 8.96±1.23). The %NRMSE estimation of method differ-

ence was also low for all participants (2.11%) with similar values for both men (1.87%) and

women (2.50%). The MAE estimates between methods were as follows: [mean(g) ±SE]; all par-

ticipants, 39.51±1.68; men, 45.81±2.55; women, 33.22±2.05.

Table 2 summarizes method comparison statistics for the DBM Samsung Gear Fit2 device

and the standard (mass loss) measurement method. Mean bias percentage for all participants

was lower than seen with the DBM Samsung Gear S2 device (0.80%) and similar values were

measured for men (0.70%) and women (0.93%), indicating close method agreement. MAPE

values were similarly low, again approximately 10%, also indicating that the DBM device

Fig 2. Comparison of participant weight change with perspiration. Data represent Pearson (ρ) correlation with accompanying linear regression line

of final weight change (g) versus DBM device-measured water loss (perspiration, g). Samsung Gear S2: (A) All participants. (B) Men. (C) Women.

Samsung Gear Fit2: (D) All participants. (E) Men. (F) Women. Solid line, regression best fit; dotted lines, upper and lower bounds of 95%CI of the

regression line. Correlation, all measures: p<0.0001. For all regressions, there were no significant deviations from linearity (slopes were all significantly

non-zero, p<0.0001).

https://doi.org/10.1371/journal.pone.0272646.g002
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Fig 3. Device-standard agreement for Samsung Gear S2. (A-C) Bland-Altman plots of average versus difference for perspiration

measurements of DBM Samsung Gear S2 (g) compared against participant weight change (g) for (A) all participants, (B) men, and (C)

women. Solid line, line of equality; dotted lines, upper and lower bounds of 95%CI of the line of equality. (D-E) Frequency distribution

histograms of method measurement differences (g) for (D) all participants, (E) men, and (F) women.

https://doi.org/10.1371/journal.pone.0272646.g003
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Fig 4. Device-standard agreement for Samsung Gear Fit2. (A-C) Bland-Altman plots of average versus difference for perspiration

measurements of DBM Samsung Gear Fit2 (g) compared against participant weight change (g) for (A) all participants, (B) men, and (C)

women. Solid line, line of equality; dotted lines, upper and lower bounds of 95%CI of the line of equality. (D-E) Frequency distribution

histograms of method measurement differences (g) for (D) all participants, (E) men, and (F) women.

https://doi.org/10.1371/journal.pone.0272646.g004
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output to the Samsung Gear Fit2 smartwatch was in close agreement with our standard mea-

surement method (mean±95%CI: all participants, 9.92±0.96; men, 10.32±1.38; women, 9.52

±1.34). The %NRMSE estimation of method difference was also low for all participants and

similar to the DBM Samsung Gear S2 measures (2.01%) with similar values for both men

(1.77%) and women (2.39%). The MAE estimates between methods were as follows: [mean(g)

±SE]; all participants, 40.94±1.83; men, 47.11±2.87; women, 34.78±2.13.

There were no significant differences in MAPE or MAE values for all participants, men, or

women between the two SpectroPhon DBM devices (Student’s t-test, 2-tailed unpaired:

p>0.05 for all comparisons).

Discussion

In mammals, estimation of normal body hydration (euhydration) is approximated by the ratio

of total body water mass to fat-free tissue mass, which is 0.73 in nearly all cases [17, 18]. Both

terrestrial and pelagic species demonstrate this same ratio, thus indicating that body water

maintenance is governed by mechanisms consistent across mammalian taxa and is therefore

of central importance to basic metabolism and excretory processes. Typical homeostatic limits

of total body water content during rest are within 0.22% of body mass but can vary as much as

0.48% of body mass under conditions of rigorous physical exertion and heat stress. For

Table 1. Summary of statistical comparisons between DBM Samsung Gear S2 and the mass loss measurement standard method.

All Participants Men Women

Mean Bias g 7.53 8.72 6.34

% 1.77 1.87 1.63

MAPE Mean 9.56 10.16 8.96

95%CI 0.91 1.36 1.23

%SD 7.58 7.58 6.86

%NRMSE 2.11 1.87 2.50

MAE g 39.51 45.81 33.22

SE 1.68 2.55 2.05

Abbreviations are as follows: MAPE, mean absolute percentage error; %NRMSE, percent normalized root mean square error; MAE, mean absolute error; 95%CI. 95%

confidence interval; %SD, percent standard deviation; SE, standard error of the mean.

https://doi.org/10.1371/journal.pone.0272646.t001

Table 2. Summary of statistical comparisons between DBM Samsung Gear Fit2 and the mass loss measurement standard method.

All Participants Men Women

Mean Bias g 3.43 3.26 3.61

% 0.80 0.70 0.93

MAPE Mean 9.92 10.32 9.52

95%CI 0.96 1.38 1.34

%SD 7.58 7.72 7.47

%NRMSE 2.01 1.77 2.39

MAE g 40.94 47.11 34.78

SE 1.83 2.87 2.13

Abbreviations are as follows: MAPE, mean absolute percentage error; %NRMSE, percent normalized root mean square error; MAE, mean absolute error; 95%CI. 95%

confidence interval; %SD, percent standard deviation; SE, standard error of the mean.

https://doi.org/10.1371/journal.pone.0272646.t002
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humans, the weekly average total body water mass variation is approximately 2% of body mass

based primarily on changes in hydration level and body fat content [4]. When total body water

content drops below 10% body mass, several compensatory mechanisms engage to drive

water- and salt-seeking behaviors, which is known as thirst response [4, 19, 20].

The thirst response is complex and often involves a variety of psychological and social cues

in addition to physiological thirst stimulus [4, 21]. Changes in blood osmolality stimulate

osmoreceptors in hypothalamus, increasing release of antidiuretic hormone, and also increase

secretory responses to reduced blood flow in kidney (increased renin) and lung (increased

angiotensin converting enzyme). These compensatory physiological mechanisms can impose

restrictions on glomerular function and foster water and sodium retention, yet they only have

partial influence on water-seeking behavior [21].

The just noticeable difference threshold for human thirst perception has been estimated to

be at about 1–2% from optimal hydration [4], a rather low threshold, however procrastination

in addressing water hunger is frequently observed and mitigated by situational and social ele-

ments [21]. These complicating elements, which distract from thirst response perception,

include water availability, fluid source taste, developed drinking habits, and association with

meals [5]. Therefore, in many cases the thirst response is usually perceived when the stimulus

becomes strong enough to override other environmental distractions and becomes more of an

indicator of definitive immediate need [7]. Physiological evidence from athlete hydration levels

during and after rigorous exercise, their perceived thirst level, and drive to drink water indi-

cates that thirst is an approximation stimulus of hydration condition only and may not ade-

quately lead hydration state to provide properly-timed behavioral compensation [22, 23].

Indeed, engaging in rigorous exercise in a hypohydrated state and imbibing water afterward

during rest suppresses the thirst stimulus and drive to consume additional fluids, despite a

continued state of hypohydration [7]. As such, perceived thirst cannot be reliably used as an

indicator of hydration state until critically low hydration levels are reached [7, 8].

Typical methods of measuring hydration involve some form of hematological or other

body fluid assessment. There are many methods with the more commonly-used measures

being hematocrit, plasma, saliva, or urine osmolality, sodium and potassium concentration

of sweat, and level of blood gas carbonates [24, 25]. All of these methods, however, require

either laboratory processing or some form of biosensor to measure constituents of collected

fluid in real time. The disadvantage of fluid collection-based approaches is the necessity to

collect and store fluid, even if temporarily. This typically requires either absorptive pads or

some form of bulky microfluidic device, both of which have a limited span of use. In contrast,

methods of measuring skin perspiration that are amenable to “wearables” fall into either of

two general classes of device: electrode-based devices that contact with the biofluid or poly-

mer-based sensors that react to the presence of specific constituents of sweat [26]. Surface-

reactive films, whether optical, chemical, or electrode-based, avoid the need for fluid collec-

tion, have extended use potential, tend to be less bulky, and are more portable and less

energy-consumptive for use in real-time data capture devices [27]. For an extensive review of

wearable device technologies and their applicable chemosensory use, despite being laboratory

demonstration devices, see Yang and Gao, 2019 [28].

In the present study, we examined the accuracy of two SpectroPhon DBM devices in a

group of human volunteers engaged in moderate physical exercise. The DBM is a polymer

film-based photoplethysmographic (PPG) device that measures sodium ion concentration in

sweat and galvanically estimates whole body skin area to provide an estimation of total body

water loss in real time. Synchronized to a smartphone with a data interpretation application,

the pairing allows for continuous monitoring and post exercise analysis. Performance compar-

isons of the DBM with similar commercially-available devices were not possible here since,
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despite the great interest in wearable hydration monitors, only one other commercially-avail-

able product exists for which there is no published data (the Kenzen). The majority of hydra-

tion sensor studies cover laboratory calibration efforts only and there exist no published

wearable hydration monitor field tests.

Among the measured method agreement metrics for the SpectroPhon DBM-modified

smartwatches examined here, the method error for all groups studied ranged from 2.01–

2.50%, far below the acceptable measurement method error (15% cutoff by the ISO15 standard

for glucometers) of other SpectroPhon devices we have examined previously [29]. The low

error values calculated here (around 2% for %NRMSE; mean bias<2%) quite accurate com-

paring the different methods of measurement. Confirming this conclusion is the finding that

<5% of differences between measurement methods for all subjects by Bland-Altman analyses

fell outside of the 95%CI for the limits of agreement. When the results are considered collec-

tively, we feel that the PPG technology examined here has excellent potential as a reliable wear-

able hydration monitor.
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S1 Table. Measurement method comparison formulae. Calculated metrics were as follows:

Mean bias including mean bias %, MAPE (mean absolute percentage error) including MAPE

standard deviation (MAPE SD) and 95% confidence interval (MAPE 95%CI), %NRMSE (per-

cent normalized root mean square error), MAE (mean absolute error) including MAE stan-

dard deviation (MAE SD). Formula abbreviations are as follows: W = Smartwatch-DBM

measurement; B = balance standard comparison measurement.
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11. Plecher DA, Eichhorn C, Lurz M, Leipold N, Böhm M, Krcmar H, et al. Interactive Drinking Gadget for

the Elderly and Alzheimer Patients. Zhou J, Salvendy G, editors. Cham, Switzerland: Springer Interna-

tional; 2019.

12. Yang Y, Xing S, Fang Z, Li R, Koo H, Pan T. Wearable microfluidics: fabric-based digital droplet flowme-

try for perspiration analysis. Lab on a chip. 2017; 17(5):926–35. https://doi.org/10.1039/c6lc01522k

PMID: 28197582.

13. Steijlen ASM, Bastemeijer J, Groen P, Jansen KMB, French PJ, Bossche A. A wearable fluidic collec-

tion patch and ion chromatography method for sweat electrolyte monitoring during exercise. Analytical

methods: advancing methods and applications. 2020; 12(48):5885–92. https://doi.org/10.1039/

d0ay02014a PMID: 33290448.

14. Browning RC, Baker EA, Herron JA, Kram R. Effects of obesity and sex on the energetic cost and pre-

ferred speed of walking. Journal of applied physiology. 2006; 100(2):390–8. https://doi.org/10.1152/

japplphysiol.00767.2005 PMID: 16210434.

15. Mohler BJ, Thompson WB, Creem-Regehr SH, Pick HL Jr., Warren WH Jr. Visual flow influences gait

transition speed and preferred walking speed. Experimental brain research. 2007; 181(2):221–8.

https://doi.org/10.1007/s00221-007-0917-0 PMID: 17372727.

16. Kirby M, Rodin D, Shapiro Y, Pinhasov A, Kreinin A. SpectroPhon DBM Subject Data. Mendeley

Data2021.

PLOS ONE An accurate wearable hydration sensor: Real-world evaluation of practical use

PLOS ONE | https://doi.org/10.1371/journal.pone.0272646 August 24, 2022 12 / 13

https://doi.org/10.1111/j.1753-4887.2005.tb00155.x
http://www.ncbi.nlm.nih.gov/pubmed/16028567
https://doi.org/10.3390/nu11010070
https://doi.org/10.3390/nu11010070
http://www.ncbi.nlm.nih.gov/pubmed/30609670
https://doi.org/10.1186/s12889-018-6252-5
http://www.ncbi.nlm.nih.gov/pubmed/30518346
https://doi.org/10.3390/nu11122864
http://www.ncbi.nlm.nih.gov/pubmed/31766680
https://doi.org/10.1093/nutrit/nuv033
http://www.ncbi.nlm.nih.gov/pubmed/26290293
https://doi.org/10.3390/nu12092554
http://www.ncbi.nlm.nih.gov/pubmed/32846895
https://doi.org/10.3390/nu11112689
https://doi.org/10.3390/nu11112689
http://www.ncbi.nlm.nih.gov/pubmed/31703247
https://doi.org/10.1016/j.physbeh.2010.02.026
http://www.ncbi.nlm.nih.gov/pubmed/20211637
https://doi.org/10.1093/ageing/afv119
http://www.ncbi.nlm.nih.gov/pubmed/26316508
https://doi.org/10.1039/c6lc01522k
http://www.ncbi.nlm.nih.gov/pubmed/28197582
https://doi.org/10.1039/d0ay02014a
https://doi.org/10.1039/d0ay02014a
http://www.ncbi.nlm.nih.gov/pubmed/33290448
https://doi.org/10.1152/japplphysiol.00767.2005
https://doi.org/10.1152/japplphysiol.00767.2005
http://www.ncbi.nlm.nih.gov/pubmed/16210434
https://doi.org/10.1007/s00221-007-0917-0
http://www.ncbi.nlm.nih.gov/pubmed/17372727
https://doi.org/10.1371/journal.pone.0272646


17. Wang Z, Deurenberg P, Wang W, Pietrobelli A, Baumgartner RN, Heymsfield SB. Hydration of fat-free

body mass: review and critique of a classic body-composition constant. The American journal of clinical

nutrition. 1999; 69(5):833–41. https://doi.org/10.1093/ajcn/69.5.833 PMID: 10232621.

18. Wang Z, Deurenberg P, Wang W, Pietrobelli A, Baumgartner RN, Heymsfield SB. Hydration of fat-free

body mass: new physiological modeling approach. The American journal of physiology. 1999; 276(6):

E995–E1003. https://doi.org/10.1152/ajpendo.1999.276.6.E995 PMID: 10362610.

19. Popkin BM, D’Anci KE, Rosenberg IH. Water, hydration, and health. Nutrition reviews. 2010; 68

(8):439–58. https://doi.org/10.1111/j.1753-4887.2010.00304.x PMID: 20646222.

20. Cheuvront SN, Fraser CG, Kenefick RW, Ely BR, Sawka MN. Reference change values for monitoring

dehydration. Clinical chemistry and laboratory medicine. 2011; 49(6):1033–7. https://doi.org/10.1515/

CCLM.2011.170 PMID: 21428854.

21. Millard-Stafford M, Wendland DM, O’Dea NK, Norman TL. Thirst and hydration status in everyday life.

Nutrition reviews. 2012; 70 Suppl 2:S147–51. https://doi.org/10.1111/j.1753-4887.2012.00527.x PMID:

23121351.

22. Greenleaf JE. Problem: thirst, drinking behavior, and involuntary dehydration. Medicine and science in

sports and exercise. 1992; 24(6):645–56. PMID: 1602937.

23. Armstrong LE, Ganio MS, Klau JF, Johnson EC, Casa DJ, Maresh CM. Novel hydration assessment

techniques employing thirst and a water intake challenge in healthy men. Applied physiology, nutrition,

and metabolism = Physiologie appliquee, nutrition et metabolisme. 2014; 39(2):138–44. https://doi.org/

10.1139/apnm-2012-0369 PMID: 24476468.

24. Trenz F, Weigel R, Hagelauer A. Methods for human hydration measurement. Frequenz. 2018; 72(3–

4):159–66. https://doi.org/10.1515/freq-2018-0006

25. Barley OR, Chapman DW, Abbiss CR. Reviewing the current methods of assessing hydration in ath-

letes. J Int Soc Sports Nutr. 2020; 17(1):52. https://doi.org/10.1186/s12970-020-00381-6 PMID:

33126891

26. Dias D, Paulo Silva Cunha J. Wearable Health Devices-Vital Sign Monitoring, Systems and Technolo-

gies. Sensors. 2018; 18(8). https://doi.org/10.3390/s18082414 PMID: 30044415.

27. Kim J, Campbell AS, de Avila BE, Wang J. Wearable biosensors for healthcare monitoring. Nature bio-

technology. 2019; 37(4):389–406. https://doi.org/10.1038/s41587-019-0045-y PMID: 30804534.

28. Yang Y, Gao W. Wearable and flexible electronics for continuous molecular monitoring. Chemical Soci-

ety reviews. 2019; 48(6):1465–91. https://doi.org/10.1039/c7cs00730b PMID: 29611861.

29. Rodin D, Kirby M, Sedogin N, Shapiro Y, Pinhasov A, Kreinin A. Comparative accuracy of optical sen-

sor-based wearable system for non-invasive measurement of blood glucose concentration. Clinical bio-

chemistry. 2019; 65:15–20. https://doi.org/10.1016/j.clinbiochem.2018.12.014 PMID: 30629956.

PLOS ONE An accurate wearable hydration sensor: Real-world evaluation of practical use

PLOS ONE | https://doi.org/10.1371/journal.pone.0272646 August 24, 2022 13 / 13

https://doi.org/10.1093/ajcn/69.5.833
http://www.ncbi.nlm.nih.gov/pubmed/10232621
https://doi.org/10.1152/ajpendo.1999.276.6.E995
http://www.ncbi.nlm.nih.gov/pubmed/10362610
https://doi.org/10.1111/j.1753-4887.2010.00304.x
http://www.ncbi.nlm.nih.gov/pubmed/20646222
https://doi.org/10.1515/CCLM.2011.170
https://doi.org/10.1515/CCLM.2011.170
http://www.ncbi.nlm.nih.gov/pubmed/21428854
https://doi.org/10.1111/j.1753-4887.2012.00527.x
http://www.ncbi.nlm.nih.gov/pubmed/23121351
http://www.ncbi.nlm.nih.gov/pubmed/1602937
https://doi.org/10.1139/apnm-2012-0369
https://doi.org/10.1139/apnm-2012-0369
http://www.ncbi.nlm.nih.gov/pubmed/24476468
https://doi.org/10.1515/freq-2018-0006
https://doi.org/10.1186/s12970-020-00381-6
http://www.ncbi.nlm.nih.gov/pubmed/33126891
https://doi.org/10.3390/s18082414
http://www.ncbi.nlm.nih.gov/pubmed/30044415
https://doi.org/10.1038/s41587-019-0045-y
http://www.ncbi.nlm.nih.gov/pubmed/30804534
https://doi.org/10.1039/c7cs00730b
http://www.ncbi.nlm.nih.gov/pubmed/29611861
https://doi.org/10.1016/j.clinbiochem.2018.12.014
http://www.ncbi.nlm.nih.gov/pubmed/30629956
https://doi.org/10.1371/journal.pone.0272646

