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Abstract

Association between acute myocardial infarction (AMI) morbidity and ambient temperature

has been examined with generalized linear model (GLM) or generalized additive model

(GAM). However, the effect size by these two methods might be biased due to the autocor-

relation of time series data and arbitrary selection of degree of freedom of natural cubic

splines. The present study analyzed how the climatic factors affected AMI morbidity for

older adults in Shanghai with Mixed generalized additive model (MGAM) that addressed

these shortcomings mentioned. Autoregressive random effect was used to model the rela-

tionship between AMI and temperature, PM10, week days and time. The degree of freedom

of time was chosen based on the seasonal pattern of temperature. The performance of

MGAM was compared with GAM on autocorrelation function (ACF), partial autocorrelation

function (PACF) and goodness of fit. One-year predictions of AMI counts in 2011 were con-

ducted using MGAM with the moving average. Between 2007 and 2011, MGAM adjusted

the autocorrelation of AMI time series and captured the seasonal pattern after choosing the

degree of freedom of time at 5. Using MGAM, results were well fitted with data in terms of

both internal (R2 = 0.86) and external validity (correlation coefficient = 0.85). The risk of AMI

was relatively high in low temperature (Risk ratio = 0.988 (95% CI 0.984, 0.993) for under

12˚C) and decreased as temperature increased and speeded up within the temperature

zone from 12˚C to 26˚C (Risk ratio = 0.975 (95% CI 0.971, 0.979), but it become increasing

again when it is 26˚C although not significantly (Risk ratio = 0.999 (95% CI 0.986, 1.012).

MGAM is more appropriate than GAM in the scenario of response variable with
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autocorrelation and predictors with seasonal variation. The risk of AMI was comparatively

higher when temperature was lower than 12˚C in Shanghai as a typical representative loca-

tion of subtropical climate.

Introduction

Generalized linear model (GLM) and generalized additive model (GAM) are the two most

commonly used statistical methods to analyze the relationship between environmental factors

with epidemiological outcomes [1–4]. However, both GLM and GAM with existed model fit-

ting framework might not appropriately fit time series data in environmental epidemiological

studies.

Acute myocardial infarction (AMI) is a life-threatening condition, which affects more than

7 million individuals worldwide annually and causes over one-third of deaths in developed

countries [5–7]. The global burden of cardiovascular diseases, including myocardial infarction

will be rocketed up in developing countries due to huge population size and aging society [8–

10].

Among the spectrum of risk factors of AMI, ambient temperature has attracted many inter-

est of society [11, 12] in the era of climate change. However, the association between ambient

temperature and AMI remains unclear and inconsistent [13–15]. The inconsistence may be

attributed to various sources of data, inconsistent AMI ascertainment, and use of different sta-

tistical methodologies [11, 12].

As the response variable in a time-dependent model, AMI count is a time series data char-

acterized with auto-correlated patterns, which does not follow the independence assumption

for GLM and GAM. Also, when accounting the degree of freedom (df) in the natural spine

using GAM, df is often arbitrarily set at 4 or 7 per year in previous studies [3, 16, 17]. As

reported in our previous studies, this arbitrary rule would heighten the risk of over fitting [18,

19]. Due to the weak association between ambient temperature and AMI [20, 21], the estima-

tion bias caused by arbitrary rule of GAM and GLM would be considered improper that can-

not be ignored.

Mixed generalized additive model (MGAM), with an autoregressive term in random effect,

offers a better alternative for data analysis in environmental epidemiological study. Besides of

it, we have developed a robust strategy to determine the degrees of freedom of natural splines

in MGAM [19, 22–24].

Additionally, most of recent studies on the association between temperature and risk of

AMI were conducted in high latitude areas since the cold weather triggers cardiovascular dis-

eases of different types [25]. Very few studies have been conducted in metropolitan areas with

sub-tropical climate like the Municipality of Shanghai [15].To manifest the performance of

MGAM in the scenario of time series environmental epidemiological data, MGAM and GAM

will be compared on the modeling of ambient temperature and AMI morbidity in Shanghai,

China.

Methods

Ethical statement

As aggregated data with no personal information were involved, ethical review was exempted

by the Institutional Review Board of the Public Health School, Fudan University.
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Data

Shanghai is situated in the central-eastern China with north subtropical monsoon climate. It is

a density metropolis with a total resident population of 19.2 million according to the 2010

national census [26].

The daily number of emergency department (ED) attendances by AMI from 2007 to

2011 were obtained from the official Medicare Database in Shanghai. All the researcher can

only access to aggregated daily number of AMI by sex and age rather than any identifying

AMI patient information. Under the Tenth Revision of the International Classification of

Diseases (ICD-10), AMI was defined as I21 and I22.913. Since the population size in Shang-

hai during 2007 to 2011 was stable, daily AMI cases, rather than incidence rate of AMI, was

used as the response variable in GAM or MGAM in the present study. Only AMI patients

aged 65 years or above were included since we thought those subjects were vulnerable to the

impact of ambient temperature. The official Medicare Database records all ED attendances

among members of Shanghai’s social health insurance, which included usual residents with

Shanghai’s household registration or persons with paid employment contract of more than

six months.

Meteorological index, including daily averaged ambient temperature and relative humidity,

were retrieved from the Shanghai Meteorological Bureau. Daily concentrations of particulate

matter 10 micrometers or less in diameter (PM10), sulphur dioxide (SO2) and nitrogen dioxide

(NO2) were obtained from the Shanghai Environmental Monitoring Center.

The population sizes of Shanghai residents age 65+ from Jan 2007 to Jan 2012 were col-

lected from the Shanghai Research Center on Aging.

Statistical methods

Mean, standard deviation, minimum and maximum were used to describe the count of AMI,

ambient temperature, relative humidity and air pollutants for whole examined period, as well

as for all seasons. Pearson correlation were applied for the correlation among ambient temper-

ature, relative humidity and air pollutants. Spearman correlation were applied for the correla-

tion between ambient temperature and count of AMI.

GAM and MGAM [27] were used to analyze the statistical association between ambient

temperature, relative humidity, air pollutants, week days and AMI morbidity. The detailed

methodology was described elsewhere [22, 23] and also in the supplement.

The most important step was using GAM to estimate the degree of freedom of the natu-

ral spline function for time, NS(t, dft). The seasonal pattern of temperature effect was used

to determine suitable degree of freedom to control those unmeasured factors in (NS(t, dft))

and thus achieve the unbiased estimation of temperature effect. After the selection of df of

time, the Akaike information criterion was applied to determine the degree of freedom of

other factors such as dftemp and dfpm10. The coefficients and weights for temperature were

estimated by maximum partial likelihood using Newton’s Method. Variable selection was

based on the statistical significance (p value) and professional rationale. The model with

ambient temperature and PM10 as independent variables was selected based on the Akaike

information criterion using GAM. After the modeling of spline, risk ratio and confidence

interval was approximately calculated for 3 temperature zones based on the change point

of spline.

The four seasons were classified as spring (March to May), summer (June to August),

autumn (September to November) and winter (December to February) as usual [19].

All statistical analyses were conducted using R software (version 3.6.2) and p<0.05 was con-

sidered as statistically significant.
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Results

Descriptive statistics

In Shanghai, over 161,000 elderly men (aged 65+) and 195,000 elderly women attended hospi-

tal’s ED by AMI from 2007-01-01 to 2011-12-31 in the official Medicare Database. For elderly

men, the annual number of AMI increased from 27.6 thousands in 2007 to 35.6 thousands in

2011, with the mortality rate increased from 29.0 to 33.0 per 1,000 population. For elderly

women, the annual number of AMI increased from 34.3 thousands in 2007 to 42.1 thousands

in 2011, with the rate increased from 29.5 to 33.1 per 1000. (Table 1).

The ambient temperature within the study period was with daily mean temperature around

17.3˚C and 17.0˚C in spring, 27.7˚C in summer, 19.8˚C in autumn and 6.0˚C in winter. The

mean of PM10 within the study period was around 80.5 μg/m3 and 88.6 μg/m3 in spring, 64.6 μg/

m3 in summer, 75.3 μg/m3 in autumn and 90.5 μg/m3 in winter (Table 2). The description of rel-

ative humidity, SO2, NO2 was also listed in Table 2. The ambient temperature, relative humidity

and air pollutants were correlated with statistical significance (Table 3). Daily numbers of AMI

had negative correlation with temperature (Spearman correlation = −0.4, p<0.05, Fig 1).

Model fitting

For both female and male AMI counts, dft = 5 and dftemp = 5 were determined using the meth-

ods described in the previous section. The degree of freedom of natural spline was selected

because the MGAM model we adopted shown seasonal pattern of temperature for both female

and male (Fig 2).

From the residual plots of ACF and PACF, the autocorrelation and partial autocorrelation

coefficients of GAM exceeded the uncorrelated criteria 0.10 for some nonzero lags (Fig 3).

However, the autocorrelation and partial autocorrelation coefficients of MGAM did not

exceed 0.10 for all nonzero lags (Fig 3) with the autocorrelation order p = 2.

If we arbitrarily set the degree of freedom of natural spline at 4 per year, this equals to 20 for

a 5-year period from 2007 to 2011. With the increasing of df, GAM handled the autocorrela-

tion issue better than df = 5 (Fig 4 compared with Fig 3). But no seasonal pattern temperature

would be found which indicated over-fitting (Fig 5).

The degree of freedom in the spline function was 5 for both time and temperature, and the

order of the autocorrelation was 2. The models derived by MGAM were well fitted for the

female AMI data (R2 = 0.860) and male AMI data (R2 = 0.856) (Figs 6 and 7).

Association between ambient temperature and AMI counts

Since both genders shared similar patterns, only the association between ambient temperature

and AMI counts of female was presented here. The relationship between the risk of AMI with

Table 1. Numbers and rates of acute myocardial infarction in Shanghai residents aged 65+ by gender, 2007–2011.

Males Females

Year Population Number of AMI Rates Population Number of AMI Rates

(thousands) (thousands) (per1,000) (thousands) (thousands) (per1,000)

2007 950 27.6 29.0 1160 34.3 29.5

2008 971 31.2 32.1 1170 38.1 32.4

2009 1006 31.7 31.5 1200 38.2 31.7

2010 1034 35.3 34.1 1230 42.9 34.9

2011 1080 35.6 33.0 1270 42.1 33.1

https://doi.org/10.1371/journal.pone.0255767.t001
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ambient temperature was manifested as a mirror image of J-shape curve within the range of

temperature in this study. The risk of AMI was relatively high in low temperature (Risk

ratio = 0.988 (95% CI 0.984, 0.993) for under 12˚C) and decreased as temperature increased

and speeded up within the temperature zone from 12˚C to 26˚C (Risk ratio = 0.975 (95% CI

0.971, 0.979), but it become increasing again when it is 26˚C although not significantly (Risk

ratio = 0.999 (95% CI 0.986, 1.012) (Fig 8A). For GAM model with df set at 4 per year, equal to

df = 20 for 5 years, no association could be found (Fig 8B).

Table 2. The description of ambient temperature, relative humidity, air pollutants during 2007–2011�.

Season mean standard deviation minimum maximum

Temperature (˚C) spring 17.0 6.5 1.60 32.80

summer 27.7 3.2 19.80 35.70

autumn 19.8 5.5 4.10 31.00

winter 6.0 3.9 -3.40 18.20

whole Year 17.3 9.1 -3.40 35.70

relative humidity (%) spring 66.2 14.4 30.00 94.00

summer 74.3 8.6 49.00 95.00

autumn 70.2 10.6 35.00 93.00

winter 68.3 13.2 23.00 95.00

whole Year 69.4 12.5 23.00 95.00

SO2 (μg /m3) spring 34.7 21.5 6 114

summer 29.0 16.5 7 97

autumn 34.1 20.4 9 119

winter 53.7 33.7 11 229

whole Year 37.8 25.5 6 229

NO2 (μg/m3) spring 52.9 19.4 11 116

summer 40.6 16.6 11 122

autumn 52.3 21.9 16 132

winter 61.1 21.0 22 155

whole Year 51.9 21.0 11 155

PM10 (μg /m3) spring 88.6 68.4 17 792

summer 64.6 34.3 10 251

autumn 75.3 50.3 16 476

winter 90.5 58.2 14 513

whole Year 80.5 56.4 10 792

� PM10: particulate matter 10 micrometers or less in diameter, SO2: sulphur dioxide and NO2: nitrogen dioxide.

https://doi.org/10.1371/journal.pone.0255767.t002

Table 3. Pearson correlation among ambient temperature, relative humidity and air pollutants�.

temperature relative humidity SO2 NO2 PM10

Temperature 1 .180�� -.354�� -.372�� -.157��

relative humidity 1 -.350�� -.206�� -.310��

SO2 1 .694�� .575��

NO2 1 .620��

PM10 1

� PM10: particulate matter 10 micrometers or less in diameter, SO2: sulphur dioxide and NO2: nitrogen dioxide.

�� p<0.001.

https://doi.org/10.1371/journal.pone.0255767.t003
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Forecast the risk of AMI in 2011

Predicted AMI counts in 2011with the model established using data from 2007 to 2010

has good consistence with the original AMI counts in the scatter plots in Fig 8 with

Spearman correlation coefficient 0.86 and 0.85 for female and male respectively (Figs 6

and 7).

Fig 1. Time series of daily cases of Acute Myocardial Infarction (AMI) by sex and ambient temperature in Shanghai from 2007 to 2011.

https://doi.org/10.1371/journal.pone.0255767.g001
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Discussion

MGAM used in this present study successfully incorporated the autocorrelation effect of daily

AMI cases in consecutive days. Concurrently, we proposed a robust strategy to select the

degree of freedom on the time series predictor, which is controversial in other widely used

GLM or GAM [1–4]. The time effect (NS(t, dft)) in our model was used to control those

Fig 2. Seasonal pattern of temperature after proper selection of degree of freedom of natural spline (dft = 5).

https://doi.org/10.1371/journal.pone.0255767.g002

Fig 3. Autocorrelation function (ACF) and partial autocorrelation function (PACF) of GAM and MGAM model

(dft = 5 and dftemp = 5).

https://doi.org/10.1371/journal.pone.0255767.g003
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unmeasured nuisances. With the increase of dft, the time effect alone can fit exactly well with

response variable and erase the effect of all the other factors. To maintain the seasonal pattern

of temperature factor in the model, we can pick the properly lowest degree of freedom of time.

On the other hand, specific lag effect chosen subjectively or by time series methods for fore-

casting [12–14] have risk on over-fitting (Fig 5) which could erase the association between

exposure and disease (Fig 8) In the present study, weighted average of daily mean temperature

in the past 7 days was used to model the lag effect of ambient temperature with AMI. Our

model was more appropriate as it does not only take into account the effect of average temper-

ature, but also the impulse impact of some particular temperature [19, 22, 23].

Our study indicates that in general, lower temperature is a risk factor for the incidence of

acute myocardial infarction among elderly in Shanghai. Both older men and older women had

mirror image J-shape association between ambient temperature and the incidence of AMI.

When temperature stayed below 12˚C, incidence of AMI was relatively high, and as the tem-

perature increased above 12˚C the risk decreased. However, the trend was reversed when the

temperature exceeded 26˚C, AMI incidence seems increasing as the temperature rose. To our

knowledge, this is the first study on this topic in a warm climate city using an appropriate sta-

tistical method, MGAM.

Fig 4. Autocorrelation function (ACF) and partial autocorrelation function (PACF) of GAM (dft = 20 and dftemp

= 5).

https://doi.org/10.1371/journal.pone.0255767.g004

Fig 5. No seasonal pattern temperature after arbitrary set of degree of freedom of natural spline at 4 per year (dft

= 20).

https://doi.org/10.1371/journal.pone.0255767.g005
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Results of this study were consistent with previous findings from Hong Kong and Taiwan,

where temperature below a threshold of 24˚C was significantly associated with AMI hospitaliza-

tion but no significant heat effects were found [15]. Low temperature exposure as a risk factor

for AMI were also found in the Worcester metropolitan area, MA, US [14] and in Belgium [28].

A 10-year longitudinal study also found that rates of myocardial infarction events decreased

with increasing atmospheric temperature [29]. However, low temperature exposure was not

found to be a major triggering factor of myocardial infarctions in cold area like Sweden [30]

and Minnesota, US [31]. The U-shape association between temperature and risk of AMI was

found in Korea [13] and the Hunter Region of New South Wales in Australia [32]. Inferred

from these studies, the association between ambient temperature with AMI might has various

pattern in different regions. Residents of different regions might have already adapted to their

habitat’s weather, but remain sensitive to stress caused by extreme temperature. In an analysis

on 21 countries registry database, rates of coronary events increased during comparatively cold

periods, especially in warm area [33]. These findings indicate that both the normal range of

temperature and extreme weather of the specific area should be considered in the analysis of the

impact of temperature on human health. In this era of climate change and extreme weather, res-

idents and policy maker should prepare for it, especially for vulnerable population.

Fig 6. Estimated and forecasted daily counts of AMI from MGAM in Shanghai female residents aged 65+.

https://doi.org/10.1371/journal.pone.0255767.g006

Fig 7. Estimated and forecasted daily counts of AMI from MGAM in Shanghai male residents aged 65+.

https://doi.org/10.1371/journal.pone.0255767.g007
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Several possible mechanisms can explain why low temperature exposure could increase the

risk of AMI. Cold stress is known to result in vasoconstriction and blood pressure rises [34,

35] which is one of the most prominent risk factors for myocardial infarction, especially in

patients with essential hypertension [36]. Additionally, increased sympathetic nervous activity

and an increased load of sodium presented to the kidney for excretion in winter may also

increase the risk of AMI [36]. Low temperature exposure may also impact the haemostatic sys-

tem by increasing platelet counts and its sensitivity in whole blood and hence the plasma vis-

cosity [34, 35].

Humidity, air pollutants like SO2, NO2, especially PM10 were found to be a risk factor for

disease like AMI. However, these factors were not significant in our MGAM model. It might

be explained by the correlation between these factors and ambient temperature in our study.

Some limitations should be considered for the present study. First is the ecological fallacy.

Although the natural cubic spline (NS(t)) controlled the potential effect of some unmeasured

factors, but it is impossible to completely rule out the bias in the ecologic study design. Sec-

ondly, PM2.5 was commonly used as a confounder in previous environmental epidemiology

studies. However, this variable was not available in the current study. Third, there was poten-

tial disease misclassification for AMI despite the chance is low. Fourth, we can’t do stratified

analysis by subtypes of ST elevation MI (STEMI) and NSTEMI. Fifth, we use the AMI cases

reached for the emergency visits reported in the Official Medicare Database. It will miss some

mild AMI or some severe AMI cause sudden death.

Conclusion

MGAM is more appropriate than GAM for time series studies of environmental impact on

health, such as effects of ambient temperature on acute myocardial infarction morbidity. Low

temperature less than 12˚C is a risk factor of AMI morbidity in north subtropical monsoon cli-

mate. Our finding enhanced the knowledge about association between the change in tempera-

ture and incidence of AMI.
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