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Electron heating and thermal relaxation of gold
nanorods revealed by two-dimensional electronic
spectroscopy
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To elucidate the complex interplay between the size and shape of gold nanorods and their
electronic, photothermal, and optical properties for molecular imaging, photothermal therapy,
and optoelectronic devices, it is a prerequisite to characterize ultrafast electron dynamics in
gold nanorods. Time-resolved transient absorption (TA) studies of plasmonic electrons in
various nanostructures have revealed the time scales for electron heating, lattice vibrational
excitation, and phonon relaxation processes in condensed phases. However, because linear
spectroscopic and time-resolved TA signals are vulnerable to inhomogeneous line-broad-
ening, pure dephasing and direct electron heating effects are difficult to observe. Here we
show that femtosecond two-dimensional electronic spectroscopy, with its unprecedented
time resolution and phase sensitivity, can be used to collect direct experimental evidence for
ultrafast electron heating, anomalously strong coherent and transient electronic plasmonic
responses, and homogenous dephasing processes resulting from electron-vibration couplings
even for polydisperse gold nanorods.
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old nanorods (AuNRs) have been used in a variety of

biological and biomedical applications' because the col-

lective and coherent oscillations of their conduction band
electrons, referred to as surface plasmon resonance (SPR) modes,
induced by an incident electric field are tunable by changing the
aspect (length-to-width) ratio R. The modes along the long and
short axes of AuNRs, which correspond to longitudinal and
transverse SPR (LgSPR and TrSPR) excitations, respectively,
appear in the long- and short-wavelength regions in the
absorption spectrum!™, with the LgSPR frequency strongly
depending on R. Typically, synthesized AuNRs have a broad
distribution of aspect ratios, which gives rise to the inhomoge-
neous broadening of the LgSPR band. This limits their use in
optical sensing applications® because inhomogeneous line
broadening can average out the desired optical sensing effects of
the intrinsic SPR bands of individual nanorods.

Although transmission electron microscopy is of great use in
determining the size (and aspect ratio) heterogeneity of poly-
disperse nanorods, sample preparation is difficult and there is a
lack of reproducibility due to the limited number of images taken
for statistical analysis. Another much simpler optical spectro-
scopic method is to fit the experimentally measured absorption
spectrum to a collection of calculated homogeneously line-
broadened spectra for nanorods with different aspect ratios®.
Attempts have also been made to characterize the transient
optical response of a single AuNR or nanoantenna, and the
ultrafast plasmonic dynamics of an individual metallic nanometer
object has been elucidated using pump-probe spectroscopy and
microscopy”*8. However, it is still difficult and often impossible to
clearly distinguish between the contributions of homogeneous
and inhomogeneous line broadenings for an ensemble of inho-
mogeneously distributed gold nanorods by merely examining
one-dimensional (in frequency) steady-state or pump-probe

transient absorption spectra2’3’7’9'17.

Two-dimensional electronic spectroscopy (2DES)'®2* has
often been used to investigate the electronic coupling and
dynamics of multi-chromophore systems by analyzing spectrally
resolved off-diagonal signals on their 2DES spectra. Another
important observable that can be extracted from a 2DES spec-
trum is the slope of nodal line that separates positive and negative
2D peaks. The nodal line slope (NLS) has been shown to be of
exceptional use in gaining information on the degree of dynamic
inhomo§eneity of solvated molecular systems in condensed
phases!®?4,

Here we demonstrate that the 2DES, based on four-wave
mixing technique, is capable of measuring nonlinear optical sig-
nal fields for LgSPR-excited AuNRs and provides direct infor-
mation on the homogeneous dynamics of electron heating,
electron—electron (e—e), and electron—phonon (e—ph) scatterings
as well as on the inhomogeneous distribution of AuNRs. Fur-
thermore, we show that spectral interference patterns observed in
negative-time 2DES spectra are related to nonlinear transient
grating processes of AuNRs that intrinsically cannot be observed
with conventional frequency-resolved pump-probe measurement
methods.

Results

Pump-probe TA spectroscopy. One of the most popular meth-
ods that is useful to measure time constants of various relaxation
processes after photo-excitation of SPR modes of nanoparticles is
TA spectroscopy. We measured time-resolved TA (AA) spectra
with respect to pump-probe delay (waiting) time T,, up to 700
200 for ps, which is long enough to cover the entire range of
photothermal dynamics for AuNRs>!116, In our TA and 2DES
measurements, the center wavelengths of the pump and probe are
the same and their bandwidths are narrower than that of the
AuNR LgSPR band (Fig. 1a) so that a subset of AuNRs is selec-
tively excited and probed. To cover the entire LgSPR band and to
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Fig. 1 LgSPR absorption spectrum, and time and frequency-resolved transient absorption spectra. a The LgSPR absorption band (black solid line) of AuNR
sample and the laser spectra of different center wavelengths (color-shaded areas) used in the present work. The aspect ratio (R) of resonant AuNRs
increases with the LgSPR absorption wavelength. b Time profiles of the positive TA signals (taken at the black dashed lines in e-h) are plotted with respect
to pump-probe delay time. The center wavelengths of both the pump and probe pulses are tuned from 740 to 800 nm. Each TA time profile is
appropriately scaled for easier comparison. Inset: Enlarged view of the TA time profiles at short times up to 12 ps. € The TA spectra taken at 1ps of pump-
probe delay time (T,,) for different pump-probe wavelengths. Inset: plot of nodal point (white circles) wavelength of the TA spectra versus pump
wavelength. d-h Temporal evolutions of the TA spectra of AuNRs up to 250 ps after excitation with pump at center wavelengths of Ay,mp. =720 (d), 740
(e), 760 (f), 780 (g), and 800 nm (h). The open circles represent nodal points (zero-crossing points) across which the sign of the TA signal is inverted and
the pink lines are their fits, which clearly show a slow anti-correlated oscillation in amplitude due to the coherently excited extensional vibration of the

nanorods
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examine the pump center wavelength dependence of relaxation
dynamics for different subsets of AuNRs, the TA spectra were
measured at various pump-probe center wavelengths from 720 to
800200 for nm (Fig. 1). Unlike previous studies that have used
high-energy pump photons whose wavelengths were much
shorter than those of the two SPR modes”!2>131516  we exclu-
sively excite LgSPR modes with pump photons whose energy is
much lower than either the interband or TrSPR mode transition
energy.

For all pump-probe wavelengths, a negative peak on the blue
side and a positive peak on the red side appear in the TA spectra
(Fig. 1d-h), despite their relative amplitudes varying with pump
center wavelength, Ayump.. On the basis of a scenario in which the
dielectric constant changes as a result of the electron heating
induced by femtosecond photoexcitation, this TA spectral feature
arises from both spectral broadening and the red-shift of each
homogeneous LgSPR band!>7:13:2>, The relative amplitude of the
positive peak to the negative peak in our TA spectra decreases
with the pump center wavelength (4,,mp.) and even becomes
close to zero at Apump, =720 nm (Fig. 1d). The disappearance of
the positive TA peak when excited on the blue side of the LgSPR
band primarily originates from the limited bandwidth of the
probe pulse, which does not fully cover the red side of the LgSPR
band, where the positive peak should arise due to a frequency red-
shift of the entire inhomogeneous LgSPR band upon photo-
excitation of the AuNRs.

Another plausible explanation for the weaker positive signal on
the blue side is that the significant spectral overlap of the adjacent
intrinsic (homogeneous) LgSPR bands from AuNRs with
different aspect ratios can lead to a cancellation of those
overlapped positive and negative TA signals on the blue side of
the probe wavelength, which will be shown in the simulation
results below (Fig. 3g). Indeed, the fact that the nodal points of
the pump-probe TA spectra do not remain constant but red-shift
with the pump-probe center wavelength (Fig. 1c-h) indicates that
even our AuNR sample with relatively low polydispersity still has
considerable spectral inhomogeneity over the entire LgSPR band.
Nonetheless, it should be emphasized that one cannot investigate
the wavelength-dependence of the photo-excited spectral signa-
tures and dynamics of the LgSPR band within the bandwidth of
the laser pulse used (Fig. 1a) with the conventional pump-probe
TA spectroscopy because its signal is not free from sample
heterogeneity. We shall thus show that this critical limitation
of linear and TA measurement methods can be overcome by
2DES.

Figure 1b plots the decay profiles of the positive TA signals
taken at the dashed lines in Fig. le-h, which can be described by
considering the following three major contributions: two
exponentially decaying components and one damped oscillation
component. The time constants for the fast and slow exponen-
tially decaying components are 2—5 ps and 50-80 ps, respectively,
which corregpond to the e-ph and ph—ph relaxations, respec-
tively”! 11316 (see Supplementary Table 1 for the summarized
time constants of the photothermal relaxations measured at all
the pump wavelengths). However, these time constants do not
strongly depend on the pump center wavelength nor the aspect
ratio of the AuNRs. This is consistent with previous findings by
the El-Sayed group!. The slowly oscillating component can be
attributed to a coherent excitation of extensional vibrations along
the long axis of each AuNR, which can be induced by
instantaneous heating after the photoexcitation of AuNRs'®. It
should be noted that the nodal line between the positive and
negative TA signals (Fig. 1d-h) exhibits far more pronounced
anti-correlated amplitude oscillations than the conventional TA
time profiles shown in Fig. 1b. Thus, it becomes clear that the
time-resolved and dispersed pump-probe spectroscopy enables
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one to obtain a more accurate fit to the damped oscillation
component in the decaying TA signal.

According to the previous TA study on interband transition of
AuNRs, the oscillation period of the extensional vibration along
the long axis of a nanorod depends only on the length of the
nanorod and increases linearly with this parameter'®. For AuNRs
with large size inhomogeneity (high polydispersity), their
different aspect ratios and the degree of polydispersity in sample
can be differentiated by the oscillation period (T,s) of the
extensional vibration and its damping time (g,y,p) obtained from
the corresponding TA signal'®. In the present case, however, both
Tosc (~56 ps) and tgamp (~50 ps) do not strongly depend on the
pump center wavelength (Supplementary Table 1) responsible for
excitation of subensembles of AuNRs with different aspect ratios
(Fig. 1a). This is because the AuNR sample studied here has a
relatively low polydispersity (about 10% of the lengths range from
35 to 41 nm) and therefore it is difficult to resolve them only by
linear spectroscopic or time-domain TA measurement methods.
In the following section, we show that the 2DES can resolve
inhomogeneously broadened features of AuNRs even for the
same sample, and is thus of use to judge the degree of
polydispersity in a AuNR solution sample with a fairly narrow
size distribution.

Two-dimensional electronic spectroscopy of AuNR. We present
our experimental setup (scheme) for the Fourier transform (FT)
2DES based on two-beam geometry in Fig. 2a?®. A single fem-
tosecond laser pulse is split into two; one is converted into
coherent twin pump pulses (E; and E,) with a pulse shaper, and
the other is used as a probe pulse (E;). There are two controllable
delay times for the 2DES pulse sequence, coherence () and
waiting (T,,) times. The coherence time 7 between the two pump
pulses (E; and E,) propagating collinearly is controlled by the
pulse shaper and the waiting time T, between the second pump
(E,) and the probe (E;) pulses is scanned with a motorized delay
stage.

Figure 2b—d illustrate how a 2DES spectrum, S(w,T,,@"), of the
LgSPR band of AuNR at a given T, is obtained by controlling the
7-scan of the twin pump pulses. Each femtosecond pump pulse,
Ei(w) and E,(w), in frequency domain can be decomposed into
constituting electric field components with different optical
frequencies (@,). As 7 is scanned, z-varying interference between
these electric field waves from the two pump pulses results in
intensity modulations I(®,,7) with the corresponding frequencies.
Consequently, the individual AuNRs with different aspect ratio
(Ry), which are selectively excited with each I(w,,7), are tagged
with the different temporal modulations with respect to 7. The
hot AuNRs created by subsequent relaxation processes such as
electron heating during T,, are then interrogated by the third
(probe) pulse, E;(@"). Then, a third-order nonlinear optical signal
field, Ei(w'), with its wavevector parallel to that of the probe pulse
is generated and spectral interference between the third-order
2DES signal field and probe pulse spectra, E(@') + E;(@'), is
recorded with a spectrometer combined with a charge coupled
device (CCD) detector. Finally, the 2D electronic spectrum is then
obtained by carrying out a Fourier transformation of the z-
dependent interferogram S(z,T,,®") with respect to 7, which
provides the 2D spectrum, S(@,Ty,®"), in both @ (pump) and &’
(probe) frequencies!®20-23:26,

To show that 2DES is capable of distinguishing between
ensembles of AuNRs with different size (aspect ratio) distribu-
tions (AR: standard deviation of R), we performed an illustrative
simulation on 2DES in an ideal impulsive limit for three cases of
AuNRs with large, intermediate, and small AR’s and the results
are depicted in Fig. 3. Assuming that the absorption spectrum can
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Fig. 2 Experimental setup and basic concept of Fourier transform 2DES for AuNR. a Experimental scheme of our 2DES setup that utilizes a pulse shaper in
two-beam geometry. BS beam splitter, L: convex lens, L’: concave lens, 1/2: half wave plate, P: polarizer, Dazzler: acousto-optic pulse-shaper (Fastlite),
CCD: charge coupled device detector. A single femtosecond laser pulse is split into two: one is further duplicated as E; and E,, which are used as time-
delayed twin pump pulses, by the pulse shaper (Dazzler) and the other is used as a third (probe) pulse (E3). The pulse sequence is E;-E>-E5 in time order,
where the time delay (z) between E; and E; is scanned by the pulse shaper and that (T,,) between E5 and E; is controlled by a motorized delay stage. b
Excitation with time-delayed twin pump pulses: As the time delay () between the twin pump pulses (E;(w) and Ex(w)) is scanned, z-varying interference of
their constituting electric field waves with different optical frequencies (w,,) leads to intensity modulations, I(w,,7), of the pump beam with the same
frequencies. Each I(w,,t) excites AuNRs with the aspect ratio (R,) that can absorb it and tags its modulation on them. ¢ Spectral interferometric detection
with probe pulse: The hot AuNRs, which undergo spectral red-shift and broadening by photothermal relaxations after a waiting time (T,,) upon
photoexcitation in b, is then probed by the third (probe) pulse (Es(w’)), which generates a third-order signal field (E(w’)). The spectral interferometric
signal, S(z,T,,,@’,), of E{(w’) + E3(w’) is detected with a spectrometer. d Fourier transformation: The z-dependent interferogram, S(z,T,,,@’,,), is Fourier
transformed with respect to 7 to demodulate the z-varying signals of the AuNRs tagged with the different pump modulation (w,) during the excitation

period and finally yield the 2DES spectrum, S(@, T, @")

be represented by a Voigt profile, resulting from the convolution
of homogeneous (Lorentzian with Aw,) and inhomogeneous
(Gaussian with Aw;,) broadenings, one can define the degree of
inhomogeneity as the ratio () of their line broadenings, that is,
= Awi,/Awy, (Fig. 3a—c). After photoexcitation of the entire LgSPR
band, the different subsets of AuNRs undergo electron heating,
which gives rise to the red-shift and spectral broadening of the
individual homogeneous SPR peaks. As a result, positive and
negative absorption changes (AA) at lower and higher probe-
frequency (y-axis) regions, respectively, appear on the 2DES
(Fig. 3d—f). Notably, it is shown that the NLS, which is the slope
of the line connecting zero-crossing (nodal) points of AA’s, is
very sensitive to the degree of size inhomogeneity (f), decreasing
from NLS=0.87 to 0.11 as f varies from =3 to 0.33. This
indicates that the NLS of 2DES can be an excellent measure of the
size inhomogeneity of AuNRs with different aspect ratios.

In 2DES, since the spectrally resolved pump beam can
selectively photo-excite AuNRs of varying sizes, their individual
pump-induced TA changes can be obtained from the probe
spectra along the y-axis. Figure 3g plots the slice probe spectra
taken at five different pump frequencies of the 2DES for the
inhomogeneous case with =3 (Fig. 3d). The nodal points in
Fig. 3g resulting from the individual TA spectra of different sized
AuNRs are clearly separated in frequency and red-shifted with
the pump frequency. In contrast, for the projected spectra of all
three cases with different § values onto the probe frequency axis,
which are identical to the one-dimensional (in probe frequency)
pump-probe TA spectra, their nodal point frequencies are almost

4 | (2018)9:891

constant regardless of and thus insensitive to # (Fig. 3h). This
indicates that it is difficult to distinguish between AuNRs with
different size inhomogeneous distributions by simply using the
conventional pump-probe spectroscopy.

2DES spectra and nodal line slope analysis. The 2DES spectra
(Fig. 4a—e) of the AuNRs were recorded as a function of T, up to
3 ps at different pump center wavelengths (A,ump, = 700~820 nm)
covering the entire LgSPR band (see Supplementary Figure 1 and
Movies 1-5, respectively, for all twelve 2DES spectra at T,,=1ps
and for 2DES spectral evolution at various pump wavelengths).
The five representative 2DES spectra at T,, =1 ps (Fig. 4a—e) are
superimposed onto a single 2D frequency space spanning the
whole LgSPR band with a full-width-at-half-maximum (FWHM)
of about 2100 cm™! (Fig. 4f). The positive 2DES peaks appearing
below the diagonal line and the red-shifted negative peaks along
the probe wavelength arise from both spectral broadening and the
red-shift of the nonlinear difference spectrum from ultrafast
electron heating (<200 fs) after the photoexcitation of the LgSPR
mode. The cancellation of these positive and negative peak signals
in the overlap region produces a nodal line in each 2DES
spectrum.

As shown in the simulations (Fig. 3), the nodal line slope (NLS)
of 2DES is a measure of the degree of size (aspect ratio)
inhomogeneity of AuNRs at a given waiting time!%?%, We
obtained the NLS from a linear fit to the nodal points in the 2DES
at the pump center wavelength and found that the NLS values at
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Fig. 3 Simulation on 2DES spectra and nodal line slopes of AuNRs with different size inhomogeneity. a-¢ Contributions of homogeneous (gray solid lines)
and inhomogeneous (red dashed lines) line broadenings to the LgSPR band of AuNRs with large (a), intermediate (b), and small (¢) aspect ratio
distributions (AR: standard deviation of the aspect ratio (R) distribution). The homogeneous and inhomogeneous line shapes are assumed to be Lorentzian,
Lo(@) = Lo(Awp) x 2m) 7 % [(@ - wp)% + (Awp / 2)217", and Gaussian functions, G(w) = Goexp[—4In(2) x (@ — wo)? * (Awiy) 2], respectively, where Ly and
G are the amplitudes and Awy, and Aw;, are the FWHMs of L(w) and G(w), respectively. Here we define the degree of inhomogeneity (5) as the ratio of
inhomogeneous (Aw;,) to homogeneous (Awy,) broadenings, that is, f = Aw;, / Awy,. d-f 2DES spectra calculated in an impulsive limit, where the laser
pulse spectra are broad enough to cover the entire LgSPR band, for #=3 (d), 1 (e), and 0.33 (f). It is assumed that each homogeneous peak after electron
heating of AuNRs undergoes a red-shift of the peak by 30 cm™ and a spectral broadening by 2% of the original bandwidth (Awy). It is clearly shown that
the nodal line slope (NLS: black solid line) is very sensitive to the degree of inhomogeneity and decreases with 5. g The slice spectra (along the black
dashed lines: 1-5 in d) taken at different pump frequencies (wpump) of the 2DES spectrum for g =3 (highly inhomogeneous case). These slice spectra and
their separate nodal points (white circles) correspond to the ones produced by the spectral red-shift and broadening of individual AuNRs with different R.
h The projected (integrated) spectra of the 2DES in d-f onto the probe axis (y-axis), which are essentially identical to the pump-probe TA spectra, for =3
(solid), 1 (dashed), 0.33 (dash-dotted). In contrast to the strong dependence of the NLS on g, the nodal points in the pump-probe TA spectra remain
almost unchanged regardless of § values (or degree of aspect ratio inhomogeneity) and cannot be of use to distinguish between different size
inhomogeneity of AuNRs. Here, c in the x-y labels represents the velocity of light

T,=1ps strongly depends on the pump center wavelength
(Fig. 4g). They reach a maximum (close to unity) around 780 nm,
that is, the LgSPR band maximum, but decrease as the pump
center wavelength (A,ump.) approaches to either the red or blue
edges of the LgSPR band. This experimental observation suggests
the following scenario on the inhomogeneous broadening of the
LgSPR band of AuNRs. Since the frequency-tunable pump laser
allows us to excite different subensembles of the heterogeneous
AuNRs under investigation, the pump center wavelength-
dependence of NLS shows the different degree and nature of

NATURE COMMUNICATIONS| (2018)9:891

polydispersity of each subensemble selected by the relatively
narrowband pump pulse (Fig. 4g). Here, a subensemble of the
AuNRs excited by the pump with the finite bandwidth centered at
the LgSPR band maximum (780 nm) has a more diverse and
denser aspect ratio distribution of the AuNRs around the average
R~ 3.84, resulting in a more heterogeneous excitation of the
AuNRs by the pump. On the contrary, the size distribution of the
AuNRs is more discrete and the different homogeneous
subensembles are less dense at both edges of the LgSPR band
so that a less heterogeneous excitation of the AuNRs is induced
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Fig. 4 Experimental 2DES spectra and nodal line slopes at different pump center wavelengths. a-e Representative 2DES spectra of the AUNR measured at
five different pump and probe center wavelengths. Note that the center wavelengths (Apump.) of pump and probe spectra are the same and the 2DES
signals plotted in all the figures (here and below) represents the differential transmitted spectra, AS(w., T,y (see “Methods” section for more details). a
740 nm. b 760 nm. ¢ 770 nm. d 780 nm. e 810 nm (T,, =1ps). The black and red solid lines are the experimentally measured nodal lines and their fits,
respectively. f The five 2DES spectra of a-e superimposed onto a single 2D frequency space spanning the entire LgSPR band. The black dashed line
represents the diagonal line. g The wavelength dependence of the nodal line slope (black circles) of the 2DES spectra of the AuNRs. The red dashed line
represents a fit with a Gaussian at 780 nm with an FWHM of 1320 cm™, which approximately matches the LgSPR band (Fig. 1a). The inhomogeneous
distribution of the individual homogeneous LgSPR peaks (gray solid lines) for AuNRs with different aspect ratios is schematically drawn along with the
narrowband pump spectra tuned to the LgSPR band maximum (red shaded area) and to the blue edge (green-shaded area). A denser distribution of AuNRs
with different aspect ratios around 780 nm leads to a more heterogeneous excitation of AuNRs by the pump, producing a high NLS. In contrast, at both
edges of the LgSPR band, the inhomogeneous subensembles of AuNRs are spectrally separated and comparatively sparse, so the degree of heterogeneity

of AuNRs that can be excited by the pump is lower than that at the LgSPR peak position (red shaded area), which results in a small NLS

by the pump tuned to that band edge. According to this scenario,
it becomes understandable that the NLS value approaches to zero
as the pump center wavelength is blue-shifted because the
bandwidth (about 850 cm™!) of the pump beam is close to typical
intrinsic SPR linewidths of monodisperse AuNRs that are about
0.08 eV (640 cm™1)27 or 0.09 eV (720 cm™1)128 for gold nanorods
with an aspect ratio of about 4, allowing an excitation of relatively
homogeneously distributed AuNRs.

Another important result from the NLS analysis of our 2DES
spectra is the time-dependent decay of NLS (Fig. 5f). Due to
either the scattered or diffracted pump beams interfering with the
2DES signal and the probe beams at the detector or electronic
coherent artifacts, a complicated spectral pattern appears in the
Fourier-transformed 2DES spectra at very short waiting times,
which is also found in short-time TA spectra (see Supplementary
Figure 2 for the short-time TA spectra up to 0.5 ps). In addition,
due to the finite duration of our slightly chirped pulse, it is
somewhat difficult to identify the nodal line at waiting times
<100 fs. Nonetheless, the transient behavior of NLS at <300 fs is
attributable to ultrafast electron dynamics, and the NLS decays
monotonically with a time constant of about 5 ps, which is the
rate of homogeneous line-broadening or dephasing that results
from e—ph couplings.
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To further investigate the short-time behavior of a nodal line
extracted from a chosen 2DES spectrum, the probe wavelength at
the nodal point (nodal point wavelength) at which the nodal line
crosses the vertical line at the center wavelength (A,ump =760 nm)
of the pump pulse (Fig. 5a-e) is plotted with respect to waiting
time in Fig. 5f. The initial decrease in the nodal point wavelength
(NPW) at T, <100fs results from the e—e scattering-induced
dephasing of the initial coherent and collective oscillations of
plasmonic electrons in each AuNR. As waiting time increases (T,
>100fs), the NPW undergoes a slow blue-shift caused by
homogeneous relaxation due to e-ph couplings. Indeed, ultrafast
electron heating is manifested by the time-evolution of 2DES at
less than 300 fs (see Supplementary Movies 1-5 for 2DES spectral
evolutions at different wavelengths). Because the NLS data from
time-resolved 2DES spectra are free from inhomogeneous line-
broadening contributions!®?4, the ultrafast transient behaviors of
NLS and NPW are direct signatures of the electron heating
resulting from e—e scattering process in sub-100 fs timescale
induced by the absorption of pump photons. It is believed that
this is the first experimental and direct observation of electron
dynamics and photothermal relaxation with heterogeneity-free
and phase-sensitive (not absolute) 2DES in combination with a
tunable femtosecond laser.
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Spectral interference by transient grating in 2DES. The 2DES
spectrum displayed on excitation (w,) and emission (w;) fre-
quency axes can provide additional information on the spectral
interference between the collinearly propagating pulses at the
spectrometer (Fig. 6a—d). The two-dimensional fringe patterns
become pronounced particularly at negative waiting times (T, <
0), where the probe pulse (pr; E5) arrives at the sample before the
second pump pulse (pu2; E,) among the twin pump pulses pro-
duced by a pulse shaper (Fig. 2a). The fringe spacing becomes
smaller at larger IT,,| (Fig. 6j and Supplementary Figure 5). This
phenomenon can be explained by another, yet different four-wave
mixing process called transient grating (Fig. 61)*%%°, As the time
delay () of the first pump pulse (pul; E;) is scanned with respect
to the second pump (pu2) by employing a pulse shaper, the pair
of the overlapping pulses, pul and pr, that propagate non-
collinearly in space, interacts with the AuNRs to create a temporal
and spatial transient grating (T'G) across the sample due to a
spatially regular and interferometric excitation of the coherent
SPR or electron heating (Supplementary Note 1). Then, the
subsequent second pump (pu2) interacts with thus created TG
and the resulting third-order TG signal field with wavevector of
krg is then diffracted into the propagation direction (k) of the
probe (pr) because the phase-matching condition is krg =k, in
either possible pulse sequence, pr-pul-pu2 (krg=Kky—Kpy +
k) or pul-pr-pu2 (kpg=—kpu; + kp; + kpyp) during the z-scan
at a fixed negative T,,. The delay time of the collinearly propa-
gating TG signal field from the probe pulse is approximately IT.,l,
and the two fields interfere with each other to produce a spectral
interferogram with the fringe spacing of 1/IT,,| on the frequency-
resolved CCD along w;-axis (probe axis) (Supplementary Fig-
ures 6 and 7). Similar to Fig. 2b, at a negative waiting time,
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scanning the time delay (z'=IT,l-lzl) between pul and pr gives
rise to temporal modulations of the spatial phase of the TG field
induced by the interference of the excitation fields (pul and pr)
with various optical frequencies (w,), which can individually
excite the inhomogeneous subensembles of AuNRs with different
aspect ratios. Then, a Fourier transformation of the spectral
interferogram, S(7’, T,,, @), created by the modulated TG signal
interfering with the preceding probe field, with respect to 7’ yields
the spectral interferometric 2DES spectra, S(w,, T\, @;), shown in
Fig. 6a—d.

It should be noted that despite employing perpendicular
detection scheme with two polarizers having an extinction ratio of
about 107 to 107> to remove any contamination of the 2DES
signal from stray pump pulses scattered or TG signal diffracted by
the AuNRs, very strong 2D spectral fringe patterns were still
observed at negative waiting times (Fig. 6a—d). Due to the
coherent SPR effect of AuNRs, the interfering pul and pr fields
induce an anomalously strong nonlinear electronic response,
which considerably modulates the refractive index of AuNRs in a
regular spacing across the sample, giving rise to a strong
diffraction of the TG signal field. The key for this extraordinarily
large but transient diffraction signal of AuNRs is the free
electron-like behaviors of SPR-excited electrons during the
interaction time of both pul and pr. This is in stark contrast to
organic molecules with tightly bound electrons to nuclei. Indeed,
the 2DES of the bio-organic system measured with the same setup
did not show any strong and dense 2D fringe patterns at similar
negative waiting times (Supplementary Figures 3 and 4 and
Supplementary Methods).

One of the noticeable features in the spectral interferometric
2DES spectra at T,, <0 is that the fringe patterns are roughly
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spectral interferograms

diagonally elongated (Fig. 6a), which means that there exists some
phase shifts between the spectral interferograms (along y-axis) at
different excitation frequencies (w.). Figure 6m explains how
such phase shifts can arise in the 2DES fringe pattern of AuNRs.
The TG, created by a spatial modulation of the refractive index,
not only can diffract the pu2 beam in space, but also can further
change the delay time (T,) between the third-order (in electric
field) TG signal field and the probe pulse by altering the velocity
of the diffracted TG signal field at the sample. Since the subsets of
AuNRs with different aspect ratios (R;) can be individually excited
by the TG-inducing beams with various excitation frequencies
(wr), they can have different effective refractive indices (res;)
upon photoexcitation, resulting in w,-dependent (inhomoge-
neous) delay times (T,;) and consequently in phase-shifted
spectral interferograms. The simulated 2DES spectra in Fig. 6e-h
are in excellent agreement with the experimentally measured 2D
fringe spectra in Fig. 6a-d. Here, the simulated spectra in Fig. 6e-h
were obtained from the calculated spectral interferograms of the
TG signal field and the probe pulse with various T, values with
respect to w,—note that the w, -dependence of T,, resulting from
the inhomogeneous distribution of n.g for AuNRs with different
aspect ratios. We here assumed a quadratic increase of T, (@) as
decreasing the excitation frequency.
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Similar to the experimental results in Fig. 6a—d, they exhibit the
diagonally elongated fringe patterns with unequal spacing (wider
spacing at higher w. along the diagonal line) in the 2DES spectra
at T,=-150 and -100fs and the vertically elongated but
parabolic-curved frlnge patterns due to the group delay disper-
sion (GDD =800 fs?) of the pulse even at T,,=0 fs. On closer
inspection of the slice interferometric spectra taken at three
different excitation frequencies, . x (2mc)~! = 12860, 13000, and
13175 cm™!, of the 2DES spectra at T,, = —100 fs (Fig. 6b), roughly
one cycle (about 2.6 fs for 13000 cm 1) of the phase shift in the
spectral interferogram occurs between @, x (21c)~' = 12860 and
13175cm™! (Fig. 6i), where ¢ is the velocity of light. This
demonstrates that such a small difference (AT, =2.6 fs) between
the time delays of the TG signal field created by the
inhomogeneous distribution of the AuNRs can be distinguished
by carefully examining the 2DES fringe pattern even in the
excitation frequency range of Aw, x (2nc)~'~ 300 cm™' much
narrower than typical intrinsic bandwidth (about 700 cm™) of
the homogeneous broadening.

Interestingly, this SPR TG-induced-fringe pattern resolved in
the 2DES spectrum is averaged out and almost disappears in the
conventional pump-probe spectra, which is equivalent to the
projected average one-dimensional spectrum onto the w,-axis of
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the 2DES spectrum (Fig. 6k)30. As shown in the 2DES (Fig. 6a),
the fringe on the 2DES spectrum is diagonally elongated due to
the inhomogeneous distribution of AuNRs and its phase is thus
alternately switching to produce an oscillating positive and
negative signal pattern along the @ -axis (pump frequency). As a
result, the individual spectral fringes (along y-axis) of the
different sized subensembles of AuNRs excited at different pump
frequencies (w,) are superimposed to cancel out when projected
average onto the w;-axis, which accounts for why the fringe
information is completely lost in the conventional pump-probe
TA (AA) spectra for AuNRs with an inhomogeneously broadened
size distribution.

Discussion

The present 2DES study with nodal line slope and spectral
interference pattern analyses provide direct information on the
degree of size inhomogeneity of inhomogeneously distributed
AuNRs and their homogeneous electron dynamics, which cannot
be easily extracted from one-dimensional (in frequency) steady-
state or pump-probe spectroscopy signals. In particular, the
spectral fringe exclusively observed in the 2DES spectrum is
direct evidence of exceptionally strong and transient nonlinear
electronic responses by excited AuNR LgSPR modes, which
cannot be observed with conventional pump-probe techniques
due to their limited spectral resolvability compared to 2DES. Such
significant nonlinear electronic coherence exhibited by AuNRs
when their SPR modes are excited by the presence of another
pulsed field could be used in future scattering-based microscopy
applications. We anticipate that the present experimental results
are of use in understanding and designing metallic nanorods with
improved electronic and optical properties that can be optimized
for various applications.

Methods

Pulse shaper-based 2DES setup. The experimental details of our pulse shaper-
based 2DES setup illustrated in Fig. 2a have been described elsewhere?. In brief, a
Yb:KGW-doped amplifier system (PHAROS, Light Conversion) centered at 1030
nm with a repetition rate of 500 Hz is used to pump a non-collinear optical
parametric amplifier (NOPA, ORPHEUS-N, Light Conversion), generating a laser
pulse with a tunable center wavelength ranging from 700 to 820 nm, with a FWHM
of approximately 80 nm. Each laser pulse is split into two pulses with a beam
splitter. The first, which is used as the pump, is sent into an acousto-optic pulse-
shaper (Dazzler, Fastlite), which produces a duplicated pulse pair, with a FWHM of
approximately 60 nm and controls the variable time delay 7 (coherence time) as
well as the phase shift between these replica pulses in a programmable manner. The
second pulse from the beam splitter is used as the probe and it is focused together
with the pump beam into the sample using a fused silica convex lens with a focal
length of 10 cm so that the pump and probe beams spatially overlap at the sample.
A motorized delay stage on the pump beam path adjusts the time delay T, (waiting
time) between the second pump and the probe pulses. The probe spectra trans-
mitted through the sample in a quartz cell with a thickness of 1 mm are measured
with a spectrometer (SP 2300i, PIXIS) equipped with a CCD (100B, PIXIS) as 7 is
scanned. For shot-by-shot measurements, data acquisition using the CCD is syn-
chronized with the laser repetition rate (500 Hz). Two interferometric spectra, S (z,
$12=0,Ty,w,) and S (7,¢012 =7, T,,@,), Where ¢, is the relative phase shift between
the replica pump pulses, are recorded for consecutive pump pulses every 7. Then,
their difference is calculated (phase cycling scheme for measuring the absorptive
signal) and its Fourier-transformation yields the differential transmitted 2DES
spectra, AS (0, Ty =S (@0p12=0,T,,0;) — S(Wr 12 = 7, T L. The time
resolution of our TA and 2DES experimental setups, which is determined by the
cross-correlation of the pump and probe, varies from 110 to 150 fs depending on
the center wavelength of the laser beam. To effectively minimize any undesired
contribution from the pump photons scattered by the AuNRs to the self-
heterodyned 2DES signal, we deliberately controlled the linear polarization states of
the pump and probe beams so that they were perpendicular to each other. This
orthogonal polarization scheme did not affect our 2DES measurement results
because the timescales of both the AuNR reorientational motions and Forster
resonant excitation transfers between neighboring AuNRs are much longer than
the 2DES experimental time window of 3 ps. Note that our TA anisotropy remains
constant in time up to 50 ps.

Preparation and absorption spectrum of AuNRs sample. The silica-coated
AuNRs used in the present work (747971, Sigma Aldrich) have an axial diameter of
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9-11nm and a length of 35-41 nm (aspect ratio ~3.84) and are dispersed in pure
water. We concentrated the solution in a 1 mm quartz sample cell until the
absorption spectra reached an optical density of 0.8 at 760 nm (Fig. 1a). The
absorption spectrum shows two peaks at 512 and 760 nm, which correspond to the
TrSPR and LgSPR modes of the AuNRs, respectively. It is important to note that
our laser pulse spectrum is narrower than the AuNR LgSPR band so not all of the
AuNRs covering the LgSPR band are excited (Fig. 1a). Consequently, only a sub-
ensemble of AuNRs with a narrow distribution of aspect ratios are selected by the
finite pump spectral bandwidth and their ultrafast thermalization and relaxation
processes are monitored by our femtosecond pump-probe TA and 2DES
measurements.

Simulation of spectral interferometric 2DES spectra by TG. In our numerical
simulations of the TG-induced 2DES spectra shown in Fig. 6e-h, the 2DES spectra
at given waiting times T,,=—150 (Fig. 6e), —100 (Fig. 6f), =50 (Fig. 6g), and 0 fs
(Fig. 6h) were obtained from the spectral interferograms (along the probe axis) of
time-separated two Gaussian electric fields, Erg (TG signal) and E,,, (probe), by T,,,
j for each excitation frequency, ,; (see Fig. 6m). The TG signal is assumed to be a
transform-limited pulse whose Fourier-transformed spectrum has a center fre-
quency of @y X (2mc)"1=12987 cm™! and a FWHM of Awrg x (21c)~! =850 cm™,
whereas the probe pulse to be slightly chirped with a FWHM of Aw,, x (2nc) ™! =
850 cm™! and a second-order dispersion of GDD = 800 fs?. In the frequency
domain, therefore, the probe and time-delayed TG signal field spectra are given
respectively as Ey () = Epro % exp[-2In(2) x (0, — @0)? x (Awp,) 2] x exg[i X
GDD x (@; — @)* / 2] and Er(@,,Twsj) = Ergo % exp[~2In(2) x (&, — @0)*
(Awrg) 2] x exp(iw;Tyj), where i is the imaginary number and Ey,o and Erg are
the complex amplitudes of the probe and TG signal fields, respectively. T; is the
time delay between E,,; and Erg for the j-th excitation frequency component (@)
and given as T\;= Ty + AT}, where ATj=0.08 fs x (j — 201)2/200 for @5 X
(2m¢)"1=12000 cm™ + (j - 1)x10 cm™! ranging from 12000 cm™ (j=1) to 13990
cm™! (j=200). The quadratic dependence of AT; with @, was used for a better fit
to the experimental data in Fig. 6a—d. The difference between two spectral inter-
ferograms along the probe axis (@), S(@:j Ty P12 = 0) = |Ep@;) + ETG((JU,,Tw,j)I2
and S(@ ), Tw,0ph12 = 1) = |Epe(@y) — ETG(w,,Tw,i)Iz, for each w,; is calculated to
construct a differential 2DES spectrum, AS(w.j,Tw,®;) = (@ Tos@pp12 = 0) =
S(wr'sj)Tw)wt)¢12 =n).

Data availability. All relevant data are available from the corresponding authors
(hjrhee@kbsi.re.kr and mcho@korea.ac.kr) upon request.
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