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Ovarian cancer (OC) is the third most common malignant tumor of women

accompanied by alteration of systemic metabolism, yet the underlying

interactions between the local OC tissue and other system biofluids remain

unclear. In this study, we recruited 17 OC patients, 16 benign ovarian tumor

(BOT) patients, and 14 control patients to collect biological samples including

ovary plasma, urine, and hair from the same patient. The metabolic features of

sampleswerecharacterizedusingaglobal and targetedmetabolicprofiling strategy

basedonGas chromatography-mass spectrometry (GC-MS). Principal component

analysis (PCA) revealed that the metabolites display obvious differences in ovary

tissue, plasma, and urine between OC and non-malignant groups but not in hair

samples. Themetabolic alterations in OC tissue included elevated glycolysis (lactic

acid) and TCA cycle intermediates (malic acid, fumaric acid) were related to energy

metabolism. Furthermore, the increased levels of glutathione and polyunsaturated

fatty acids (linoleic acid) together with decreased levels of saturated fatty acid

(palmitic acid) were observed, which might be associated with the anti-oxidative

stress capability of cancer. Furthermore, how metabolite profile changes across

differential biospecimenswere compared inOCpatients. Plasma andurine showed

a lower concentration of amino acids (alanine, aspartic acid, glutamic acid, proline,

leucine, and cysteine) than the malignant ovary. Plasma exhibited the highest

concentrations of fatty acids (stearic acid, EPA, and arachidonic acid), while TCA

cycle intermediates (succinic acid, citric acid, and malic acid) were most

concentrated in the urine. In addition, five plasma metabolites and three urine

metabolites showed the best specificity and sensitivity in differentiating the OC

group from the control or BOT groups (AUC > 0.90) using machine learning
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.916375/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.916375/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.916375/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.916375&domain=pdf&date_stamp=2022-08-02
mailto:yutinghe@hotmail.com
mailto:yutinghe@cqmu.edu.cn
mailto:tinglihan@cqmu.edu.cn
https://doi.org/10.3389/fonc.2022.916375
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.916375
https://www.frontiersin.org/journals/oncology


Zhong et al. 10.3389/fonc.2022.916375

Frontiers in Oncology
modeling. Overall, this study provided further insight into different specimen

metabolic characteristics between OC and non-malignant disease and identified

the metabolic fluctuation across ovary and biofluids.
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Introduction

Ovarian cancer (OC) is the third most prevalent malignancy

tumor among gynecological cancers worldwide with estimated

313,595 new cancer cases and 207,252 deaths annually in 2020

(1). OC is considered a silent killer because of rapid asymptomatic

development and a lack of diagnostic approaches that often lead to

poor prognosis (2, 3). At present, researchers do not understand its

underlying pathogenesis, which makes the treatment outcome

unsatisfactory (4, 5). Thus, it is necessary to understand the

pathophysiology of OC and discover a more robust diagnostics tool.

Metabolic rewiring of cancer cells is crucial for cancer initiation,

proliferation, and progression (6–8). Malignant tumors alter

metabolites consumption, following generate molecular products

such as metabolite byproducts and building blocks (9, 10). For

example, according to the Warburg effect, tumors increase glucose

consumption and secrete high quantities of lactic acid even in the

presence of oxygen (11). In addition to glucose, other nutrients,

including lipids and amino acids (glutamine, leucine, serine, etc.),

have an increased uptake and consumption by cancer cells (12–14).

Lipids can also serve as energy reservoirs for energy-carving

malignant cells, alleviate cellular stress involved in the metastatic

cascade, and resist chemotherapeutic treatments (15). Tumor

metabolism can cause systemic metabolic changes according to the

supply of oxygen and nutrients as well as the removal of waste

products from blood vessels (16, 17). Nevertheless, the interaction

between cancer tissue and systemic metabolism still remains unclear.

Metabolomics is the qualitative and quantitative analysis of low

molecular weight metabolites (<1.5 kDa) detected within cells and a

biological system (18). Metabolite profile is a measure of the

precursors, intermediates, and products of metabolic pathways

and, as such, is often recognized as more representative of the

phenotypic state of a cell (19–22).Metabolomics has been utilized to

investigate metabolic properties in OC (23–25). Hilvo et al. and

colleagues reported that hydroxybutyric acid was accumulated in

OC tissue. Also, the presence of epithelial-to-mesenchymal

transition (EMT) gene expression, indicated a role for this

metabolite changes in cancer cell invasion and migration (26).

The low phospholipids and essential amino acids (citrulline) in the

ovary were associated with less adaptive immune cell tumor

infiltration and correlated with worse outcomes in OC patients
02
(20). Liu et al. proposed that three metabolites (hexadecenoic acid,

23-lactone, and di-hydrothymine) with a lower concentration in the

drug-resistant group have the potential to predict the prognosis of

chemotherapy (27). Notably, there are numerous metabolomic

researches on blood and urine in OC patients, but the majority of

these studies were focused on biomarker discovery (26, 28). Some

research reported that fatty acids (C16, C22), amino acids (histidine,

tryptophan), and other organic compounds (kynurenine, L-

carnitine) can be considered as serum biomarkers for OC (28–

31). Urine is another commonly used biological sample in clinical

practice. Several studies ascertained some metabolic biomarkers

(succinic acid, fumaric acid, N-acetyl glutamine, etc.) for OC in

urine (32, 33). On the other hand, the hair metabolite profile has

advantages over other more transient biological samples such as

urine and blood as it potentially provides longitudinal information

of metabolite changes. However, there are no hair metabolome

studies for OC. Despite a vast number of OC metabolomic studies,

there is no single study integrating the differential biospecimens of

ovary tissue, blood, urine, and hair, to investigate the systemic

metabolic change of OC in a whole body.

In the present study, we employed a comprehensive gas

chromatography-mass spectrometry (GC-MS) profiling to

identify the altered metabolites between control, BOT, and OC

using different specimens (ovary, plasma, urine, and hair) to

uncover the metabolic interactions of local tumor tissue to those

changes in the systemic metabolome.
Materials and methods

Participants and characteristics
collection

The study was ethically approved by the Research Ethics

Committee of the Second Affiliated Hospital of Chongqing

Medical University, China (202164), and works in accordance

with the Declaration of Helsinki. All participants were recruited

from the Second Affiliated Hospital of Chongqing Medical

University and signed the informed consent before enrolment in

this study from July 2020 to June 2021. Patients with the following

inclusion and exclusion criteria were enrolled as follows: 1)
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Participants with severe chronic diseases such as hypertension,

diabetes, infectious disease, metabolic disorders, or a diagnosis

with malignant other than ovarian cancer were excluded from

this study to minimize recruitment bias; 2) control group (n=14)

including uterine fibroids or endometrioma without any ovarian

lesion; 3) benign ovarian tumors group (n=16) such as teratoma

and ovarian cyst, and 4) ovarian cancer group (n=17) were

diagnosed preoperatively on the serum markers, including

Carbohydrate Antigen (CA125 > 35 U/mL) and Human

Epididymis Protein (HE4 > 70 pmol/L in pre-menopausal

patients, or HE4 >140 pmol/L in post-menopausal patients) (34),

and the imaging modality of sonography for evaluation of an

adnexal mass. The final diagnoses of those patients were

confirmed by postoperative pathological examination.

Subsequently, another three independent groups (control group

=12, BOT =13, and OC =16) were also recruited as an external

validation of urine samples with the same inclusion and exclusion

criteria. The dietary recommendation was given to participants on

the first inpatient day. Patient characteristics such as age, BMI,

gravidity, and parity were collected.
Sample collection and preservation

None of the patients received any therapy such as

chemotherapy, radiotherapy, or surgery prior to sample

collection. Plasma, urine, and hair specimens for each patient

were collected on the same day prior to surgery. Whole blood was

collected in ethylenediaminetetraacetic acid (EDTA)-containing

tubes by trained nurses and the mid-stream urine was collected as

the first pass urine in the morning. Both collected biofluids were

centrifuged at a speed of 2300 g for 10 min at 4°C, transferred

supernatant into a 1.5 ml cryopreservation tube, and stored

at −80°C until metabolite extraction (35). The hair sample

was cut 1.0 cm away from the scalp and stored in aluminum

foil at 4°C. Ovarian (tumor) tissue was obtained immediately

after surgery. All the samples were subsequently frozen within a

half-hour in liquid nitrogen and followed by long-term storage

at -80°C. The specimen ID was labeled with numbers without any

patient’s personal information.
Sample preparations for plasma, urine,
hair, and tissue

All samples were processed with a standard operating

procedure.150 μL aliquots of thawed plasma or urine were

mixed with three internal standards (IS) [20 mL of d4-alanine

(Sigma, USA, 10 mM), d5-phenylalanine (Sigma, USA, 10 mM),

and d5-tryptophan (Sigma, USA, 10 mM)]. To precipitate protein

from the plasma or urine samples, 400 μL of cold methanol was

added, followed by freezing at - 20°C for 30 min. Then the

supernatant was isolated by centrifugation at 12,000 rpm for 15
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min at 4°C. The tissue sample was prepared by dissecting 30.00 ±

0.50 mg into new tubes. After adding three internal standards and

400 mL cold methanol, tissues were homogenized via TissueLyser

II (QIAGEN, USA) and centrifuged (10,000g, 15 min, 4°C) to

isolate the supernatant. The hair sample was washed with

methanol and distilled water twice, then air-dried in a fume

hood. 5.00mg ± 0.50 mg hair was prepared and added to three

internal standards, and then incubated with 1 ml sodium

hydroxide (1 M) at 54°C for 18 h. To precipitate the salt and

protein, 1 ml of methanol was added to the hair extracts, followed

by vortexing for 30 seconds, and centrifuged at 4000 g for 5 min.

The supernatant was mixed with 50 μl of 4M NaOH. Then these

mixtures underwent derivatization consecutively.
Methyl chloroformate (MCF)
derivatization and Gas Chromatography-
Mass Spectrometry (GC-MS) analysis

All prepared extracts were chemically modified to lower their

boiling point by MCF derivatization, based on the method

published in Nature protocols (36). The volatile compounds were

then separated by ZB-1701 GC capillary column (30 m × 250 mm id

× 0.15 mm with 5 m guard column, Phenomenex, CA, USA) and

detected by GC-MS (Agilent 7890B-5977A) with electron impact

ionization via electron emission at 70 eV. The GC-MS parameters

were operated following the procedure in previous research (37).

The GC-MS inlet was set at 290°C with the pulsed splitless mode, 1

ml/min in the flow rate of the helium carrier. The temperature was

controlled at 280°C, 230°C, and 150°C of auxiliary, MS quadrupole,

and MS source respectively. The mass range was detected between

30 mm to 550 mm, with a scan speed of 1.562 m/s and the mass

spectrometry detector turned on after 5.5 min.
Quality control

Four quality control (QC) samples were prepared by pooling

20 mL of each sub-aliquoting corresponding sample into a new

tube, and MCF derivatization was prepared in the

aforementioned manner. The acquisition of a QC spectrum

was performed every 15 samples.
Metabolites identification

The chromatographic characteristics were deconvoluted and

identified using Automated Mass Spectral Deconvolution &

Identification System software. The metabolites were confirmed

by matching both the in-house MFC library spectra >85% and

their respective GC retention time being within a 30 seconds

window. The identification of remaining putative compounds

was used in a commercial NIST mass spectral library.
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GC-MS data mining
and normalization

The relative concentration of metabolites was extracted

using the MassOmics R-based script through the peak height

of the most abundant fragmented iron mass within a

predetermined retention time. The background contamination

and any carryover from identified metabolites were subtracted

by blank samples. To improve quantitative robustness, the

relative concentration of identified compounds was first

normalized by the internal standard (d4-alanine, d5-

phenylalanine, or d5-tryptophan) based on their correlation

with metabolites in the QC samples (38). Median centering of

QC samples was performed to adjust for the daily batch effects.

The dilution correction was achieved by total ion chromatogram

(TIC) in urine and plasma, while biomass in weight was applied

for tissue and hair samples.
Absolute quantification of
metabolite concentration

Amino acids, fatty acids, and lactic acids were quantified

using chemical standards. Levels of these metabolites were first

normalized with the appropriate internal standard and then

quantified to absolute concentration utilizing calibration curves

obtained from the corresponding chemical standard (Five-

concentration range from 0~55.4 mM).
Machine learning development
and validation

Since the different machine learning models may predict or

rank different classifiers, seven machine learning methods were

performed to build the most appropriate binary classification

models for various sample types. They were artificial neural

network (ANN), decision tree (DT), K nearest neighbor

(KNN), logistics regression (LR), naïve bayes (NB), random

forest (RF), and support vector machine (SVM). The seven

methods were performed using the R package (39–42). The

workflow of machine learning was illustrated in Supplementary

Figure 1. After the metabolite dataset was scaled by log2
transformation and z-score normalization algorithm, data

was randomly split into the training dataset and the testing

dataset. The significant features were selected by recursive

feature elimination (RFE) methods of the training dataset.

Seven supervised machine learning models with the selected

features were trained to build efficient classifiers using R-

package including Caret, neuralnet, e1071, kknn, and C50

(43–47). To further internally validate the model, a stratified

5-fold cross-validation method was used to tune the hyper-
Frontiers in Oncology 04
parameter of each model using the testing datasets. The

importance ranking of selected features for each machine

learning model was used to compute based on feature

importance gain (48). Moreover, an independent urine

dataset was conducted to further validate the performance of

seven machine learning models. The importance ranking

features shortlisted from initial models were employed to

perform the external validation of the independent dataset

for machine learning algorithms. AUC, true positive (TP), true

negative (TN), false positive (FP), and false negative (FN) were

calculated. The five metrics of machine learning were applied

to evaluate the performing algorithm, including accuracy,

sensitivity, specificity, positive predictive value, and negative

predictive value, which were defined as follows:

Accuracy = (TP + TN)=(TP + FP + TN + FN);

Sensitivity = TP=(TP + FN);

Specificity = TN=(TN + FP);

Positive predictive value = TP= TP + FP);ð

Negative predictive value = TN=(TN + FN)

(49).
Statistical analysis

Non-parametric Kruskal-Wallis with Bonferroni test for

post-hoc analysis was applied to comparisons of demographics

and clinical characteristics between the control group, benign

ovarian tumors group, and ovarian cancer group. Chi-square or

Fisher’s exact test was used for pairwise comparisons of

categorical variables, such as gravidity and parity. Principal

component analysis (PCA) was plotted using R program.To

adjust for the confounding demographic significantly different in

age and BMI of patient, binary logistic regression was conducted

to confirm differences in metabolite abundance in the three

groups. Then false discovery rates (FDR) were calculated for

metabolites by the q-value R package (50). P-value< 0.05 and

corresponding FDR< 0.2 was considered statistically significant.

UpSet diagram and heatmap were completed by UpSetR and

ggplot2 R package respectively (51, 52). The diagnostic ability

has been determined by the receiver operating characteristic

(ROC) curve. The area under the curve is commonly used to

determine the predictability of prediction ability, and a higher

AUC value considers the superiority of the classifier. Metabolic

pathways were estimated by KEGG metabolic pathways, and

chord plots connecting metabolites and their participating

metabolic pathways were reconstructed via the GOplot R

package (53).
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Results

Clinical characteristics of
study participants

Clinical characteristics of patients were shown in Table 1.

The ovarian cancer group had a significantly lower BMI

compared with the control group (25.44 vs 20.40, p =

0.002), and the BOT group was significantly younger than

the control group (40 vs 54, p< 0.000). Gravidity and parity

exhibited no significant differences among the three

groups. The majority of pathological types of OC was high-

grade serous (70.59%), and the proportions of FIGO stage

were 29.41%, 11.76%, 52.94%, and 5.88% for I-IV,

respectively. Lastly, serum CA125 and HE4 differed

between the groups.
Frontiers in Oncology 05
Metabolomic profiling discrimination in
different samples

GC-MS based metabolic profiling showed over 150

chromatographic peaks in our study. Among them, a total

of 96, 87, 130, and 98 metabolites were identified in the

ovarian tissue, plasma, urine, and hair respectively.

Unsupervised principal component analysis (PCA) was

applied to compare the metabolite compositions (Figure 1).

PC2 and PC3 were the main components to segregate

between OC, control, and BOT groups was observed in

ovarian tissue, plasma, and urine samples (Supplementary

Figure 2). The cancer group was capable of discriminating

from control and BOT groups in urine and plasma

samples, while no separation was found in the hair sample.

The top five metabolites load on each component of
TABLE 1 Clinical characteristics of study participants.

Characteristics Control Benign ovarian tumors Ovarian cancer p-valuee

p-valuec p-valued

Participants, n (%) 14 (29.79) 16 (34.04) 17 (36.17)

Age a(b), years 54 (52.00, 55.75) 0.080 40 (30.25, 48.50) 0.070 48 (46.00, 54.00) 0.001

BMI a(b), kg/m2 25.44 (23.96, 26.60) 0.002 21.95 (20.67, 23.59) 0.443 20.40 (19.96, 23.94) 0.004

Gravidity a(b) 2 (2, 3) 0.677 2 (1.75, 3) 0.398 3 (2, 4) 0.519

Parity a(b) 1 (1, 1) 0.456 1(0,1) 0.983 1 (1, 1) 0.340

FIGO staging (2018)

I, n (%) n/a n/a 5 (29.41)

II, n (%) n/a n/a 2 (11.76)

III, n (%) n/a n/a 9 (52.94)

IV, n (%) n/a n/a 1 (5.88)

Pathology type

Hysteromyoma, n (%) 8 (57.14) n/a n/a

Endometrioma, n (%) 2 (14.29) n/a n/a

Uterine prolapse, n (%) 4 (28.57) n/a n/a

Ovarian teratoma, n (%) n/a 5 (31.25) n/a

Chocolate cyst, n (%) n/a 4 (25.00) n/a

Ovarian cyst, n (%) n/a 6 (37.50) n/a

Mucinous cystoadenoma, n (%) n/a 1 (6.25) n/a

High-grade serous ovarian cancer, n (%) n/a n/a 12 (70.59)

Mucinous, n (%) n/a n/a 1 (5.88)

Endometrioid, n (%) n/a n/a 1 (5.88)

Yolk Sac Tumor, n (%) n/a n/a 1 (5.88)

Low-grade serous ovarian cancer, n (%) n/a n/a 1 (5.88)

Papillary serous carcinoma, n (%) n/a n/a 1 (5.88)

CA125 a(b), U/ml 16.90 (9.05, 27.30) 0.001 23.35 (17.93, 44.88) 0.004 533.70 (156.30, 1000.00) <0.001

HE4 a(b), pmol/l 37.60 (35.90, 56.63) 0.022 37.00 (34.85, 43.58) 0.001 164.90 (66.20, 497.70) 0.001
fron
a: median; b: confidence interval (25th percentile, 75th percentile), c: healthy control group compared with ovarian cancer group, p-value adjusted with the Bonferroni method, d: benign
ovarian tumors group compared with ovarian cancer group, p-value adjusted with the Bonferroni method, e: Kruskal-Wallis with Dunn post hoc tests for multiple comparisons between the
three groups.
n: numbers. n/a: not applicable. CA125: cancer antigen 125. HE4: human epididymis protein 4.
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ovarian tissue, plasma, and urine samples were shown in

(Supplementary Figure 2).
Differential metabolites in study subjects
of tissue, urine, plasma, and
hair samples

To eliminate the potential confounding effects of age and

BMI, pairwise logistic regressions were performed to compare

the metabolite changes between control, BOT, and ovarian

cancer in four different types of biological specimens. The

Venn map showed that 13 metabolites were statistically

different between cancer and non-malignant in both tissue and

plasma samples; while urine and hair samples shared 17 and 15

common metabolites with the ovarian tissue samples,

respectively (Figure 2A). The UpSet plot summarized global

overlap metabolites across comparisons for all sample types

(Figure 2B). Tissue and urine had a higher number of

significant metabolites (n = 51, n = 53), and fewer significant

metabolites were detected for plasma and hair. Unique

significant metabolites for urine, tissue, plasma, and hair were

23, 18, 11, and 7, respectively. Plasma and urine had 16 common

significant metabolites, while nine were between plasma and

hair. Last, there were only three metabolites in common among

the four different sample types.

When comparing ovarian cancer with BOT and control

groups for the four different specimen types, a total of 106
Frontiers in Oncology 06
metabolites were found to be significantly altered as shown in

Figure 2C (p< 0.05, FDR< 0.2). The majority of significantly

different metabolites among these eight comparisons were TCA

cycle intermediates, amino acids and derivatives, fatty acids (long-

chain predominantly), cofactors and vitamins, benzene and

substituted derivatives, organic acids, and derivatives, and

alkanes and derivatives. Most metabolites had a higher relative

concentration in the cancer group compared with control or BOT

groups for tissue, urine, and plasma samples; while significantly

decreased metabolites were observed in the ovarian cancer group

in the hair sample. Specifically, except for the hair sample, most of

the long-chain fatty acids show an increase in tissue, urine, and

plasma. On the other hand, the ovarian cancer group had

significantly lower levels of 2-phosphoenolpyruvic acid, 4-

Methyl-2-oxopentanoic acid, nervonic acid, stearic acid, and

palmitic acid compared to the control group or BOT group.
Targeted metabolite quantification
across different specimen types

To investigate whether the metabolites exhibited distinct

profiles in tissue, plasma, urine, and hair samples between OC

and non-carcinoma patients, we have conducted absolute

quantification of amino acids, fatty acids, TCA cycle

intermediates, and glycolytic end-products. Overall, the majority

of metabolites showed similar trends in different sample types

(Figure 3). Particularly, amino acids were reduced in
B

C D

A

FIGURE 1

Principal component analysis (PCA) of identified metabolites in tissue (A), urine (B), plasma (C), and hair (D) samples. Each point in the plot
represents a patient. Red dots represent the control group, and green dots indicate the benign ovarian tumor group, blue dots represent samples
derived from the ovarian cancer group. Number of tissue sample in control group (n = 14), BOT group (n = 16), and OC group (n = 16). Number
of plasma sample in control group (n = 13), BOT group (n = 16), and OC group (n = 17). Number of urine sample in control group (n = 13), BOT
group (n = 15), and OC group (n = 17). Number of hair sample in control group (n = 13), BOT group (n = 16), and OC group (n = 14).
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B

C

A

FIGURE 2

Differential metabolites in study subjects of tissue, urine, plasma, and hair samples. (A) Venn diagrams indicated overlapping significant
metabolites (p-value < 0.05, FDR < 0.2) in tissue, plasma, urine, and hair samples. (B) UpSet plot illustrated the number of different significant
metabolites (p-value < 0.05, FDR < 0.2) in tissue, plasma, urine, and hair samples. The individual or connected dots represent the significant
metabolite that was either unique to or shared among comparisons in different samples. (C) The heatmap showed comparative metabolite
profiles of four specimen types and their associated metabolic classification. The relative concentrations of sample metabolites are illustrated via
log2 scale. Red color blocks represent higher metabolite levels in dividend groups than the divisor groups, whereas blue color blocks represent
lower metabolite levels in dividend groups than the divisor groups. Only the metabolites with a p-value (Logistic regression adjusted for
gestational age and BMI) less than 0.05 and a q-value (FDR) less than 0.2 are displayed. Number of tissue sample in control group (n = 14), BOT
group (n = 16), and OC group (n = 16). Number of plasma sample in control group (n = 13), BOT group (n = 16), and OC group (n = 17).
Number of urine sample in control group (n = 13), BOT group (n = 15), and OC group (n = 17). Number of hair sample in control group (n = 13),
BOT group (n = 16), and OC group (n = 14).
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concentration in the magnitude of the ovary, plasma, and urine.

Plasma appeared to have the highest fatty acid concentration than

the other sample types in OC; while TCA cycle intermediates were

the highest concentration in the urine. Lastly, lactic acid expressed

the highest concentration in the ovary, and its level was decreased

in the plasma and urine samples of the OC group.

Machine learning algorithms for
disease prediction

In order to determine which metabolites can be used to

discriminate different patient groups, the algorithms including
Frontiers in Oncology 08
artificial neural network (ANN), decision tree (DT), K nearest

neighbor (KNN), logistics regression (LR), naïve bayes (NB),

random forest (RF), and support vector machine (SVM) were

implemented. As a result of the algorithms applied to the

classification, a panel of 26 metabolites in tissue, five in

plasma, three in urine, and four in hair were nominated. The

contributions of nominated metabolites to the performance

of each machine learning algorithm (except KNN and NB)

were ranked in Supplementary Figure 3. The biomarker

signatures discriminating the ovarian cancer group from the

control and BOT groups are displayed in Figure 4. Following

internal validation from machine learning models, tissue, urine,
FIGURE 3

The concentration of amino acids, fatty acids, and lactic acid in the tissue, plasma, urine, and hair samples from control, benign ovarian tumor,
and ovarian cancer patients. Blue circles represented metabolites levels collected from control patients, green circles represented metabolites
levels collected from benign ovarian tumor patients, and red circles represented metabolites levels collected from ovarian cancer patients. Black
asterisks (*) indicated metabolites with significantly different levels between ovarian cancer group vs. control group, and ovarian cancer group
vs. benign ovarian tumor group using logistic regression with confounding factors together with a false discovery rate. Red asterisks (*) indicated
a significant difference in metabolites between various sample types in the ovarian cancer group using Tukey’s Honest Significant Difference
(HSD) test (*p-values< 0.05, **p-values < 0.01, ***p-values < 0.001, ****p-values < 0.0001). Only the significant metabolites with absolute
quantification were displayed. Number of tissue sample in control group (n = 14), BOT group (n = 16), and OC group (n = 16). Number of
plasma sample in control group (n = 13), BOT group (n = 16), and OC group (n = 17). Number of urine sample in control group (n = 13), BOT
group (n = 15), and OC group (n = 17). Number of hair sample in control group (n = 13), BOT group (n = 16), and OC group (n = 14).
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and plasma samples showed significant discriminative power

(AUC >0.85) except for the hair sample. Particularly, model

performances were highly robust for urine (AUC >0.95) based

on top-ranking features including succinic acid, glutamic acid,

and benzeneacetic acid (Supplementary Figure 3), and their

concentrations were displayed in Figure 5. Specifically, NB

(1.0), SVM (1.0), and DT (1.0) were performed the highest

AUCs for the tissue sample. NB (0.97) performed the highest

AUCs for the plasma sample. LR (1.0), ANN (1.0), NB (1.0),

SVM (1.0), and KNN (1.0) performed the highest AUCs for the

urine sample. ANN (0.88) and RF (0.88) performed the highest

AUCs for the hair sample. Notably, the SVM provided the

overall best performance for our dataset because it is a

machine learning approach for binary classification and can

handle the smaller datasets well (54). RT appeared to give the

poorest performance, likely due to underfitting caused by

smaller dataset (55). To further assess the performance of the

top-ranking features, an independent urine sample was applied

to validate the models. We found that the external validation of

the independent urine dataset yielded AUC and accuracy over

0.8 (Supplementary Table 1). Together with the pros and cons of

the different machine learning algorithms (Supplementary

Table 2), we found that SVM and NB were appropriate

models to our relat ively small dataset and binary

research question.

Metabolic pathway enrichment analysis

To further explore the biological role of identified

metabolites, we performed the pathway enrichment analysis

based on the KEGG metabolic network (Figure 6A). The

predicated pathway analysis showed that the metabolism of

energy, nucleotides, carbohydrates, and amino acids, were

upregulated in cancer tissue. The energy metabolism,

carbohydrate metabolism, and lipid metabolism were also

upregulated in plasma and urine, while almost all metabolic

pathways were downregulated in the hair of OC patients.

Then we annotated the KEGG metabolic pathways linked to

their shared significant metabolites, shortlisted by seven

machine learning models, and illustrated as a chord plot in

Figure 6B. Half of the metabolites were involved in central

carbon metabolism in cancer. The majority of these

metabolites were amino acids and cofactors, indicating their

potential roles in tumor development. Interestingly, other

cancer-related metabolic pathways such as glutathione

metabolism, ferroptosis, and necroptosis, were also

highlighted. Glutathione metabolism consists of glutamine,

g lutamic acid , g luta th ione , cys te ine , g lyc ine , and

pyroglutamic acid. Ferroptosis encompassed glutamic acid,

glutamine, cysteine, glutathione, and arachidonic acid. While

another cell death pathway, necroptosis, solely contained

arachidonic acid.
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Discussion

Alterations in cellular metabolism have been reported in

numerous human cancers and are thought to reflect the

metabolic demands related to cancer development. This study

performed comprehensive metabolic profiling of ovarian tissue,

urine, plasma, and hair samples collected from 47 women

diagnosed either with OC or non-carcinoma. Our results

identified specific metabolites that could discriminate OC from

BOT and control subjects in various samples. OC tissue displayed

an elevated concentration of metabolites involved in anaerobic

respiration (lactic acid) and antioxidant (glutathione) capability

against cell death. Plasma exhibited the most discriminated fatty

acid profile between cancer and non-carcinoma groups, while

TCA cycle intermediates were most concentrated in OC urine.

Only a minor disparity was found. A trend in the opposite

direction was found in the hair compared with other sample

types. Thus, this study provided novel insights into the metabolic

phenotypes of different specimen types that differentiate

malignant from benign and normal ovarian pathology.
Metabolic reprogramming of ovarian
cancer tissue

The global metabolic reprogramming of ovarian cancer

could promote nutrients utilization and energy production as

well as oxidative resistance (Figure 7). We found that glycolytic

byproduct (lactate), TCA cycle intermediates (malic acid), and

amino acid derivatives (glutamate, cysteine, glutathione) were

commonly significantly higher in ovarian cancer patients

respectively compared to both control and benign groups;

while glycolytic intermediate (2-phosphoenolpyruvic acid)

showed the opposite result. The KEGG enrichment analyses

also highlighted that energy metabolism, amino acid

metabolism, and purine metabolism were upregulated in the

cancer group. Several studies also found similar metabolic

changes in ovarian cancer. Ha et al. reported the general

paradigm that the elevated energy metabolism in ovarian

cancer cell lines was directly associated with increased lactate

levels (24). Denkert et al. and Garg et al. demonstrated that

amino acids and TCA cycle intermediates were elevated in

ovarian cancer tissues (56). Based on these findings, we

suggested that ovarian cancer promotes anaerobic respiration

by breaking down 2-phosphoenolpyruvic acid into lactic acid

along with the energy production for addressing the demand for

rapid tumor growth (57). Additionally, lactic acid contributes to

an acidic microenvironment, which results in cancer cell

proliferation and migration via enhancing angiogenesis, and

decreased cell adherence (58). Through the upregulation of the

TCA cycle and amino acids metabolism, large sources of

intermediate nutrients are utilized to assemble various
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FIGURE 4

Significant metabolites were nominated and ROC analysis by seven machine learning models of ANN, DT, KNN, LR, NB, RF, and SVM. ROC curve
analysis and corresponding AUC (median with 95% confidence interval) of every model on tissue (A, B), plasma (C, D), urine (E, F), and hair
(G, H). ROC receiver operating characteristic, AUC area under the ROC curve, ANN artificial neural network, DT decision tree, KNN K nearest
neighbor, LR logistics regression, NB naïve bayes, RF random forest, SVM support vector machine. Number of tissue sample in control group (n =
14), BOT group (n = 16), and OC group (n = 16). Number of plasma sample in control group (n = 13), BOT group (n = 16), and OC group (n = 17).
Number of urine sample in control group (n = 13), BOT group (n = 15), and OC group (n = 17). Number of hair sample in control group (n = 13),
BOT group (n = 16), and OC group (n = 14).
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FIGURE 5

The concentration of glutamic acid, succinic acid, and benzeneacetic acid in the urine sample from control, benign ovarian tumor, and ovarian
cancer patients of the validation cohort. Black asterisks (*) indicated metabolites with significantly different levels between ovarian cancer group
vs. control group, and ovarian cancer group vs. benign ovarian tumor group using Tukey’s Honest Significant Difference (HSD) test (*p-values <
0.05, ***p-values < 0.001, ****p-values < 0.0001). Number of urine sample in control group (n = 12), BOT group (n = 13), and OC group (n = 16).
B

A

FIGURE 6

Metabolites are linked to different metabolic pathways. Activities of metabolic pathways in four samples (tissue, plasma, urine, and hair) based on
the metabolome of patients. (A) Black dots represented metabolic activities in different samples (tissue, plasma, urine, and hair) from control
patients that were adjusted to 0. Red dots represented metabolic activities in four samples from ovarian cancer compared to the control or
benign ovarian tumor group. The metabolic activities were visualized using the log2 scale. The dot size indicated the number of metabolites of
the pathway, and the dot color indicated the p-value. A chord plot (B) displayed how the metabolites link to different metabolic pathways.
Different colors represented different types of metabolites classification (red, amino acids and derivatives, green, benzene and substituted
derivatives, blue, cofactors and vitamins, yellow, long-chain fatty acids, Purple, organic acids and derivatives, Burlywood, tricarboxylic acids and
derivatives).
Frontiers in Oncology frontiersin.org11

https://doi.org/10.3389/fonc.2022.916375
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhong et al. 10.3389/fonc.2022.916375
molecules. Notably, glutamate plays a key role in the

proliferating cells, not only by contributing to amino acid

biosynthesis, but also acts as a nitrogen donor for purine and

pyrimidine nucleotides biosynthesis (8, 58). Furthermore, some

studies have demonstrated that glutamate can fuel the TCA cycle

via an anaplerotic reaction of the TCA cycle intermediate a-
ketoglutarate, which contributes to redox balance and increase

NADH production for the proliferation of cancer cells (59, 60).

Moreover, buffering oxidative stress is another crucial

requirement in cancer progression. In ovarian cancer tissue,

the relative concentration of glutathione, linoleic acid, and EPA

was increased, while the palmitic acid level was decreased

significantly. The metabolic pathway mapping indicated that

these significantly changed metabolites were associated with
Frontiers in Oncology 12
cysteine and methionine metabolism, ferroptosis, and

biosynthesis of unsaturated fatty acids pathways. It has been

indicated that the concentration of GSH was higher in ovarian

cancer tissue than in benign ovarian tumor tissue (61). Several

researchers reported that increased GSH often accompanies

tumor growth to mitigate the impact of elevated oxidative

stress resulting from a rapid metabolic rate (62, 63). GSH not

only acts as an antioxidant to minimize oxidative stress but is

also profoundly related to cisplatin and carboplatin

chemoresistance through reducing drug uptake and increasing

drug inactivation in ovarian cancer (64). Moreover, GSH can

protect cell death against ferroptosis, a non-apoptotic-regulated

cell death culminating with overwhelming lipid peroxidation

(65–67). Particularly, MUFAs (oleic acid) can compete with
FIGURE 7

Summary of altered metabolites and metabolic pathways in this study. Reprogramming metabolites of ovarian cancer is thought to support the
biological processes that enable tumor development. The metabolome of OC patients and non-malignant patients were compared. In cancer
cells, glycolysis, TCA cycle, and glutamate metabolism were upregulated to support fatty acids synthesis, amino acids synthesis, and nucleotide
synthesis, and finally contribute to cell proliferation. GSH was conducive to inhibiting oxidative stress, as well as fatty acids assist with inhibiting
lipid peroxidation. Vasculature plays an important role in substance exchange with OC tissue and also translates metabolites to the kidney and
hair. The red arrows (following the metabolites) indicate increased or decreased regulation of metabolites in OC groups detected in different
samples. The black solid arrows depict the movement of metabolites or metabolic reactions, and dashed arrows depict the positive regulatory
effects of metabolic components. The red arrows (following the metabolites) indicate increased or decreased regulation of metabolites in OC
groups detected in different samples based on significant results in Figures 2, 3.
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PUFAs (arachidonic acid, linoleic acid) for incorporation into

phospholipids to exert anti-ferroptotic effects (68, 69). Yang et

al. proposed that polyunsaturated fatty acids (PUFAs) are the

most susceptible lipids to oxidative damage and could be the

potential target for antineoplastic therapy (69). Altogether, the

results related to ovarian cancer presented up to now indicate

that ovarian cancer undergoes metabolic reprogramming to

facilitate energy metabolism and protect against oxidative stress.
From ovarian tissue to
systemic blood

Although tissue biopsy is considered a gold standard for the

initial diagnosis, it is neither practical nor desirable for cancer

screening. In contrast, other biofluids such as blood, are more

convenient specimens for biomarker screening and detecting

metabolic dysregulation in circulation. Many metabolomics

studies have demonstrated obvious discriminations between

ovarian cancer and its counterparts by plasma (18, 29, 56, 70).

Consistently, we also observed a clear segregation between ovarian

cancer and non-malignant groups using plasma samples. There

were five metabolites with an area under the ROC above 0.9

including arachidonic acid, itaconic acid, stearic acid, n-

butylbenzene, and malic acid. Arachidonic acid is considered as

a pro-inflammatory eicosanoid that modulates tumor cell

proliferation and differentiation (71, 72). Chronic inflammation

is a well-known risk factor for cancer progression. Jonathan et al.

also reported that itaconic acid may serve as a crucial regulator for

the inflammation response and cytokine production via post-

translational modifications (73). Apostolov et al. found that

stearic acid, an omega-6 fatty acid, was related to tumor

development in vivo (74). Furthermore, blood plays an

important role in the provision of nutrients and disposal of

metabolic waste products for growing tumors. Interestingly, our

targeted analysis indicated that the concentration of long-chain

fatty acids was higher in the plasma than in the tissue in ovarian

cancer, while an opposite trend was shown for lactic acid. A higher

level of fatty acids in plasma could be associated with cancer

growth, which could be used to supply important energy sources,

maintain the lipid bilayer structure of cancer cells, and transduce

oncogenic signals (75, 76). Besides, lactic acid has been reported to

be uptaken from blood to the liver and muscles (77). This might

explain why blood lactic acid displayed a lower concentration than

the tumor tissue. Therefore, blood is a robust specimen to reflect

the metabolic alterations of ovarian cancer tissue and many

systemic metabolites are associated with inflammation.
From blood to urine and hair

Urine is another common humoral sample used for clinical

screening. In our study, the highest proportion of differential
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metabolites was found in urine (n=52) compared to plasma

(n=32) and hair (n=31) samples. Moreover, three significant

urinary metabolites (succinic acid, glutamic acid, and

benzeneacetic acid) exhibited the highest specificity and

sensitivity of prediction power according to machine learning

methods (almost=1).These three significant features also

achieved good performance among the seven machine learning

algorithms using external validation (Supplementary Table 1),

pointing out their potential as urinary biomarkers for ovarian

cancer. Zhang et al. had reported that succinic acid could be used

as a urinary biomarker for ovarian cancer (32, 78). Furthermore,

Lei et al. reviewed that succinic acid facilitates tumor

development by providing an energy source and converting

tumor-associated M2 macrophages, which suppress the anti-

tumor immune response in ovarian cancer (79). By comparing

metabolite concentrations between different sample types,

succinic acid and citric acid were among the highest

concentration metabolites in urine compared to other samples

in ovarian cancer patients (Figure 3). This is likely due to the

renal concentrating mechanism of filtered products from blood

(80), which suggested that urinary metabolomic analysis might

provide complementary information to plasma metabolomic

analysis. Hair is another noninvasive bioanalytical sample that

has been used as longitudinal bio-monitors for abnormal

conditions such as drug testing and pregnancy complications

(81-83). In contrast to other sample types, amino acids and fatty

acids were significantly downregulated in the ovarian cancer

group than control and BOT groups. We speculate that fewer

blood metabolites assimilated into hair are due to the high

metabolic demand by tumor tissue. Further research is needed

to understand this phenomenon. In our study, however, the

result of PCA analysis could not stratify ovarian cancer patients

from control and BOT patients (Figure 1D), and the

classification model suggested a poor predictive effect of

metabolites (Figures 4G, H). Thus, hair is not a suitable

sample choice for screening ovarian cancer.

Despite the promising findings, our study has several

limitations. The dietary questionnaire should be implemented

for studied participants. The sample size was relatively small for

machine learning approaches, and more samples are needed to

further validate the reliability and prediction capability of

plasma and urine as a biospecimen for biomarker discovery in

ovarian cancer. Cell and animal studies should be performed to

further validate the metabolic mechanisms of ovarian cancer

across different tissue types.
Conclusion

In summary, this is the first metabolomic study attempt to

track the metabolic changes between different specimen types of

ovarian cancer. Metabolic reprogramming of ovarian carcinoma

was mainly characterized by promoting tumor energy
frontiersin.org

https://doi.org/10.3389/fonc.2022.916375
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhong et al. 10.3389/fonc.2022.916375
metabolism and protecting against oxidative stress. Blood was

related to inflammatory response, while TCA cycle

intermediates were concentrated in the urine. We have

shortlisted several metabolites in plasma and urine as an initial

hint for potential biomarkers in ovarian cancer. Altogether, the

study provides important knowledge on the metabolic

characteristics of differential biological specimens to reveal

global metabolic changes in response to ovarian cancer.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

The studies involving human participants were reviewed and

approved by the Research Ethics Committee of the Second

Affiliated Hospital of Chongqing Medical University, China

(202164). The patients/participants provided their written

informed consent to participate in this study.
Author contributions

XZ contributed to sample and data collection, performed

the statistical analysis, interpreted the results, and wrote the

manuscript. RR and SG commented on the design and revised

the manuscript. MS and XS contributed to sample collection.

FL was responsible for the machine learning algorithms

analysis. YZ, XT, and YY devised the original laboratory

study and interpreted the results. AL and WH supported

the writing of the manuscript and directed the project. TY and

TH are the guarantors of this work and, as such, have full

access to all the data in the study and take responsibility for

the integrity of the data and the accuracy of the data analysis.

All authors contributed to the article and approved the

submitted version.
Frontiers in Oncology 14
Funding

This work was supported by the National Natural Science

Foundation of China (No.81871185), Chongqing Municipal

Education Commission (KJZD-K202100407), Chongqing

Sc ience & Technology Commiss ion (cstc2021jcy j-

msxmX0213), Kuanren Talents Programs of the Second

Affiliated Hospital of Chongqing Medical University.
Acknowledgments

We are grateful to the patients and clinical staff (Xiaojing

Dong, Xingwei Jiang, Xiaolin Gan, and Xiaojiao Li) from the

department of obstetrics and gynecology department (The Second

Affiliated Hospital of Chongqing Medical University, Chongqing,

China) for their generous contributions to this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.916375/full#supplementary-material
References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2021) 71:209–49.
doi: 10.3322/caac.21660

2. Nash Z, Menon U. Ovarian cancer screening: Current status and future
directions. Best Pract Res Clin Obstet Gynaecol (2020) 65:32–45. doi: 10.1016/
j.bpobgyn.2020.02.010

3. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al.
Ovarian cancer statistics, 2018: Ovarian cancer statistics, 2018. CA Cancer J Clin
(2018) 68:284–96. doi: 10.3322/caac.21456
4. Kuroki L, Guntupalli SR. Treatment of epithelial ovarian cancer. BMJ (2020)
371:1–20. doi: 10.1136/bmj.m3773

5. Lisio M-A, Fu L, Goyeneche A, Gao Z, Telleria C. High-grade serous ovarian
cancer: Basic sciences, clinical and therapeutic standpoints. Int J Mol Sci (2019)
20:952. doi: 10.3390/ijms20040952

6. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell
(2011) 144:646–74. doi: 10.1016/j.cell.2011.02.013

7. Wishart DS. Metabolomics for investigating physiological and
pathophysiological processes. Physiol Rev (2019) 99:1819–75. doi: 10.1152/
physrev.00035.2018
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.916375/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.916375/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.bpobgyn.2020.02.010
https://doi.org/10.1016/j.bpobgyn.2020.02.010
https://doi.org/10.3322/caac.21456
https://doi.org/10.1136/bmj.m3773
https://doi.org/10.3390/ijms20040952
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1152/physrev.00035.2018
https://doi.org/10.1152/physrev.00035.2018
https://doi.org/10.3389/fonc.2022.916375
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhong et al. 10.3389/fonc.2022.916375
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