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Abstract

Excessive inflammatory reactions mediated by first-responder cells such as neutrophils contribute 

to the severity of multiorgan failure associated with systemic injury and infection. Systemic 

subclinical endotoxemia due to mucosal leakage may aggravate neutrophil activation and tissue 

injury. However, mechanisms responsible for neutrophil inflammatory polarization are not well 

understood. In this study, we demonstrate that subclinical low-dose endotoxemia can potently 

polarize neutrophils into an inflammatory state in vivo and in vitro, as reflected in elevated 

expression of adhesion molecules such as ICAM-1 and CD29, and reduced expression of 

suppressor molecule CD244. When subjected to a controlled administration of gut-damaging 

chemical dextran sulfate sodium, mice conditioned with subclinical dose LPS exhibit significantly 

elevated infiltration of neutrophils into organs such as liver, colon, and spleen, associated with 

severe multiorgan damage as measured by biochemical as well as histological assays. Subclinical 

dose LPS is sufficient to induce potent activation of SRC kinase as well as downstream activation 

of STAT1/STAT5 in neutrophils, contributing to the inflammatory neutrophil polarization. We also 

demonstrate that the administration of 4-phenylbutyric acid, an agent known to relieve cell stress 

and enhance peroxisome function, can reduce the activation of SRC kinase and enhance the 

expression of suppressor molecule CD244 in neutrophils. We show that i.v. injection of 4-

phenylbutyric acid conditioned neutrophils can effectively reduce the severity of multiorgan 

damage in mice challenged with dextran sulfate sodium. Collectively, our data, to our knowledge, 

reveal novel inflammatory polarization of neutrophils by subclinical endotoxemia conducive for 

aggravated multiorgan damage as well as potential therapeutic intervention.

INTRODUCTION

Systemic inflammation and multiorgan damage triggered by infection or injury can lead to 

severe morbidity and high mortality and poses significant health concern world-wide (1, 2). 

Despite extensive past research efforts involving clinical and basic studies, no effective 

This article is distributed under the terms of the CC BY-NC 4.0 Unported license.

Address correspondence and reprint requests to: Prof. Liwu Li, Virginia Tech, 970 Washington Street, Blacksburg, VA 
24061-0910. lwli@vt.edu. 

DISCLOSURES
The authors have no financial conflicts of interest.

HHS Public Access
Author manuscript
Immunohorizons. Author manuscript; available in PMC 2020 August 24.

Published in final edited form as:
Immunohorizons. ; 4(7): 392–401. doi:10.4049/immunohorizons.2000039.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc/4.0/


therapy is available because of the complex and altered inflammatory dynamics that underlie 

the pathogenesis of systemic inflammation. Alterations of systemic inflammation appear to 

occur in two distinct phases (3). Early exacerbation of hyperinflammation and late immune 

suppression can both contribute to elevated mortality/morbidity of systemic inflammation 

and multiorgan injury. During the initial hyperinflammatory phase of acute systemic 

inflammation, injury-/pathogen-triggered hyperinflammatory reactions often lead to an 

excessive “inflammatory storm” aggravating multiorgan dysfunction. However, mechanisms 

underlying the altered inflammatory dynamics are still not well understood. This study will 

focus on defining mechanisms of early inflammatory exacerbation through innate priming.

Pre-existing health conditions such as ageing, obesity, and other chronic diseases associated 

with subclinical endotoxemia are known risk factors contributing to elevated morbidity/

mortality associated with systemic inflammation and injury, likely through priming and 

aggravating the early phase of innate hyperinflammatory reaction (4). We and others 

previous reported that preconditioning of experimental animals with subclinical priming 

dose of endotoxin aggravates mortality of experimental sepsis, whereas preconditioning of 

animals with higher tolerant dosage of endotoxin alleviates early phase of 

hyperinflammation and reduces sepsis mortality (5, 6). Among innate immune cells 

mediating altered inflammation dynamics, neutrophils are the immediate responders to 

systemic injury and/or infection (7, 8). Previous studies suggest that neutrophils may provide 

either detrimental or beneficial roles during the pathogenesis of sepsis, potentially depending 

upon the timing and activation states of neutrophils (9). However, mechanisms for neutrophil 

activation dynamics are poorly understood, and such lack of understanding hinders the 

effective prevention and treatment of systemic inflammation as well as multiorgan injury.

Using a well-controlled model of experimental systemic inflammation and multiorgan injury 

triggered by controlled administration of gut-damaging chemical dextran sulfate sodium 

(DSS), we, in this study, examined the effect of preconditioning with subclinical 

endotoxemia on the priming of neutrophils in vivo as well as the development of systemic 

inflammation and multiorgan damage. Previous studies suggest that pre-existing conditions 

such as obesity and aging increase the risk for more severe ulcerative colitis as well as 

subsequent comorbidity risks, including sepsis (10–12). Subclinical endotoxemia manifests 

in humans with obesity and ageing (13–15), which may precondition innate immune system 

for aggravated systemic inflammation and organ damage following subsequent ulcerative 

colitic injury. DSS administration is a well-established model for inducing acute gut damage 

mimicking ulcerative colitis. Based on these studies, we therefore tested the hypothesis that 

preconditioning with subclinical endotoxemia may invoke more severe systemic 

inflammation in experimental animals subsequently challenged with mucosal damaging 

agents such as DSS. In this current study, we observed that subclinical endotoxemia 

preconditioning led to aggravated systemic inflammation, multiorgan damage, and elevated 

infiltration of neutrophils into organs such as liver, colon, and spleen in mice challenged 

with DSS. Further characterization of neutrophil activation revealed an inflammatory 

polarization state represented by higher levels of adhesion molecule ICAM1 and lower 

expression of suppressor molecule CD244. Mechanistically, subclinical endotoxemia led to 

neutrophil polarization through activating SRC kinase and STAT1, and reducing AKT. We 

also demonstrated that the application of phenylbutyric acid (4-PBA) can effectively balance 
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neutrophil homeostasis by reducing the activation of SRC and inducing the homeostatic 

molecule CD244. Therapeutically, we demonstrated that i.v. administration of neutrophils 

reprogrammed by 4-PBA can effectively alleviate the severity of multiorgan failure triggered 

by DSS. Taken together, our study defines the novel, to our knowledge, proinflammatory 

polarization of neutrophils conducive for systemic inflammation and potential therapeutic 

intervention of neutrophil polarization.

MATERIALS AND METHODS

Experimental animals

C57BL/6 wild-type (WT) mice were purchased from the Jackson Laboratory. WT mice were 

bred and maintained at the animal facility at Virginia Tech in accordance with the Institute 

for Animal Care and Use Committee–approved protocol. Mice used in the experiment were 

6–10 wk of age and 20–30 g of weight.

Reagents

DSS (MW 47,000; MP Biomedicals) was purchased from MP Biomedicals. LPS 

(Escherichia coli 0111:B4), Percoll, and 4-PBA were from Sigma-Aldrich. Anti-phospho–

AKT (S473) and anti-phospho–SRC (Tyr418) were from eBioscience. Anti-phospho–

STAT5, anti-phospho–STAT1, and anti-phospho–spleen tyrosine kinase (SYK) Ab were 

from Cell Signaling Technology. Anti-phospho–AMP-activated protein kinase (AMPK) and 

anti-PPARγ Abs were purchased from Bioss Antibodies. Conjugated Abs with fluorescent 

dyes against Ly6G, CD11b, ICAM-1, CD29, CD244, and CD88 were from BioLegend. 

Anti-myeloperoxidase (MPO) Ab was from Abcam. G-CSF was from PeproTech. 3, 3′-
diaminobenzidine was from Vector Laboratories.

DSS-induced colitis model

WT mice were given 4.0% (w/v) DSS in drinking water continuously for 5 d, followed with 

regular water for an additional 3 d. Mice were monitored for weight loss, physical body 

condition, stool consistency, and rectal bleeding. For preconditioning with subclinical 

endotoxemia, i.p. injection of subclinical dose LPS (5 ng/kg body weight) were started from 

1 d before DSS treatment for 5 d (Fig. 1A).

Immunohistochemistry and TUNEL staining

Tissues were imbedded into Optimal-Cutting-Temperature compound, then sectioned (5 

μm). Sections were fixed in 4% PFA for 10 min, then incubated in blocking buffer (PBS 

containing 10% goat serum and 1% BSA) for 30 min and stained with anti-MPO primary Ab 

(1:100) for 2 h at room temperature, followed by a biotinylated anti-IgG secondary Ab and 

ABC Elite Kit (Vector Laboratories), then subjected to substrate (3, 3′-diaminobenzidine) 

detection and counterstained with methyl green.

For TUNEL staining, tissues were fixed in 4% PFA and embedded into paraffin. Samples 

were sectioned (5 μm). After deparaffination, colorimetric IHC Detection Kit (Thermo 

Fisher Scientific) was used according to the manufacturer’s instructions. Multiple viewing 
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fields from each slide were captured. Images were quantified with National Institutes of 

Health ImageJ software.

Neutrophil purification and culture

Neutrophils were isolated from WT mice bone marrow. Briefly, after lysis of RBCs, bone 

marrow cells resuspended in HBSS were layered over a Percoll gradient (62.5%) and 

centrifuged at 1000 × g for 30 min. The purities of neutrophils were >90% as assessed by 

flow cytometry analysis. Isolated neutrophils were cultured with RPMI completed medium 

(10% FBS, 1% penicillin/streptomycin, 1% glutamine) supplemented with 100 ng/ml G-

CSF and stimulated LPS (100 pg/ml) or 4-PBA (1 mM) or PBS at 37°C in 5% CO2 

overnight. The cells were harvested next day for further analysis.

Biochemical analysis

Peripheral blood was collected into EDTA-coated tubes. After centrifugation, plasma was 

collected and stored in −80°C for later analysis. Activities of lactate dehydrogenase (LDH) 

were measured enzymatically in the plasma samples using commercial assay kit from 

Biovision according to the manufacturer’s instructions. Troponin-1 levels in plasma were 

analyzed by ELISA using ELISA Kit from Life Diagnostics. Plasma creatinine and blood 

urea nitrogen (BUN) were detected by Colorimetric Assay Kits from Cayman Chemical and 

Thermo Fisher Scientific, respectively.

Flow cytometry

Single-cell suspensions were prepared and stained with fluorescently conjugated Abs in the 

presence of Fc block on ice for 20 min. After washing, the cells were resuspended in flow 

buffer (1 × HBSS/2% FBS), and subjected to flow analysis. Intracellular phospho-proteins 

were detected with Transcription Factor Phospho Buffer Set (BD Pharmingen) according to 

the manufacturer’s instructions. Briefly, after incubation, neutrophils were fixed and 

permeabilized with TFP buffer for 50 min and perm buffer III for 20 min sequentially, then 

washed and stained with fluorescent Abs against Ly6G and phosphoproteins for 45 min on 

ice. Samples were analyzed with a FACSCanto II (BD Biosciences). FACS plots shown were 

analyzed with FlowJo (Ashland, OR).

Adoptive transfer of neutrophils

WT mice were divided into two recipient groups transfused with either 4-PBA–primed 

neutrophils or PBS-primed neutrophils as control. All recipients were given 4.0% (w/v) DSS 

in drinking water continuously for 5 d followed with regular water for 1 d. Neutrophils for 

adoptive transfer purpose were isolated from naive WT mice and purified by EasyStep 

Mouse Neutrophil Enrichment Kit (StemCell Technologies) according to the instruction 

from the manufacturer. Purified neutrophils were cultured in RPMI complete medium 

supplemented with 100 ng/ml G-CSF and treated with 4-PBA (1 mM) or PBS as control 

overnight. Then the neutrophils were harvested and resuspended in PBS to the concentration 

of 25 × 106 cells per milliliter. According to the physiological data summary of C57BL/6J 

from Jackson Laboratory, the estimation of circulating neutrophil count is ~0.78 × 106 in an 

8-wk-old male mouse. Then, 5 × 106 cells were adoptively transfused each time to recipient 
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mouse by tail i.v. injection on day 2 and day 5 during the DSS colitis model. Mice were 

sacrificed on day 6 (Fig. 6A).

Statistical analysis

Data were represented as mean ± SD. Graphs and statistical analysis were conducted via 

GraphPad PRISM software. Student t test was used for parametric analyses between two 

groups. Complex data sets were analyzed by one-way ANOVA and followed by Tukey–

Kramer test. The p < 0.05 was considered statistically significant.

RESULTS

Subclinical endotoxemia exacerbates systemic inflammation and multiorgan damage

To examine the impact of subclinical endotoxemia on early phase of inflammation, WT mice 

were preconditioned i.p. with a super low dose of LPS (5 ng/kg body weight) or PBS as 

control as shown in Fig. 1A. Preconditioned mice were then subjected to DSS-induced gut 

damage and monitored closely. Compared with the control group, the mice preconditioned 

with the super low dose of LPS showed much severe disease development, including 

aggravated weight loss (Fig. 1B), severe clinical scores (Fig. 1C), and much shorter colon 

lengths (Fig. 1D). Meanwhile, elevated bacteria burden was detected in the peripheral blood 

from LPS-preconditioned mice (Fig. 1E). Sepsis caused by systemic infection can rapidly 

lead to multiorgan failure. Therefore, we next examined key parameters representative of 

multiorgan damage. As results shown in Fig. 1F, the levels of LDH, Troponin-1, and 

creatinine in the plasma were significantly higher in mice injected with a super low dose of 

LPS, representing tissue damages from liver, heart, and kidney respectively. An independent 

assay measuring tissue damage with TUNEL staining was also performed on sectioned 

tissues from heart, liver, and kidney. We observed significantly elevated TUNEL-positive 

staining in the heart, liver, and kidney tissues collected from LPS-preconditioned mice as 

compared with PBS-preconditioned mice (Fig. 1G). Collectively, these data reveal that mice 

preconditioned with the super low dose of LPS displayed severe development of systemic 

inflammation and multiorgan failure upon DSS challenge.

Subclinical endotoxemia preconditioning exacerbates neutrophil tissue infiltration and 
activation in vivo

Neutrophil is the first defender of bacterial infection, and neutrophil dysfunction is 

implicated in the progression of systemic inflammation and multiorgan damage. Previous 

studies show that excessive and persistent infiltration of neutrophils into tissues can 

aggravate multiple organ failure accompanying sepsis (16). Thus, we next examine the 

neutrophil status in the preconditioned mice. We observed that the percentage of neutrophils 

(Ly6G+CD11b+) in the blood from LPS-preconditioned mice was significantly higher than 

that in PBS-preconditioned control mice (Fig. 2A). Moreover, a significantly higher number 

of neutrophils was also detected in the colon tissues of LPS-preconditioned mice, as 

measured by elevated MPO-positive staining in the colon sections from the LPS-conditioned 

group (Fig. 2B). Higher numbers of infiltrating neutrophils were also observed in the spleen 

and the liver tissues of LPS-conditioned mice, as measured by flow cytometry (Fig. 2C). 
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Collectively, our data confirm the elevated infiltration of neutrophils in mice conditioned by 

subclinical endotoxemia.

Subclinical endotoxemia polarizes inflammatory neutrophils by inducing ICAM-1 and 
reducing CD244

Tissue infiltration and activation of neutrophils are closely regulated by adhesion molecules 

(17). Septic neutrophils from experimental animals as well as septic human patients often 

exhibit elevated levels of ICAM-1 (18). We therefore examined the levels of key adhesion 

molecules such as CD29 and ICAM-1 on neutrophils in mice preconditioned by subclinical 

dose endotoxemia. We observed that CD29, also known as integrin β 1, which plays 

essential roles in neutrophil adhesion, aggregation, and activation, was increased in the 

neutrophils from LPS-preconditioned mice (Fig. 3A). Moreover, the expression of ICAM-1 

on the neutrophils was also significantly higher in LPS-preconditioned mice (Fig. 3B). In 

contrast, CD244 is a known suppressor of myeloid inflammation (19–21). We observed a 

significant reduction of CD244 on neutrophils harvested from LPS-preconditioned mice, as 

compared with that in PBS-preconditioned mice (Fig. 3C). Our data suggest that LPS 

preconditioning potently skews neutrophils into a proinflammatory state conducive for 

excessive tissue infiltration during DSS-triggered colitis and contribute to the aggravation of 

multiorgan injury.

Subclinical endotoxemia increases neutrophil SRC kinase and STAT1/5 and reduces 
phospho-AKT and phospho-AMPK

To further explore the mechanisms of neutrophil polarization, bone marrow neutrophils were 

isolated and challenged with super low dose of LPS (100 pg/ml) in an in vitro culture. 

Consistent with in vivo observations, LPS significantly increased the expression of CD29 

and ICAM-1, but reduced CD244 (Fig. 4A). Tyrosine kinases such as SRC are known to be 

downstream activators of TLR4, and play important roles in the activation of transcription 

factor STAT1 and induction of ICAM-1 (22, 23). Upon a super low dose of LPS stimulation, 

we observed that the phosphorylation levels of tyrosine kinase SRC and SYK were 

significantly increased (Fig. 4B). Moreover, phosphorylation levels of STAT1 and STAT5 

were significantly elevated by super low dose of LPS treatment (Fig. 4C), consistent with the 

increased expression of ICAM-1 and CD29. In contrast, previous studies reveal that the 

activation of AMPK and AKT can exert anti-inflammatory effects (24, 25). We thus tested 

the levels of AMPK and AKT in neutrophils polarized by superlow dose LPS. As results 

shown in Fig. 4D, super low dose of LPS significantly reduced the phosphorylation of 

AMPK and AKT. Together, our mechanistic studies reveal that super low dose of LPS 

selectively induces SRC-mediated STAT1/5 activation and suppresses anti-inflammatory 

AMPK and AKT, leading to inflammatory polarization of neutrophils conducive for tissue 

infiltration and damage.

4-PBA can potently reduce SRC kinase and increases CD244 in neutrophils

4-PBA is a potential anti-inflammation compound, known as an inducer for peroxisome 

homeostasis (26). Therefore, we next tested whether 4-PBA may have anti-inflammatory 

effects on neutrophil polarization. Purified neutrophils were treated with 4-PBA (1 mM) or 

PBS. As data shown in Fig. 5A, 4-PBA effectively induced the expression of 
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immunosuppressive maker CD244. Meanwhile, 4-PBA also significantly reduced the 

expression of the complement C5a receptor, CD88. Blockage of C5a binding has been 

reported to reduce the mortality of experimental sepsis (27). Mechanistically, we observed 

that 4-PBA attenuated the phosphorylation of SRC and SYK (Fig. 5B). In contrast, the 

expression of PPARγ was induced by 4-PBA (Fig. 5C), which may be responsible for the 

elevated induction of CD244.

4-PBA–trained neutrophils can potently reduce septic mortality

Based on the finding that 4-PBA could potentially switch neutrophils to an anti-

inflammatory state, we next test the function of 4-PBA–primed neutrophils in vivo. DSS-

challenged mice were i.v. administered with either 4-PBA–conditioned neutrophils or PBS-

conditioned neutrophils on day 2 and day 5 of the DSS regimen as indicated in Fig. 6A. We 

have previously reported that neutrophils cultured in vitro can survive at least 48 h, and that 

adoptively transferred neutrophils can effectively traffic into mucosal tissues in recipient 

mice (28, 29). Administrationof4-PBA–conditioned neutrophils prevented weight loss (Fig. 

6B) and reduced the shortening of colon length (Fig. 6C). Moreover, the plasma levels of 

LDH, BUN, and Troponin-1 were significantly reduced in mice receiving 4-PBA–

conditioned neutrophils as compared with mice receiving PBS-conditioned control 

neutrophils (Fig. 6D), suggesting that the administration of 4-PBA–conditioned neutrophils 

can effectively reduce tissue damage associated with mucosal colitis injury. Moreover, not 

only the percentage of circulating neutrophils, but also the percentages of tissue-infiltrating 

neutrophils in the liver and the spleen were significantly reduced in mice receiving 4-PBA–

conditioned neutrophils (Fig. 6E). The reduction of adhesion molecules such as CD29 and 

ICAM-1 was also observed on neutrophils from mice receiving 4-PBA–conditioned 

neutrophils (Fig. 6F)

DISCUSSION

Our data demonstrate that the inflammatory polarization of neutrophils preconditioned by 

subclinical endotoxemia leads to elevated neutrophil infiltration into vital organs during 

experimental ulcerative colitis and aggravates systemic multiorgan injury. Our study further 

reveals the activation of SRC and downstream STAT1/STAT5 as a potential mechanism for 

neutrophil polarization by subclinical endotoxemia. We further document that 4-PBA can 

effectively suppress SRC kinase activation and induce PPARγ-mediated anti-inflammatory 

polarization of neutrophils conducive for reducing acute systemic inflammation and 

multiorgan damage.

Our study expands our understanding of neutrophil priming by subclinical endotoxemia, 

which bears fundamental and translational significance in the emerging field of 

programming dynamics of innate immunity and inflammation. Subclinical endotoxemia has 

been increasingly noticed in humans and experimental animals with chronic diseases (30, 

31). Emerging data suggest that subclinical endotoxemia can potentiate the inflammatory 

polarization of monocytes involved in the pathogenesis of chronic inflammatory diseases 

such as atherosclerosis and neurologic complications (32, 33). Our current study 

complements these previous observations and further demonstrates that subclinical dose LPS 
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is potent enough to enhance the activation of neutrophils as reflected in elevated expression 

of adhesion molecules such as ICAM-1 and CD29 involved in tissue infiltration. At the 

translational level, our data showing elevated multiorgan damage in mice conditioned with 

subclinical endotoxin reconcile the effects of subclinical endotoxemia in humans with 

chronic conditions prone to the development of severe sepsis (30, 34).

In addition to inflammatory mediators, neutrophils are known to express suppressor 

molecules such as CD244. CD244 is a known marker of myeloid suppressor cells involved 

in suppressing the activation of neighboring myeloid cells (20, 21). Upregulation of CD244 

on granulocyte-derived suppressor cells has been shown to reduce the severity of sepsis (21). 

Our current data reveal that neutrophils conditioned with subclinical low dose of LPS not 

only express inflammatory adhesion molecules such as ICAM-1 and CD29 but also exhibit 

reduced expression of CD244. The reduced CD244 levels on neutrophils is also observed in 

vivo in mice conditioned with subclinical dose LPS. The unique polarized induction of 

ICAM-1 and suppression of CD244 in neutrophils conditioned by subclinical endotoxemia 

may contribute to the hyperinflammation during the early phase of sepsis and elevate sepsis 

severity.

At the mechanistic level, our data suggest that SRC kinase and STAT1/5 in neutrophils can 

be potently activated by subclinical dose LPS. In contrast, we show that subclinical dose 

LPS fails to induce anti-inflammatory signaling such as AKT and AMPK in neutrophils. 

This is in stark contrast to the effects of higher dose LPS, which can broadly induce the 

activation of diverse signaling pathways including the proinflammatory SRC as well as the 

anti-inflammatory AKT pathway (35, 36). Our mechanistic data are consistent with the 

phenotypic observation that neutrophils challenged with subclinical dose LPS exhibit 

increased expression of ICAM-1 and reduced levels of suppressor molecule CD244.

Our data suggest the potential of reprogrammed neutrophils by 4-PBA in preventing 

systemic inflammation and multiorgan injury. 4-PBA is a derivative of butyrate acid 

naturally occurring in healthy commensal microbiota, as well as in humans under strenuous 

exercise or starvation (37, 38). Previous studies reveal that 4-PBA can enhance peroxisome 

functions, reduce cellular stress, and reduce proinflammatory polarization of innate 

leukocytes (29, 39). Our current study extends these previous findings and reveal that 

neutrophils conditioned with 4-PBA can express the myeloid suppressor molecule CD244. A 

previous report using another cell stress-reliever TUDCA also reveals the induction of 

CD244 on granulocytes. TUDCA-treated granulocytes were shown to relieve sepsis severity 

when injected into mice with experimental sepsis, through CD244-mediated reduction of 

excessive inflammatory reactions from neighboring innate leukocytes (21). Consistent with 

these previous studies, we confirm that neutrophils conditioned with 4-PBA have higher 

expression of CD244, and that 4-PBA–conditioned neutrophils can potently reduce the 

severity of experimental systemic inflammation and multiorgan injury when administered in 

mice. Despite these intriguing observations, this current study serves as an initial and limited 

attempt in addressing the emerging concept of innate neutrophil memory and its potential 

relevance in systemic inflammation. The lack of genetic approach precludes the in-depth 

characterization of detailed molecular mechanisms responsible for neutrophil priming 

observed in this current study.
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Taken together, our study provides evidence supporting the unique inflammatory 

polarization of neutrophils by subclinical low-dose endotoxin, and reveals potential 

molecular mechanisms underlying neutrophil polarization. However, we realize that the 

pathogenesis of multiorgan failure and sepsis triggered by mucosal injuries is a highly 

complex syndrome, which involves temporal and spatial alterations of innate immune 

reprogramming. The effects of neutrophils during early and late stages of mucosal injury as 

well as subsequent multiorgan damage may drastically differ and require further extensive 

studies. Our current study primarily addressed the potential preventative effects of 4-PBA 

programmed neutrophils during the progression of mucosal damage and systemic 

inflammation. At the later stage of disease pathogenesis, neutrophils programmed into an 

immunosuppressive phenotype may in turn compromise host immune defense. Distinct 

neutrophil reprogramming strategies other than the one we described in this report may be 

needed to mitigate immunosuppression and related complications. Future systems studies 

that use single-cell analysis with detailed time courses are warranted to reveal a 

comprehensive profile of neutrophil programming dynamics during early and late phases of 

systemic inflammation collectively leading to multiorgan injuries.
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FIGURE 1. Subclinical endotoxemia exacerbates DSS-induced colitis.
(A) Schematic picture of the mouse acute colitis model, preconditioned with subclinical 

endotoxemia. WT mice (n ≥ 5 each group) were preconditioned with subclinical dose of 

LPS (5 ng/kg body weight) or PBS as control, then subjected to 4% DSS challenge as 

described in the section of Materials and Methods. (B) Weight loss of the DSS-treated mice 

preconditioned with LPS or PBS. **p < 0.001. (C) Analysis of stool clinical stores based on 

daily monitors of stool consistency and rectal bleeding. *p < 0.05. (D) The length of colons 

from the DSS-treated mice preconditioned with LPS or PBS. *p < 0.05. (E) Bacterial counts 

in the blood from the DSS-treated mice preconditioned with LPS or PBS. **p < 0.001. (F) 

The measurements of cardiac troponin-1, LDH, and creatinine in the plasma. *p < 0.05. (G) 

Representative images of TUNEL staining of heart, liver, and kidney sections, and 

quantification of TUNEL-positive (brown color) area (n = 20 random fields). Scale bars, 50 

μm. ***p < 0.0001.
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FIGURE 2. Subclinical endotoxemia increased tissue neutrophil infiltration.
(A) Percentages of neutrophils (Ly6G+CD11b+) in the peripheral blood from the DSS-

treated mice preconditioned with LPS or PBS. (B) Representative images of colon MPO 

staining, and quantification of MPO positive (brown color) area. Scale bars, 50 μm. (C) The 

percentage of neutrophils in liver and spleen from the DSS-treated mice preconditioned with 

LPS or PBS. *p < 0.05, ***p < 0.0001.
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FIGURE 3. Subclinical endotoxemia polarizes inflammatory neutrophils by inducing ICAM-1 
and reducing CD244.
In the DSS-treated mice preconditioned with LPS or PBS, the phenotype of neutrophils in 

the blood were examined by flow cytometry analysis. (A) The percentage of CD29 positive 

cells in neutrophils (Ly6G+CD11b+). (B) ICAM-1 expression on neutrophils. (C) CD244 

expression on neutrophils. *p < 0.05, **p < 0.001.
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FIGURE 4. Subclinical LPS primes neutrophils into a proinflammatory state in vitro.
Bone marrow neutrophils were isolated and treated with super low dose of LPS (100pg/ml), 

then subjected to flow cytometry analysis. (A) Expression of surface marker CD29, 

ICAM-1, and CD244 on the neutrophils. (B) Representative histogram and quantification of 

phosphorylation levels of tyrosine kinase SRC and SYK in the neutrophils as determined by 

flow cytometry. (C) Representative histogram and quantification of phosphorylation levels 

of transcription factor STAT1 and STAT5 in neutrophils as determined by flow cytometry. 

(D) Representative histogram and quantification of phosphorylation levels of AKT and 

AMPK in the neutrophils as determined by flow cytometry. *p < 0.05, **p < 0.001, ***p < 

0.0001.

Zhang et al. Page 15

Immunohorizons. Author manuscript; available in PMC 2020 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 5. 4-PBA can potently reduce SRC kinase and increases CD244 in neutrophils.
Bone marrow neutrophils were treated with 4-PBA (1 mM) or PBS as a control, then 

subjected to flow cytometry analysis. (A) Expression of surface molecule CD244 and CD88 

on the neutrophils. (B) Phosphorylation levels of tyrosine kinase SRC and SYK in the 

neutrophils. (C) Representative histogram and quantification of PPARγ expression in the 

neutrophils. *p < 0.05, ***p < 0.0001.
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FIGURE 6. 4-PBA–primed neutrophils alleviate DSS-induced colitis.
(A) Schematic experimental design for neutrophil adoptive transfer in the DSS-induced 

colitis model. DSS-fed WT mice were transfused with 4-PBA– or PBS-primed neutrophils 

via i.v. injection (n ≥ 5 each group). (B) Body weight loss was monitored daily. (C) The 

measurement of colon length at the end of the experimental regimen. (D) The measurements 

of LDH, cardiac troponin-1, and BUN in the plasma. (E) Percentages of neutrophils (Ly6G
+CD11b+) in peripheral blood, liver, and spleen. (F) Expression of surface molecules (CD29, 

ICAM-1, and CD88) on the neutrophils from peripheral blood. *p < 0.05, **p < 0.001.
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