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Simple Summary: The American mink is a fur animal that has been successfully domesticated by
humans. The fur products made of mink are fine, soft and strong, plush and glossy, which are deeply
loved by people. The original color of farmed mink is dark brown, but people are not satisfied with a
single color of fur products. After more than one hundred years of breeding, a variety of colorful
fur colors have been produced. Because white is easy to dye and black can be paired with anything,
these two mink species are the most widely farmed. However, the molecular mechanisms of the color
formation and fur development of these two minks remain unclear. Through skin transcriptome
analysis of these two minks, we obtained the molecular mechanism of their coat color formation
and fur development. The expression of tyrosinase and tyrosinase-related protein genes is the main
reason for the formation of coat color. The keratin associated protein gene is the main regulatory gene
for fur development. The research in this paper can provide data support for good breeding of mink.

Abstract: American mink fur is an important economic product, but the molecular mechanisms
underlying its color formation and fur development remain unclear. We used RNA-seq to analyze
the skin transcriptomes of young and adult mink with two different hair colors. The mink comprised
black adults (AB), white adults (AW), black juveniles (TB), and white juveniles (TW) (three each).
Through pair comparison and cross-screening among different subgroups, we found that 13 KRTAP
genes and five signaling pathways (the JAK–STAT signaling pathway (cfa04630), signaling pathways
regulating pluripotency of stem cells (cfa04550), ECM–receptor interaction (cfa04512), focal adhesion
(cfa04510), and the Ras signaling pathway (cfa04014)) were related to mink fur development. We
also found that members of a tyrosinase family (TYR, TYRP1, and TYRP2) are involved in mink hair
color formation. The expression levels of TYR were higher in young black mink than in young white
mink, but this phenomenon was not observed in adult mink. Our study found significant differences
in adult and juvenile mink skin transcriptomes, which may shed light on the mechanisms of mink
fur development. At the same time, the skin transcriptomes of black and white mink also showed
differences, with the results varying by age, suggesting that the genes regulating hair color are active
in early development rather than in adulthood. The results of this study provide molecular support
in breeding for mink coat color and improving fur quality.

Keywords: RNA-seq; mink; tyrosinase; fur; coat color

1. Introduction

The American mink (Neovison vison) is one of the major farmed species of Mustelidae
and one of the world’s major suppliers of quality fur [1]. Mink are semi-aquatic, so their
coatis thick and waterproof, which protects them from the cold and allows them to more
easily move in the water [2]. In the early 19th century, wild mink populations declined
rapidly due to the economic value of their pelts; thus, during this time, the first mink farms
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were established by T.D. Phillips and W. Woodcock [3]. Farmed mink was originally the
standard dark brown, but with genetic mutations and advances in farming techniques,
more than 100 color types have become available. Short-haired black mink and red-eyed
white mink are the most common breeds, as black can be worn with almost any color of
clothing, and white can be dyed in any color.

The characteristics displayed by species can be divided into qualitative character-
istics and quantitative characteristics, with coat color as a qualitative characteristic. A
characteristic is considered qualitative when there is a noncontinuous quantitative change
between different phenotypes of the same trait, which is dominated by a few decisive
genes [4]. American mink has a variety of coat colors, which are each regulated by dif-
ferent genes. Thus far, researchers have identified coat color regulatory genes of mink of
seven different coat colors (Aleutian [5], Albino [6], Palomino [7], Silverblue, Hedlund
White [1], Moyle Brown [8], and Himalayan [9]), which are LYST (lysosomal trafficking reg-
ulator), TYR (tyrosinase, in Albino and Himalayan), TYRP1 (tyrosinase-related protein 1),
MLPH (melanophilin), MITF (microphthalmia-associated transcription factor), and RAB38
(Ras-related protein-38). However, these studies have only focused on changes in gene
sequences, and little attention has been paid to changes in gene expression.

In addition, the economic value of mink fur depends not only on the color but also on
the overall quality (length, density) of the fur. These characteristics, associated with hair
follicle development, are quantitative characteristics. The development and growth of mink
hair cannot be studied independently of the hair follicle, which is found in the skin [10].
Hair follicles undergo differentiation, proliferation, and apoptosis periodically and are
regulated by a variety of signaling factors [11]. Most of these key signaling molecules
belong to the Wnt (wingless-related), Shh (sonic hedgehog), BMP (bone morphogenetic
protein), FGF (fibroblast growth factor), TGF (transforming growth factor), and Notch
signaling pathways [12]. By comparing and analyzing the skin transcriptomes of mink
during development and maturity, it is possible to reveal the key genes and pathways
involved in the development of mink skin.

Therefore, in this study, we sought to reveal the mechanisms underlying fur develop-
ment and color determination in two kinds of mink by conducting transcriptome sequencing
of skin tissues from adult and juvenile individuals for short-haired black mink and red-eyed
white mink. In addition, PCA analysis, differential expression analysis, and enrichment
analysis were also conducted. Comparisons were conducted between different groups,
wherein the comparison between the adult and juvenile groups focused on discovering the
genes and pathways linked with the development of mink fur, and the comparison between
the black and white groups explored the mechanisms determining coat color. There are
two main new findings from our study. First, we identified 13 keratin-associated protein
genes and 5 signaling pathways that are important for fur development in American mink.
Second, we found that three members of the TYR gene family (TYR, TYRP1, and TYRP2)
are associated with the formation of different coat colors in mink. Based on the expression
of TYR in the different groups, we hypothesized that the red-eyed white mink hair color
may be caused by the OCA1B type of ocular skin albinism. We also found that short-haired
black mink hair color is associated with higher expression of members of the TYR gene
family. The results of this study provide a more comprehensive overview of the key genes
and pathways influencing characteristics of economic value in mink fur, laying a foundation
for mink breeding, including for the cultivation of new colors.

2. Materials and Methods
2.1. Sample Collection and Preparation

Twelve healthy young (10-day-old) white mink, adult white mink, young (10-day-old)
black mink, and adult black mink (three of each type) were selected as samples from a
mink farm in Shandong province (Figure S1). The white juvenile and adult mink were of
the same breed, and the black juvenile and adult mink were of another breed. Each mink
came from a different family, and all were kept under the same conditions. All sampling
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procedures and experimental methods were approved by the Qufu Normal University
Institutional Animal Care and Use Committee (No. 2022033), Qufu, China. Two pieces of
skin (1.0 cm in diameter) were collected from the back via punch skin biopsy under local
anesthesia and immediately placed in liquid nitrogen. Young white skin samples were
numbered TW1, TW2, and TW3. Adult white skin samples were numbered AW1, AW2,
and AW3. The young black skin samples were numbered TB1, TB2, and TB3. Adult black
skin samples were numbered AB1, AB2, and AB3.

2.2. RNA Quantification and Qualification

Total RNA was extracted from the 12 skin samples using the RNeasy Mini Kit (QI-
AGEN, Hilden, Germany). Total amounts and integrity of RNA were assessed using the
RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, Santa
Clara, CA, USA).

2.3. Library Preparation for Transcriptome Sequencing

Sequencing libraries were generated using the NEBNext Ultra RNA Library Prep Kit
for Illumina (New England Biolabs, Ipswich, MA, USA) following the manufacturer’s
recommendations, and index codes were added to attribute sequences to each sample.
Total RNA was used as input material for mRNA purification using oligo-attached poly-T.
Divalent cations were fractured at elevated temperatures in a first-chain synthetic reaction
buffer (5X). First-strand cDNA was synthesized using random hexamer primers and M-
MuLV reverse transcriptase, and the RNA was degraded using RNaseH. The second strand
of cDNA was then synthesized using DNA polymerase I and dNTP. The resulting overhangs
were converted to blunt ends by exonuclease/polymerase activity. After adenylation of
the 3′ end of the DNA fragment, an adaptor with a hairpin ring structure was attached
in preparation for hybridization. The AMPure XP system (Beckman Coulter, Brea, CA,
USA) from Beckman Coulter, Brea, CA, USA, was used to purify the library fragments with
a selection of 370–420 bp cDNA fragments. PCR amplification was performed, the PCR
product was purified with AMPure XP microbeads, and the library was finally obtained.

The constructed libraries were tested to ensure their quality. Following construction,
the DNA contents of the libraries were quantified using a Qubit2.0 fluorescence analyzer
and then diluted to 1.5 ng/uL, and the quality was assessed using an Agilent 2100 bioan-
alyzer. Following the size selection of inserts, qPCR was used to accurately quantify the
effective concentration of the library (the effective concentration of the library was higher
than 2 nM) to ensure high quality.

2.4. Clustering and Sequencing

Following validation, the different libraries were pooled according to the effective
concentration and the target amount of data of the machine and then sequenced using the
Illumina NovaSeq 6000 for the generation of 150 bp paired-end reads. The basic principle
of sorting is that composition and sorting occur simultaneously (composition sorting).
Each of the four fluorescently labeled dNTPs, DNA polymerase, and splicing primers
were added to the sequenced flow cells for amplification. When the sequence cluster
extends the complementary chain, each fluorescently labeled dNTP releases corresponding
fluorescence, which is captured by the sequencer, and the optical signal is converted into
a sequencing peak through computer software to obtain the sequence information of the
fragment to be measured.

2.5. Quality Control

Image data, measured using a high-throughput sequencer, were converted to sequence
data (read) via CASAVA base recognition. Raw data in FastQ format (raw reads) were first
processed using an internal Perl script. In this step, clean reads were obtained by removing
reads containing adapters, reads containing N bases, and low-quality reads from the raw
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data. The Q20, Q30, and GC contents of clean data were also calculated. All downstream
analyses were based on high-quality clean data.

2.6. Read Mapping to the Reference Genome

The reference genome was accessed from the National Center for Biotechnology Infor-
mation (NCBI; https://www.ncbi.nlm.nih.gov accessed on 6 March 2022, GCF_020171115.1).
The reference genome index was constructed using Hisat2 (V2.0.5), and the paired clean
reads were compared with the reference genome using Hisat2 (V2.0.5) [13]. We chose Hisat2
as the mapping tool because it can generate a splicing connection database from a gene
model annotation file, and its mapping effects are superior to those of other nonsplicing
mapping tools.

2.7. Novel Transcripts Prediction

The mapped reads of each sample were assembled using StringTie [14] (v1.3.3b) in a
reference-based approach. StringTie uses a novel network flow algorithm with optional ab
initio assembly steps to assemble and quantify full-length transcripts representing multiple
spliced variants of each gene loci.

2.8. Quantification of Gene Expression Level

The featureCounts v1.5.0-p3 tool was used to count the read numbers mapped to
each gene [15]. The FPKM value of each gene was then determined based on the length of
the gene and the mapped read count [16]. FPKM, the expected number of fragments per
thousand base pairs of transcriptional sequence, is the parameter most frequently used for
estimating gene expression level, and it takes into consideration the effects of sequencing
depth and gene length corresponding to the read count.

2.9. Differential Expression Analysis

Differential expression analysis of two groups was performed using the DESeq2 R
package (1.20.0) [17]. DESeq2 provides arithmetical procedures for determining differential
expression in digital gene expression data using a model based on the negative binomial
distribution. To control the error detection rate, we used Benjamini and Hochberg’s method
for the adjustment of the obtained p-values. Padj ≤ 0.05 and |log2(foldchange)| ≥ 1 were
set as the thresholds for significantly differential expression.

2.10. GO and KEGG Enrichment Analysis of Differentially Expressed Genes

The gene ontology (GO) enrichment analysis of differentially expressed genes was
performed using the clustering map R package (3.8.1), which corrects for gene length bias.
We considered a p-value less than 0.05 to indicate significant enrichment in a particular
GO category for the differentially expressed genes. KEGG is a database resource for under-
standing the advanced functions and uses of biological systems, such as cells, organisms,
and ecosystems, from large-scale molecular datasets generated from molecular-level in-
formation, particularly information from genome sequencing and other high-throughput
experimental techniques (available online: http://www.genome.jp/kegg/ accessed on 20
March 2022) [18]. We used the Cluster Profile R Package (3.8.1) [19] to detect the statisti-
cally significant enrichment of differentially expressed genes in the KEGG pathways. The
reference species selected for GO and KEGG bioinformation analysis were domestic dogs
(Canis lupus familiaris).

2.11. Verification of Differentially Expressed Genes by qPCR

To verify the accuracy of the transcriptomic data, we used the same RNA samples as
the transcriptome analysis; in total, 12 genes (TYR, TYRP1, TYRP2, KRTAP1-3, KRTAP2-3,
KRTAP3-3, KRTAP4-2, KRTAP4-12, KRTAP9-2, KRTAP10-7, KRTAP12-1, and KRTAP29-1)
identified via the above methods were characterized by qPCR analysis. We used Primer
Express3.0 to design primers for qPCR that spanned an exon–exon boundary, and the
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β-actin gene was selected for use as an internal control. The ABI7500 Real-time system
(Applied Biosystems, Waltham, MA, USA) and the SYBR select Master Mix Kit (ABI Life,
Waltham, MA, USA) were used for qPCR with first-strand cDNA as a template. The PCR
amplification procedure consisted of incubation at 95 ◦C for 10 s, followed by 40 cycles
of 95 ◦C for 15 s and 34 ◦C for 62 s. The product fluorescence was detected after each
cycle. The qPCR analysis of each gene included three biological replicates, and primer
information is shown in Table S1. Relative mRNA expression was analyzed using the
2−∆∆CT method [20].

3. Results
3.1. Data Quality Control and Novel Gene Prediction

After filtering out low-quality reads and removing the adaptor sequences, we finally
obtained 80.71 Gb of clean data (Table 1). The effective average GC ratio was 51.9%. The
proportion of bases with quality scores above Q30, which corresponds to a base recognition
accuracy rate of 99.9%, was above 93.57%, and the ratio of each sample that aligned to
the reference genome ranged from 94.69 to 96.58% (Table S2). Additionally, most reads
were mapped to the exon regions (Table S3), which overall indicates the good quality of the
sequencing data and its potentially high utilization. We predicted and assembled 1943 new
genes using the software and functionally annotated them using Pfam (Table S4). These
data were used for the analysis of gene expression.

Table 1. Sequencing data statistics.

Sample Raw-Reads Clean-Reads Clean-Bases Q20 Q30 GC-pct

AB1 45,947,094 45,190,978 6.78 G 97.7 93.57 52.55
AB2 43,685,582 42,895,824 6.43 G 97.83 93.81 52.43
AB3 46,277,030 45,357,284 6.8 G 97.82 93.83 52.28
AW1 44,938,430 44,155,634 6.62 G 97.73 93.69 52.94
AW2 48,298,078 47,408,254 7.11 G 97.88 93.94 51.17
AW3 46,758,560 46,088,186 6.91 G 97.84 93.87 51.52
TB1 43,634,474 42,882,980 6.43 G 97.76 93.71 52.22
TB2 47,393,846 46,084,054 6.91 G 98.24 94.89 51.14
TB3 46,278,052 44,685,668 6.7 G 98.18 94.64 49.18
TW1 44,342,806 43,591,538 6.54 G 97.68 93.56 52.31
TW2 44,828,808 43,975,908 6.6 G 97.71 93.62 52.77
TW3 46,740,826 45,858,686 6.88 G 97.75 93.72 52.91

Q20, Q30: Represent base recognition error rates of 1% and 0.1% in the sequencing process, respectively.

3.2. Quantitative Analysis of Gene Expression

The gene expression levels in each sample were quantitatively analyzed and then com-
bined to obtain an expression matrix of all samples (Table S5). After the expression values
of all genes in each sample (FPKM) were calculated, the distribution of gene expression
levels in different samples was displayed in a box graph (Figure 1). The correlation of gene
expression levels between samples is an important index to test whether the experiment is
reliable and the sample selection is reasonable. The heat map of the correlation between
samples shows that they can be divided into two groups according to age factors, and the
Pearson correlation coefficient R2 within the groups is greater than 0.8 (Figure 2). PCA
analysis of gene expression values (FPKM) in all samples was conducted. The results show
that the samples were divided into adult and juvenile groups at the PC1 level and further
grouped according to coat color at the PC2 level (Figure 3). This shows the high reliability
of our sample collection and grouping.
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3.3. Differentially Expressed Genes (DEGs) in American Mink Skin

To reveal the genes of American mink differentially expressed in the fur develop-
ment group (AB vs. TB, AW vs. TW) and coat color group (AB vs. AW, TB vs. TW),
four combinations were compared and analyzed (Figures 4, S2, S3 and S4). In terms
of fur development, there were 6453 and 5689 differentially expressed genes found in
the white and black groups, respectively. In the coat color difference combination, there
were 116 differentially expressed genes in the adult group, and 257 differentially expressed
genes in the juvenile group. The differentially expressed genes in all comparison groups
were combined as differential gene sets, on which cluster analysis was carried out, and
genes with similar expression patterns were clustered together (Figure 5). In addition, we
plotted differential gene Venn plots from pairwise combinations of the coat color group
and the fur development group (Figure 6). This Venn diagram A implies that differentially
expressed genes in minks of the same age and different coat colors may be related to coat
color. We took the intersection of differentially expressed genes between the young group
and the adult group to further pinpoint the candidate genes for coat color. Similarly, the
intersection derived from the Venn diagram B is the fur development gene of the mink.
There were only four differentially expressed genes common to adults and juveniles of
different coat colors. Unfortunately, this included two noncoding RNAs for SCD5 (stearoyl-
CoA desaturase 5) and RSPH4A (radial spoke head component 4A), which would not be
associated with the coat color difference. There were 4172 differentially expressed genes
common to both the white and black groups of different ages. These differentially expressed
genes may be related to fur development in mink.
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3.4. Analysis of GO and KEGG Pathways

To further investigate the biological relevance of all DEGs, we performed GO analysis
of the DEGs. To ensure the enrichment results were more likely to reflect real phenomena,
we examined significantly altered genes within the intersection of the fur development
group in the two comparisons (AW vs. TW and AB vs. TB) and obtained 73 terms that were
significantly enriched, including 18 biological process (BP) categories, 17 cellular component
(CC) categories, and 38 molecular function (MF) categories (Table S6). Interestingly, the
terms of keratin filaments (GO:0045095) related to fur development were also included.
A total of 13 genes, including KRTAP1-3, KRTAP2-3, KRTAP3-3, KRTAP4-2, KRTAP4-5,
KRTAP4-11, KRTAP4-12, KRTAP9-2, KRTAP10-7, KRTAP10-8, KRTAP10-12, KRTAP12-1,
and KRTAP29-1, were finally identified, all of which were downregulated. Similarly, the
enrichment results corresponding to the intersection in the comparison of coat color groups
(AW vs. AB and TW vs. TB) were considered, for which there were only three GO terms:
structural molecule activity (GO:0005198), sulfotransferase activity (GO:0008146), and
transferase activity (GO:0016782).

The results of the KEGG annotation analysis of the differentially expressed genes
between groups are shown in Figures 7, S5, S6 and S7. Similar to the above analysis, we
obtained results related to the metabolic pathways for both fur development and coat
color differences. There were 35 cross-enriched related metabolic pathways in different
age combinations of the same coat color, among which the JAK–STAT signaling pathway
(cfa04630), signaling pathways regulating pluripotency of stem cells (cfa04550), ECM–
receptor interaction (cfa04512), focal adhesion (cfa04510), and Ras signaling pathway
(cfa04014) were related to fur development (Table S7). Interestingly, only one metabolic
pathway was identified via the intersection of enrichment results of different coat colors at
the same age: tyrosine metabolism (cfa00350). This pathway comprises five differentially
expressed genes, namely DCT, TYR, AOX4, GSTZ1, and ADH5.
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3.5. qPCR Validation of Differential Gene Expression among Groups of American Mink

The differential expression of genes, as identified from the transcriptome data, was
validated by qPCR analysis. There were two groups of genes that needed to be verified
by qPCR experiment: nine keratin-associated protein genes in the fur development group
and three genes in the hair-color-related TYR gene family (TYR, TYRP1, and TYRP2). The
RNA-seq results indicated that the gene expression level of KRTAP was higher in young
mink than in adult mink. At the same time, the TYR gene was highly expressed in young
black mink, and TYRP1 and TYRP2 were highly expressed in young white mink. Key gene
expression verification results (Figure S8) showed that they were consistent with RNA-seq
expression patterns, which implies that the transcriptome results are reliable.

4. Discussion

Mink is one of the most important fur animals in the world. Previous studies have
focused only on the diversity of fur color and its mechanisms of formation; however, in this
study, we not only explored the mechanisms of fur color formation but also focused on key
genes and pathways in the process of fur development. Three juveniles and three adults of
the short-haired black mink breed and three juveniles and three adults of the red-eyed white
mink were selected as our experimental samples. A comparison of skin transcriptomes
between different groups was performed to achieve our research objectives. Animal
coat color is a qualitative characteristic that is determined by the content of eumelanin
and pheomelanin in the hair [21]. According to the International Federation of Pigment
Cell Societies (IFPCS), 661 genes related to coat color have been reported to date [22].
Current research on fur development mainly focuses on the molecular mechanisms of
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hair follicle development, including keratin [23,24], keratin-associated proteins [25], signal
pathways [26], gene families [27], and growth factors [28,29].

Transcriptome sequencing of 12 mink skin samples yielded a total of 538 million clean
reads. Correlation analysis between the samples showed that the samples could be divided
into two components by age, indicating that the differences in gene expression related to
different coat colors are very small. Further principal component analysis (PCA) on the
expression levels found differences in samples from mink of different colors. This shows
that our experimental design is reasonable with respect to the aims. Differential gene
expression analysis showed that the differentially expressed genes shared by adult black
and white mink (AB vs. AW) and juvenile black and white mink (TB vs. TW) were not
related to coat color formation. At the same time, adult black and juvenile black mink (AB
vs. TB) shared too many differentially expressed genes (4172) with adult white and juvenile
white mink (AW vs. TW) for the genes related to fur development to be identified.

Therefore, we searched for genes related to hair color formation and fur development
through GO enrichment and KEGG enrichment analysis. The analysis showed that dif-
ferentially expressed genes were enriched in 73 GO terms, and the most significant term
we identified as being related to fur development was keratin filaments (GO:0045095).
Keratin filaments are intervening filaments made of keratin that are found in various
epithelial cells [30]. This GO term is associated with 13 keratin-associated protein genes
(KRTAP), all of which were downregulated in adult mink. The product of KRT is the main
protein that makes up the outer layers of hair and skin [31,32]. It has been found that
mutations in the KRT gene can lead to changes in hair shape in dogs [33], cats [34], and
mice [35], resulting in curly hair. Mutations in the KRT gene could also cause hereditary
skin diseases in humans, such as ichthyosis, congenital tachycardia, and palmoplantar
epidermolytic keratosis [36,37]. KRTAP can be divided according to the composition of
amino acids in the encoded protein as homocysteine (HS-KAPS) and high glycine tyrosine
(HGT-KAPS) [38,39]. The 13 KRTAP genes we identified encoded HS-KAPS. It has been
reported that the KRTAP gene is linked with wool weight, strength, diameter, elongation,
and other traits [40–43]. In addition, different numbers of cysteine-containing repeats en-
coded by human KRTAP1 and KRTAP2 genes lead to length polymorphism, which changes
the interaction between KRT and KRTAP and results in differences in hair traits among
individuals [44]. From these, we can infer that these 13 KRTAP genes are likely to play an
important role in the development of mink fur.

KEGG enrichment analysis also led to the identification of five development-related
signaling pathways. In mammals, the JAK–STAT pathway is the main signal transduc-
tion mechanism for a variety of cytokines and growth factors [45]. Pluripotent stem cells
(PSCs) are basic cells with an indefinite self-renewal capacity, which are associated with the
TGF [46] and BMP [47] signaling pathways. The extracellular matrix (ECM) is a mixture of
macromolecules with complex structures and functions, which plays an important role in
the morphogenesis of tissues and organs and the maintenance of cell and tissue structure
and function [48]. Adhesion molecules, while catalytically inactive, can participate in this
process by binding to growth factor receptors, which can initiate, integrate, or feedback
adhesion-based signals [49]. Ras proteins are GTPases, which act as molecular switches
in signaling pathways that regulate cell proliferation, survival, growth, migration, differ-
entiation, and cytoskeletal activity [50]. In conclusion, we speculate that these signaling
pathways may be related to mink fur development.

In addition, the tyrosine metabolism pathway in KEGG enrichment was identified
as being related to hair color. Two genes in this pathway (TYR and DCT) are associated
with melanogenesis. The tyrosinase gene family that regulates melanin production mainly
consists of TYR (tyrosinase), TYRP1 (tyrosinase-related protein 1), and TYRP2 (dopachrome
tautomerase, DCT) [51]. Tyrosinase is a rate-limiting enzyme in the process of melanin
synthesis. The expression level and activity of TYR directly affect the expression of eume-
lanin and melanin and thus affect animal hair color [52]. TYRP1 and TYRP2 play a catalytic
role in the ultimate steps controlling the type of melanin melanocytes produce [53]. In our
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results, the expression level of TYR was higher in young black mink than in young white
mink, but this phenomenon was not observed in adult mink. Interestingly, TYRP1 and
TYRP2 were more highly expressed in young white mink than in black mink. In adult mink,
only TYRP2 was highly expressed in black mink, while there was no significant difference
in the expression of TYR and TYRP1. Therefore, it can be inferred that the regulatory genes
of mink hair color play a role in early development, but there is no significant difference in
gene expression levels in adults.

To further explore the influence of the tyrosinase gene family on mink hair color, we
consider the formation of black and white mink hair color on a deeper level by referring
to previous studies. Oculocutaneous albinism (OCA) is a disorder of melanin synthesis
or transport caused by homozygous mutations in an autosomal recessive gene that is
characterized by reduced pigmentation of the skin, hair, and retina [54]. There are many
types of OCA, among which the TYR gene is the pathogenic cause of OCA1 [55]. According
to our results, the TYR gene was underexpressed in young white mink. In most mammals,
such as rabbits [56], cattle [57], rats [58], cats [59], and ferrets [60], albino phenotypes
are caused by mutations in the TYR gene. By observing the appearance characteristics
of the red-eyed white mink and the low expression of the TYR gene, we speculate that
the defining characteristics of red-eyed white mink are linked with OCA1. Meanwhile,
different mutations of the TYR gene lead to different degrees of abnormality in the function
of the enzymatic protein expressed by the TYR gene. OCA1 can be divided into OCA1A
and OCA1B subtypes depending on whether tyrosinase activity is completely lost [61]. We
observed that although the expression level of the TYR gene was higher in young black
mink than in white mink, there was still some expression in white mink. Therefore, the
red-eye white phenotype in this study was due to OCA1B caused by a defect in TYR.

We observed that TYR was highly expressed in young black mink, which resulted
in increased production of eumelanin and darker hair color. The gene α-MSH (alpha-
melanocyte-stimulating hormone) can activate MITF (melanocyte-inducing transcription
factor) and cause MITF to act on the TYR gene promoter to catalyze TYR metabolism, thus
promoting the synthesis of eumelanin [62]. The ASIP (agouti signaling protein) can inhibit
the expression of MITF and reduce the binding between the promoter region of the TYR
gene and MITF. In this way, the activity of TYR will decrease, and pheomelanin will be
produced [63]. Moreover, α-MSH can bind to MC1R (melanocortin 1 receptor) to activate the
cAMP enzyme system and enhance the activity of TYR to produce eumelanin [64]. When
α-MSH and ASIP competitively bind to MC1R, the combination of ASIP and MC1R cannot
activate the whole system of the cAMP enzyme, so cAMP cannot be produced, which leads
to low TYR activity and the production of pheomelanin [65]. We examined ASIP, MC1R,
MITF, and α-MSH genes and found no significant differences in gene expression between
the juvenile and adult groups with different hair colors. As a member of the TYR family,
TYRP2 has DOPA pigment isomerase (DT) activity and can catalyze the transformation of
DOPA pigment into a 5,6-dihydroxyindole carboxylic acid (DCH-CA), thus accelerating
the formation of melanin [66]. We observed that TYR and TYRP2 were highly expressed in
young black mink and may be responsible for the formation of black mink coat color.

5. Conclusions

In summary, we identified differences in skin transcriptomes between juvenile and
adult mink and between black and white mink. In this study, skin transcriptomes of four
groups of mink (AB, AW, TB, TW) were sequenced, and we found 13 KRTAP genes and
five signaling pathways that are potentially involved in the fur development of mink.
Meanwhile, TYR and TYRP2 are closely linked to the formation of mink fur color. The
results of this study can provide a reference for studying the molecular mechanisms of
mink fur development and color formation.
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