12338 - The Journal of Neuroscience, December 7, 2016 - 36(49):12338 —12350

Systems/Circuits

Predictive Ensemble Decoding of Acoustical Features
Explains Context-Dependent Receptive Fields
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A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding
models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical
arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used
a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We
compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory
neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than
alinear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in
neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are funda-
mentally shaped by “explaining away,” a divisive competition between alternative interpretations of the auditory scene.
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Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been
used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is
strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively
decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by
another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical
neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can account for
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the strong nonlinearities observed in neural data.
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Introduction

The response properties of cortical neurons are typically char-
acterized by their receptive fields (RFs) (Hubel and Wiesel,
1968; Theunissen et al., 2000). The underlying assumption is
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that each neuron acts as a feedforward filter of its stimulus,
somewhat independently from other neurons. However, in
addition to thalamic inputs, cortical neurons receive both ex-
citatory and inhibitory intracortical inputs, strongly shaping
their spontaneous and sensory-evoked activities (Lamme et
al., 1998; Braitenberg and Schiiz, 1998; Lee and Winer, 2008).

Several studies have shown that auditory spectrotemporal
RFs (STRFs) can dynamically change depending on the stim-
ulus characteristics (Theunissen et al., 2000; Valentine and
Eggermont, 2004; Rabinowitz et al., 2011; Schneider and
Woolley, 2011). This has led to more complex encoding mod-
els that incorporates contextual effects and nonlinearities into
the RF analysis (Ahrens et al., 2008; Rabinowitz et al., 2012;
David and Shamma, 2013; Willmore et al., 2016). Here, we
hypothesize that the nonlinearities and context-dependency
of neuronal responses can be described by a Bayesian network
model with static decoding filters where neurons collectively
and interactively aim to reconstruct their stimulus. Interac-
tions between neurons allow for the recognition of sensory
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features that represents the input. Central to this inference
mechanism is a basic reasoning argument (Wellman and Hen-
rion, 1993) stating that a highly probable justification can
“explain away” the stimulus, suppressing other possible inter-
pretations. In particular, a sensory feature that is decoded (or
explained away) by one neuron is not explained by another.
Explaining away implies that selectivity of one neuron cannot
be understood in isolation, outside of the context of other
neurons representing overlapping stimuli. If one naively looks
at the linear relation between the stimulus and the neural
response (i.e., RF), this representation systematically changes
and dynamically reshaped by surround stimuli. Instead, re-
covering the underlying fixed decoding filters can give a more
stable description for the selectivity of each neuron. It can also
provide conceptual motivation for why context-dependent,
adaptive, gain-control models, such as (Ahrens et al., 2008;
Rabinowitz et al., 2011, 2012), improve prediction perfor-
mance over linear encoding models.

The main goal of this work is to introduce new methods to
investigate the characteristics of this stable selectivity in audi-
tory neuronal data. We start with a simple normative ap-
proach to model the structure and dynamics of the auditory
system. In this architecture, auditory neurons are considered
as predictors rather than filters of their input, as they collec-
tively aim at inferring the underlying causes of the sensory
stimuli (Smith and Lewicki, 2006; Lochmann et al., 2012). We
approximate the decoding filters of auditory neurons from the
primary auditory cortex of ferrets and use these filters in our
Bayesian model to explain and predict the dynamics of neural
responses better than an equivalent encoding model. The
stimulus can be reconstructed from model responses as accu-
rately as it can be reconstructed from the neural responses,
and much more accurately than it can be reconstructed from
the responses of the encoding model. This suggests that audi-
tory neurons collectively represent the auditory scene (thus
optimizing the capacity of subsequent layers to linearly recon-
struct the stimulus from the neural responses), rather than
responding to the auditory signal with fixed, independent RFs
(which would require highly nonlinear decoding). Finally, we
show that the predictive fields (PFs) learned from the statistics
of speech are highly similar to neurons’ actual decoding filters
and that explaining away plays a crucial role in recovering a
diverse set of features that fully represent the sensory
environment.

Materials and Methods

A generative model of sounds

To be able to perceive a complex sensory scene, we need a schema that
explains the observed stimulus by describing its underlying causes (Fris-
ton, 2005); for instance, hearing a knock on the door indicates a visitor
hitting the surface of the door with the knuckles of his fist, which is not
directly observed. This schema, so-called generative model, is a crucial
ingredient for inference as it describes the internal hypothesis about the
origin of the stimulus (Dayan et al., 1995; Friston, 2010). The presumed
goal of the sensory system is to optimize this internal generative model
until it can accurately explain the sensory data.

The generative model we consider (Deneve, 2008) (see Fig. 1, bottom)
assumes that auditory events correspond to the coactivation of particular
patterns of frequency. These events start and stop randomly, and com-
bine linearly to generate the mean auditory signal. This auditory signal is
corrupted by signal-dependent noise, as commonly observed in sensory
neurons.

In more technical terms, elementary features correspond to varia-
bles X = {x} that randomly switch on (x;(r — 1) = 0, x,(1) = 1) or off
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(xj(t —-1)=1, xj(t) = 0) at each time step t, with constant probabilities
7" and r°%, Each feature contributes to the resulting stimulus S by acti-
vating the sensory receptor responses s;. More precisely, the base firing
rate q;, of a receptor s; increases by q;; = 0 as a result of the presence of
feature x;. We call the effect of a feature x; to the set of all receptors the PF
of that feature, that is, q; = 0, i = 1... M where M is the number of
receptors. Sensory receptors produce noisy (Poisson) spike trains form-
ing the likelihood as follows:

P(si(t) | X(1)) = 7\?0) exp(—A;)/s;(t)! where Ai(t) = g

N
+ > g, i=1...M
=

Without loss of generality, we remove the “baseline” firing rates g;,
from the equations below since it is equivalent to having an additional
hidden feature that is always “on”; that is, let:

A(t) = i qixi(t), i=1... M (1)

where x,(t) = 1.

This likelihood together with the prior probabilities " and r°/ forms
the generative model. Throughout the manuscript, the stimulus will be in
the form of frequency-time representation of sounds (spectrogram)
where each frequency channel covers a small portion of the whole range
from ~100 Hz to ~8 kHz. s5,(t) represents a sensory receptor receiving
input from the i-th frequency channel.

Bayesian inference and neural implementation of explaining away
The inference model computes the posterior probability of hidden fea-
tures, P(x | s), by using the Bayes rule: P(x | s) = P(s | x) P(x)/P(s). For
conceptualizing the inference model, we introduce the “feature detector
units,” which keep track of the probability of x; being present at time ¢
denoted by p;(t) = P(x;(t) = 1|s(0 — 1)), where s(0 — f) represents
the input received from all receptors from time 0 up to t. Feature detec-
tors can be thought as the auditory cortical neurons, and sensory inputs
are either the stimulus (in its spectrographic form) or neural responses
from a lower-level computational step.
We focus on the log-odds ratio of the hidden features as follows:

P(x() =1 | s(0 — 1)
) B 1°g<P<xj(t) —0[s0— t>)> @)

pi(t)

1 —pi(®)

Lit) = log<

Using the Bayes rule, the inference can be performed in an iterative
process as follows:

Lt+1)= log< e+l )

1—pt+1)

B P(x(t+1) = 1|s(0 = 1), s(t + 1))
- Og(P(xj(t +1)=0[s(0—>0),s(t + 1)))

a P(s(t+ 1) | x(t + 1) = 1,500 > 1))
- °g<13(s(t + 1) [x( + 1) = 0,50 — 1)

7

A7
P(x(t+1)=1 | s(0 —>1)
Plx(t+ 1) =0]s(0— t))j
f

The terms in A; represent the ratio of the likelihood of observations, and
the terms in B; represent the ratio of priors. Because of the Markov
property, the state of the objectjat t + 1 depends only on its current state.
The probability of x;being in an on-state at time ¢ + 1 is possible either by
being on at time t and staying on or switching from off to on (similarly for
the probability of being off at time ¢ + 1). Therefore, we can write the
following:

=log A; + log B;

(=0 + 10 = pi(e)
T pe) F 0

(3)
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Since each receptor unit, s,(t), is assumed to be independent from other
receptors and its own history, the ratio of likelihoods can be written as
follows:

n ()\ siexp(— )/si
H()\ij )s‘eXP(*)\ij )s; '
(4)

[[PGse+ 1) | x5t + 1) =1)
4= [TPGsi(e + 1) [ %t + 1) = 0)

where A; = Zk ot Jik x(t + 1) + gy, thatis, itis the A; given in Equation
lwiththecondltlonthatx t+1)=1landA; = >Y ok ik x(t + 1), that
is, it is the A; with x;(t + 1) =
The exact inference would require the computation of 2™ feature config-
urations, and it is computationally expensive even for small models. There-
fore, during the computation of likelihood ofx]-(t + 1), we use a mean-field
approximation and replace all other hidden features with their expected
values pi(2) from the previous time step: A;; =, xsi @ik P+ g; and
= 2V oxs; @i pi(0). Taking the logarlthm of Equation 4 and simplifying,
we obtaln the following:

+

M )\1.. .
log A; = 25,- log[ 2| — 4
=1 Ajj

> qupid

k=0,k=*j

ji=1..N (5

Es log| 1+ —F—| — g

N
This can be further approximated by | > [ 1 (t)( P Pk(t)> qij] using

log(x + 1) = x for small x. Combining Equations 3 and 5, we conclude the

iterative inference scheme for L(t + 1). Once L(t + 1) is known, we can use
(t+1)

T g

We assume that the detector neuron’s activity is proportional to the
rectified log likelihood (log Aj) rather than the posterior probability Lj(t).
The rationale behind this hypothesis is that sensory processing is inher-
ently hierarchical. Thus, the output of the feature detector units will in
turn be used as “sensory inputs” by similar units in later sensory stages.
These higher-order detectors will themselves be integrators cumulating
evidence for more complex (or more stable) features. To ensure self-
consistency, sensory neurons should thus transmit new sensory evidence
in favor of their preferred features A;, rather than sensory evidence cu-
mulated over time L;. Therefore, we take (using log(x + 1) =~ x for
simplicity) the following:

Equation 2 to compute pi(t + 1) =

4
firing Rate; = [log A;]" = [Es (1) (2 wp (t)) q,-j] where
k+jYik Pk
x, x=0
[X+={ 0x<o0 > (6

Each detector unit can thus be interpreted as performing a weighted sum
of sensory detector responses (see Fig. 1, black plain connections). How-
ever, the strength of connection from a sensory receptor to a feature
detector is not fixed but divided by a prediction of this input by other
detector units, that is, $ ,(t) ks o T G pr(t) (see Fig. 1, magenta
lateral connections). We can also interpret the feature detector as imple-
menting divisive predictive coding as follows:

M s +
firing Rate; = [E qif(? - 1)]
= i

where (s;/$/(t) — 1) is the prediction error from the i-th sensory recep-
tor. In particular, when other detectors perfectly predict the receptor
response, that is, s,(f) = $/(#), the contribution of this synapse is com-
pletely cancelled. Explaining away in a neural layer thus takes the form of
a divisive inhibition targeting the neuron’s inputs.
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Model with no inhibition

Throughout the manuscript, we compare the responses of the intact
model with the responses of the model without inhibition. In this ver-
sion, feature detectors do not inhibit each other and the stimulus is
processed in a feedforward fashion. The likelihood portion of the infer-

ence (Eq. 5) takes the formlog A; = >, s,»(t)log(l + %) — g;and

the rest of the inference remains the same.

Learning the PFs

Thanks to the normative approach, the PFs (i.e., the elementary, positive,
and independent features composing the auditory scene) can be learned
from the statistics of natural sounds (Lewicki, 2002; Smith and Lewicki,
2006). Once the online estimate of the pj(t),j = 1 ... Nhasbeen inferred
on a temporal window t € [0,T] (Expectation step), the PFs g;; can be
learned by maximizing the log likelihoods of observations given the ex-
pected values of the features as follows:

= log(P(s,(1) [ x(r)) = 22(9 log A(t) — Ai(t)

T

E s() log(E g pJ(t)) — :EO g pt), i=1.M

t=0

The derivative at the maximum of the log likelihoods is zero as follows:

I. s; (t)
a% Zs E " -1|=o0.
qik Pk

We solve this equation using stochastic gradient ascent in the simula-
tions. We take T = 1 for online learning (at the same time-scale as
inference). Since we defined g;; to be positive, if q;; becomes negative at a
gradient ascent step, it is assigned to zero.

Neuronal recordings and stimulus

A detailed explanation of the experimental procedures was given by Mes-
garani et al. (2009). Four adult, female, awake, and head-restrained fer-
rets were used in the neurophysiological recordings. The protocol for all
surgical and experimental procedures was approved by the Institutional
Animal Care and Use Committee at the University of Maryland and was
consistent with National Institutes of Health Guidelines. Speech stimuli
were taken from the Texas Instruments/Massachusetts Institute of Tech-
nology (TIMIT) database (Garofolo et al., 1993). Thirty different sen-
tences (3 s, 16 kHz sampling) spoken by different speakers (15 men and
15 women) were used to sample a variety of speakers and contexts. Each
sentence was presented five times during recordings. Speech spectro-
grams were binned at 10 ms in time and in 30 logarithmically spaced
spectral bins between 125 and 8000 Hz. The total dataset consisted of 128
single-neuron recordings. We used N = 60 neurons throughout the
paper satisfying a certain reconstruction accuracy threshold as described
in more detail below.

Encoding and decoding filters
Encoding. Encoding is the mapping from stimulus (spectrogram) to neu-
ronal responses. We compute the encoding filters (STRFs; see Fig. 3A
left) using normalized reverse correlation (Theunissen et al., 2001). Let
#(t,n) = >, > hi(r, n)s(t — 7) where #(t, n) is the estimated response
of neuron n, h;(, 1) is the i-th frequency channel of its RF, 7is the delay,
and s,(1) is the i-th frequency channel of the stimulus. h(T, 1) is approx-
imated by minimizing e, = >,(r(t,n) — #(t, n))* where r(t, n) is the
average firing rate of neuron n over trials. It can be shown (Theunissen et
al., 2001) that h(t,n) = Cg'Cs,, where Cgg is autocorrelation of the
stimulus and Cg,, is the cross-correlation between stimulus and neuronal
response (for more explicit definitions, see Mesgarani et al., 2009). In
practice, some form of regularization is required to prevent overfitting to
noise. We used ridge regression where the regularization parameters are
optimized using fivefold cross-validation in each training set.

Spectral RF (SRF) filters. SRF (see Fig. 3A, right) is a reduced form of
the full encoding filters (no time dimension). To compute the SRF for
each neuron, we computed the normalized reverse correlation while we



Yildiz et al. ® Explaining Away Shapes Auditory Cortical Responses

fix the delay. We used fivefold cross-validation in each training set to
optimize the regularization parameters. To find the right delay between
recordings and SRF predictions (see Fig. 4A4), we shifted the recordings by
10 ms from 0 to 200 ms and reported the maximum correlation coeffi-
cient. This is done for all competing models.

Decoding. Decoding is the mapping from neuronal responses to stim-
ulus (spectrogram) (Bialek et al., 1991; Stanley et al., 1999; Mesgarani et
al., 2009). These filters (see Fig. 3B, left) can be computed in a similar
manner: Let §;(t) = >, >, gi(r, )r(t — 7, n) where g(7, n) is the con-
tribution of neuron n with delay 7 to the reconstruction of the i-th fre-
quency channel of the stimulus, §,(¢). For each i, gi(t, 1) is approximated
by minimizinge; = >,(s,(tf) — $(#))*. Then g7, 1) can be collected into
a single structure g(7, n) that forms the decoding filter for neuron n. It
can be shown that g;(7, 1) = CgpCgs, Where Cpy is the autocorrelation of
neuronal responses and Cgg s the cross-correlation between responses
and the stimulus (Mesgarani et al., 2009). Similarly, we used ridge regres-
sion where the regularization parameters are optimized using fivefold
cross-validation in each training set.

Extracted PFs from decoding filters. Similar to the procedure with en-
coding filters, we can also extract simplified decoding filters that resem-
ble the theoretically defined PFs. For each neuron n, we restricted the
above analysis to a single time delay to recover frequency-only decoding
filters. We used fivefold cross-validation in each training set to optimize
the regularization parameters. To find the right delay between real stim-
ulus and its model reconstruction (see Fig. 54), we shifted the stimulus
by 10 ms from 0 to 200 ms and reported the maximum correlation
coefficient. This is done for all competing models.

Selection of neurons for analysis. The dataset consists of 128 individual
recordings from four animals. We combined the data from all animals into a
single model assuming that similar stimulus selectivities would exist across
animals. We were interested in a subset of neurons that carry relevant infor-
mation about the stimulus. For this, we reconstructed the stimulus using
each neuron’s firing rates individually. If the reconstruction and actual stim-
ulus had cross-correlation >0.2, the neuron was included for further analy-
sis. This resulted in 62 neurons. We excluded two more neurons since they
had completely negative decoding filters, which resulted in flat PFs.

Predicting neural activity

To use the model to get predictions for the neural activity (see Fig. 4), we
obtained frequency-only decoding filters from the neural data as de-
scribed in the previous section. We used these decoding filters as the PFs
in the model. There were three free parameters that were adjusted
globally to optimize the fit to neural data (" = 1and "/ = 20 for each
neuron and a global gain parameter for the output of the spectrogram).
In all models (i.e., intact model) without inhibition and SRF, we found an
optimum delay for each model prediction that maximizes the correlation
coefficient to the neural responses on the training set. These delays were
not changed during predictions over the test set. The dataset was divided
into 10 equal portions over time, and all model prediction accuracies
were averaged over 10-fold cross-validation process.

Transient and sustained responses

To identify responses after a sudden change of input to a neuron (see Fig.
6), we first identified the best frequency of each neuron from the maxi-
mum of its one-dimensional, frequency-only encoding filter. Then for
each neuron, we searched for sudden increases in the spectrogram of the
stimulus restricted to =10 frequency bands around the best frequency
and found the timings of the largest 150 local maxima in the derivative of
the stimulus averaged over frequencies. For local maxima, we used find-
peaks.m function in MATLAB (The MathWorks) with the condition that
two consecutive local maxima are at least 200 ms apart. This gave us 150
events for each neuron. Transient responses are defined as the first 100
ms after such an event. Sustained responses are the following 100 ms after
a transient response.

Results

In the next few sections, we underline the main features of our nor-
mative model and provide evidence that auditory cortical neurons
carry similar computations. We start with a simulation which shows
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Figure 1. Inference model and its response properties. A schematic for the generative and

inference models. Time-dependent features x;in the environment are encoded in the activity of
feature detector neurons p; through sensory receptors, s;. Feature detectors receive input
through feedforward (black solid) connections g;; (PF), which are also used to recurrently predict
the stimulus (magenta connections). Feedforward and recurrent activity form the RF of neu-
rons, which is different from the underlying selectivity (PF).

that the RF (encoding filter) of a specific neuron can drastically
change depending on the number of neurons in a network as a result
of explaining away. Therefore, we expect that it would be challenging
to predict the activity of a neuron without knowing the activity of
other neurons in the network. Despite this difficulty, we wanted to
test whether decoding filters could give a more reliable representa-
tion of neural activity. We approximated the decoding filters of sev-
eral neurons in the primary auditory cortex of ferrets using linear
regression and plugged these filters into our model as PFs. This al-
lowed us to simulate neural activity that can accurately replicate the
dynamics of actual neurons. We found that this simulated activity
can reconstruct the stimulus much better than actual neural activity
and the activity obtained from an encoding model. Finally, we show
that PFs can be directly learned from the statistics of stimulus and
that explaining away is crucial in obtaining variety of filters.

Network effect on a single neuron

Despite the simplicity of the generative model (Fig. 1), the pre-
dicted unit responses (i.e., firing rates as given in Eq. 6) are highly
nontrivial, and, in particular, cannot be understood in isolation,
independently of other units. If, for example, we remove some of
the PFs from the pool of available detectors (analogous to inacti-
vating the corresponding sensory neurons), we find that the
STRFs change (Fig. 2). This predicts that identifying the relevant
features represented by sensory neurons and predicting their re-
sponses will be extremely challenging. In general, reaching per-
fect accuracy would require the simultaneous recordings of all
neurons involved. Only a small subsets of all auditory neurons are
recorded and included in this study, and they were not recorded
simultaneously. Our primary goal in the next sections will thus be
to clarify the functional and mechanistic implications of explain-
ing away and accounting for particular aspects of the responses
rather than focusing on precisely reproducing spike trains (as,
e.g., in a GLM approach) (Paninski, 2004).

This normative approach illustrates three important predic-
tions for auditory responses. First, if neurons are indeed involved
in the optimal detection of overlapping auditory sounds, their
responses will most likely be very poorly predicted by a linear
encoding model. This is because the predicted responses are ren-
dered highly interdependent by explaining away. Second, despite
their apparent variability and absence of a fixed encoding model,
the sound stimulus should be well reconstructed by a linear de-
coder applied to auditory responses. This linear decoder would
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5-neuron case
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36-neuron case
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Figure2. Changes in the RF of a neuron as neurons are removed from the network. The RF of a feature detector neuron (red) is computed from its responses in a small network of 5 neurons (left)
and a larger network of 36 neurons (right). The stimuli for both cases were the same speech sentences from the TIMIT database. The responses of this neuron are shaped by the activity of all other

neurons in the network that resulted in significant changes in its RF.
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Figure 3.  Encoding and decoding filters for real and model neurons. A, Encoding filters of three auditory neurons (left) and their one-dimensional, frequency-only and normalized
approximations: the SRFs (right). B, Decoding filters of the same three auditory neurons (left) and their one-dimensional, frequency-only, and normalized approximations (right). They
are much wider than the corresponding encoding filters in A. C, Inference model neurons, whose selectivities are given by the PFs in B, have narrow encoding filters (similar to real
encoding filters). D, Decoding filters of the same model neurons are wider than the encoding filters in Cand resemble the decoding filters of real neurons in B.

indeed provide a better picture of neural selectivity than a linear
encoding model. And third, even with the “right” decoding
model, the normative model is unlikely to predict the neural
responses with very high accuracy. This is because only a small
subset of neurons are recorded and the rest are acting as “hidden
variables” that affect the recorded neurons in unpredictable ways.

Encoding versus Bayesian decoding models applied to

neural data

In the auditory system, the response properties of neurons are
usually characterized by STRF, which is the linear time-frequency
filter best fitting the neuronal response when applied to stim-
ulus (Aertsen and Johannesma, 1981). STRF describes how
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Figure 4.

Prediction of neuronal activity by different models. A, Comparison of average correlation coefficients (10-fold cross-validated) between the activity of 60 auditory neurons

and their predicted responses by the intact Bayesian decoding model, SRF model, and Bayesian model without inhibition. Bayesian decoding model and SRF predictions are comparable
(left; cc = 0.31 for both) and provide a better fit to real responses compared with the model without inhibition (cc = 0.26, p << 10 ~'°, paired t test). For comparison, full STRFs reach
a performance of cc = 0.38, significantly higher than the simplified encoding and decoding models. However, the first and second derivatives of the intact Bayesian decoding model
responses (middle and right panels) fit the neural responses’ first and second derivatives significantly better than the SRF predictions (p << 0.05 and p << 10 ~°, respectively). The
Bayesian model better captures the detailed dynamics of the responses. Error bars indicate SEM. B, Comparison of measured neural responses for two example neurons (gray in both
panels) with their inference model predictions with or without inhibition (blue and red, respectively), SRF model prediction (green), and STRF prediction (yellow). €, Cross-covariance
between inference model versus real responses and between SRF versus real responses shows that model responses are temporally more precise than SRF responses. Shaded areas

represent the 95% confidence intervals. *p << 0.05; ****p < 10 ~*.

stimulus is encoded in the neuronal activity; therefore, it is
also called the encoding filter (for examples, see Fig. 3A, left).
Another way to look at the relationship between neuronal data
and stimulus is to ask how stimulus can be decoded from the
neuronal activity (Bialek et al., 1991). This method finds the
linear mapping from the response of a population of neurons
to the stimulus (see Materials and Methods), and the resulting
frequency-time filter for each neuron is called the decoding
filter (Fig. 3B, left).

Our Bayesian normative model suggests that context-dep-
endent encoding filters could be replaced by the static decod-
ing filters approximated from neuronal data, and then be used
to predict the neuronal responses. To test this idea, we com-
bined neuronal recordings from the primary auditory cortices
of 4 ferrets listening to a 90 s speech stimulus from the TIMIT

database (Garofolo et al., 1993) (see Materials and Methods).
For each neuron, we computed a one-dimensional (frequency-
only) approximation of the decoding filter that summarizes
the full decoding filter (Fig. 3B, right). We call this filter the PF
of the corresponding auditory neuron as it represents the con-
tribution of the neuron in predicting the stimulus. Then, we
plugged these PFs into the model as g;s (no learning is in-
volved). r*" and r/ rates were assumed equal among the neu-
rons and chosen to optimize the fit between model and real
neural responses. We interpreted the firing rate of each model
neuron (Eq. 6) as a prediction for the firing rate of the corre-
sponding real auditory neuron. As a baseline model, we also
generated predictions from a model where inhibitory connec-
tions (i.e., explaining away) are removed and call it the model
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without inhibition. This altered model simulates a feedforward-only
version of the intact model.

For comparison, we also computed a simplified encoding
model for the neural data with the same basic structure. We re-
duced the full encoding filter of each neuron to one-dimensional
(frequency-only) filter (Fig. 3A, right), which we call the SRF,
convolved it with the stimulus, and rectified it to predict the
neuronal activity.

Performances of the encoding and Bayesian decoding models

The average cross-validated performances of the encoding and
Bayesian decoding models in accounting for the neural firing
rates are shown in Figure 4A. The model predictions and SRF
predictions are comparable and better than the predictions of
model without inhibition (Fig. 44, left; p < 107", paired ¢
test, N = 60 neurons). However, the ability of the Bayesian
decoding model to capture the details of dynamic responses
becomes more obvious when higher derivatives (first and sec-
ond) of the neural responses and their predictions are com-
pared (Fig. 4A, middle and right). The dynamics of the
Bayesian model fits significantly better to the first (p < 0.05)
and second (p < 10 ~°) derivatives of the responses compared
with the encoding (SRF) model. This is the case even though
the Bayesian decoding model is indirect, as it optimizes the
reconstruction of the stimulus, not the neural responses as the
encoding model does. For comparison, the full STRFs that
take the temporal dimension into account (and have 750 free
parameters each, even though these parameters are effectively
decreased to ~155 using ridge regression and only counting
the parameters whose magnitude are >1 SD of the mean in
each STRF) reach a performance of correlation coefficient =
0.38, significantly higher than the simplified encoding and
decoding models with 31 (frequency channels and optimum
delay parameters) and 34 (additional 7", ¥/ and a global gain
parameter for the PFs) parameters, respectively. In Figure 4B,
we show the fits of the model (blue), model without inhibition
(red), SRF (green), and STRF (yellow) predictions for the ac-
tivity of two auditory neurons (gray). The model predictions
are better at capturing the transient dynamics of neuronal
responses than SRF and model without inhibition. Temporal
precision of the model is higher in the entire dataset, as illus-
trated by the mean cross-covariance of the model versus real
responses (Fig. 4C, blue) and SRF versus real responses (Fig.
4C, red).

We also compared how well the stimulus can be recon-
structed from the model neural responses using the full decod-
ing filters (as in Fig. 3B, left) obtained from the real neural
data. We took the responses of the Bayesian decoding model,
SRF model, and model without inhibition and convolved
them with the full decoding filters of the real neurons to re-
construct the stimulus. As summarized in Figure 5, we can
observe that the Bayesian decoding model massively outper-
forms the encoding model. The stimulus can be reconstructed
very accurately from the responses predicted by the Bayesian
model (cc = 0.81). It is as good as the stimulus reconstructed
directly from the neural data (cc = 0.79) or from the STRF
predictions (cc = 0.80). If, on the other hand, we predict
neural responses from their SRFs, and then try to reconstruct
the stimulus, the performance is poorer (cc = 0.61) and clearly
inferior to a reconstruction directly based on the neural data
(p < 107'° paired ¢ test, N = 30 frequency channels).

In summary, the Bayesian decoding model outperforms the
encoding model in how accurately it can represent the stimu-
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lus. Moreover, it is as good, if not better, than an encoding
model of similar complexity when it comes to predicting neu-
ral responses, even when it is not directly fitted to those
responses.

Response dynamics are captured by explaining away

We also observed other signatures of online inference, both in
the neural data and in the Bayesian decoding model. We com-
pared the transient and sustained responses of each neuron
after the occurrence of a sudden transient in the stimulus (a
sharp increase in the mean power averaged over frequency),
such as the beginning of a new word or sentence (see Materials
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Figure6. Transientand sustained encodingfilters for real and model neurons (N = 60). We define an event as a sharp increase

in the derivative of the stimulus around the best frequency of a neuron. Transient responses are defined as the responses 100 ms
right after an event, and the sustained responses are the next 100 ms after transient responses. 4, The encoding filters of real
neurons measured during transient (left) and sustained (middle) responses centered at their best frequencies and averaged overall
neurons. Their one-dimensional (frequency-only) approximations (averaged over the first 30 ms of the full filters) are shown on the
right. Encoding filters are much wider during transient responses. B, The encoding filters of inference model neurons during
transient (left), sustained (middle) periods, and their one-dimensional (frequency-only) approximations (right) show that the
model neurons are able to capture the dynamic narrowing in the frequency selectivity of real neurons. ¢, Mean response of real
(black), inference model (blue), and SRF (red) responses after a sudden increase around the best frequency of each neuron. The
response of each neuron is time-aligned according to the start of the event and the average 200 ms of activity for 60 neurons is
plotted. Shaded regions represent the 95% confidence intervals.

and Methods). Transient response is defined as the initial 100
ms after such an event, and sustained response is the next 100
ms after a transient response (for the average time course of
responses after events, see Fig. 6C). Such dynamics are also
consistent with the full STRF model. Immediately following
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these events, we observe a gradual sharpen-
ing of the RFs. Comparison of average RFs
during transient and sustained responses for
real neurons (Fig. 6A) shows the increased
frequency selectivity as time progresses. A
similar phenomenon is also replicated by
the Bayesian model (Fig. 6B) due to the di-
visive competition between feature detec-
tors. Following the occurrence of an event,
many neurons are activated as they pool in-
puts from highly overlapping PFs. Transient
response is strong but weakly selective.
However, as more information is accumu-
lated about the sound, some neurons be-
come more confident than others about the
presence of their preferred sound. This rise
in divisive inhibition leads to decay in firing
rates after transient response and sharpens
the selectivity.

PFs, not RFs, reflect neural selectivity
Bayesian model neurons receive feedfor-
ward inputs pooled from their PFs (corre-
sponding to the real decoding filters, Fig.
3B, right). However, their encoding filters
(Fig. 3C) are reshaped by the competing
activity of other model neurons. They are
therefore narrower than the original PFs,
with negative parts that are inexistent in
the purely positive PFs (Fig. 3B, right vs
Fig. 3C). The decoding filters of model
neurons are wider and smoother than
their encoding filters (Fig. 3C vs Fig. 3D).
This phenomenon is also observed in the
actual neural data. In particular, the mea-
sured encoding filters are markedly nar-
rower than the corresponding decoding
filters (Fig. 3A vs Fig. 3B), with additional
negative subfields. To quantify this obser-
vation and present population trends, we
plotted (Fig. 7A) the average encoding
and decoding filters centered around the
best frequency of each neuron (as long as
the best frequencies of encoding and de-
coding filters are within =3 frequency
channels of each other, which was the case
for 41 of 60 neurons). Model neurons re-
produce this qualitative difference on av-
erage (Fig. 7C), that is, wide, positive
decoding filters and narrow, positive/neg-
ative encoding filters.

If inhibitory effects between neurons are
removed (model without inhibition), the
encoding filters became wider (Fig. 7B, mid-
dle) and resembled the underlying feedfor-
ward connections (Fig. 7A, middle).
Therefore, these effects are entirely due to
explaining away. Observed differences be-

tween encoding and decoding filters of auditory neurons support the
hypothesis of broad feedforward tuning (through PFs) that is nar-
rowed by lateral inhibition (Wu et al., 2008; Isaacson and Scanziani,
2011; Moore and Wehr, 2013).
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Auditory neurons detect statistically
independent auditory features

Next, we asked the question whether the
shape of the real PFs (Fig. 3B, right) would
naturally emerge from the model’s learn-
ing algorithm and statistics of the stimu-
lus. Because the generative model was
based on independent Markovian statis-
tics for different features, this is equivalent
to asking whether neurons represent sta-
tistically independent features in their
signal.

We used the same 90 s stimulus pre-
sented in the animal recordings to train
the PFs of the model neurons. For each
auditory neuron, we had a paired model
neuron (N = 60). " and ¥ rates were
optimized globally to increase the recon-
struction accuracy of the stimulus. As ini-
tial conditions, we used random PF
connections for each model neuron with a
small bump at the peak of its paired audi-
tory neuron’s PF (Fig. 8A, light blue
curves). We then allowed the model to
learn the PFs from the statistics of the
speech stimulus using an Expectation-
Maximization algorithm (see Learning
the predictive fields). In Figure 8A, we
show the PFs of 9 model neurons after
learning (red curves) and the PFs of their
paired real auditory neurons (for all 60
pairs, see Fig. 9, black curves). The struc-
ture of these PF pairs is highly similar
(mean cc =~ 0.68) and shows that the
model can replicate the dynamics and se-
lectivity of several auditory neurons only
using the stimulus and rather flexible ini-
tial conditions. We compared this perfor-
mance to two baseline conditions: (1) The
cc between initial PFs (Fig. 84, light blue)
and real PFs (mean ~ 0.43; Fig. 8B, inset:
initial); and (2) the cc between two arbi-
trarily chosen real PFs (60 pairs com-
pared, mean ~ 0; Fig. 8B, inset: random),
which were both significantly lower than
the model performance.

To verify that a key ingredient of the
model, explaining away, is necessary to re-
cover the structure of PFs accurately, we
used a secondary model with no inhibi-
tion between different feature detectors
during inference. After learning, this
model produced mostly repetitive set of
PFs, and they were not as good as the in-
tact model at replicating the real PFs (Fig.
8B; mean model cc = 0.68 vs mean model
[no inh] cc = 0.17). If this comparison is
limited to cc values that are positive for
both model and model (no inh) (N = 40
neurons), the difference is still significant
(mean model cc = 0.49 vs mean model
[no inh] cc = 0.33, p < 0.001, paired
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t test). These results show that the competition between feature
detectors is crucial for shaping their frequency selectivity and
efficiently representing natural stimuli.

Discussion

We presented a normative model where neurons interactively
and collectively predict their input to optimally represent the
underlying causes of their observations. A signature of this effi-
cient representation is the competition between neurons repre-
senting similar stimulus features. The model predicts that
feedforward inputs to a neuron (through PFs) are partially ex-
plained away by competing neurons which results in more nar-
row encoding filters (STRFs) compared with decoding filters. We
also observed this signature in the analyzed auditory neurons
(Figs. 3, 7). The dynamics of model responses are similar to neu-
ral data (Fig. 6) and can capture the activity better than a compa-
rable feedforward model (Figs. 4, 5). In addition, we show that
the underlying selectivity of some auditory neurons (PFs) can be
accurately captured from the statistics of natural stimuli using the
model’s inference and learning algorithms (Figs. 8, 9). Despite
originating from a functional hypothesis, the model is able to
shed light on some fundamental mechanisms of sensory
processing.

Biological plausibility of the model

Identifying specific neural mechanism for inference and learning
is not the main focus of this article. The model is normative,
constrained only by optimality principles, and thus largely inde-
pendent of its specific neural implementation. As an example, the
algorithm presented here could be implemented in the auditory
cortex by “projection” neurons (excitatory) representing the
fractional prediction errors (s;/$/ — 1) and inhibitory interneu-
rons pooling the activity of projection neurons and inhibiting
them divisively. In turn, our model neuron responses (the feature
detector) could be obtained by summing the responses of these
“projection” neurons. In any case, we note that the prediction

errors (s;/$/ — 1) used to update the activity of model units is
zero on average, and is automatically kept as close to zero as
possible by the inference algorithm. Thus, the experimentally
observed balance between excitatory and inhibitory currents into
cortical neurons (Wehr and Zador, 2003; Zhang et al., 2003;
Okun and Lampl, 2008) could be interpreted as an imprint of an
efficient network representing its input (Bourdoukan et al., 2012;
Boerlin et al., 2013).

Moreover, explaining away provides a functional rationale for
divisive normalization in which a neuron’s response to a stimulus
is given by its driving input divided by the summed activity of a
pool of nearby neurons (Heeger, 1992; Heeger et al., 1996; Rabi-
nowitz et al., 2011). This nonlinear phenomenon was proposed
as a canonical computation for the brain because of the role it
plays in the retina, visual cortex, olfaction, auditory system, and
multisensory integration (Carandini and Heeger, 2011). Here, we
argued that divisive normalization can naturally emerge in a neu-
ronal system as a result of internal predictions through input-
targeted inhibition. Normalization occurs between neurons that
share similar feature selectivity, and it acts as a mechanism to
reduce redundancy (Schwartz and Simoncelli, 2001; Lyu and
Simoncelli, 2009).

In the present model, the PF of feature detectors can be
learned by maximizing the log-likelihood, which requires only
the input from presynaptic receptor cells and postsynaptic activ-
ity of feature detectors. Furthermore, these PFs can be learned in
an online fashion. Learning could be implemented locally by
Hebbian-like plasticity (Caporale and Dan, 2008) of the inter-
connection between projection neurons and inhibitory interneu-
rons as well as the feedforward connections from projection
neurons to feature detector neurons. With such algorithm, fea-
ture detectors can quickly adapt their selectivity to represent the
recent statistics of stimulus, similar to the real sensory neurons in
different modalities (Sharpee et al., 2006; Pérez-Gonzalez and
Malmierca, 2014).
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Encoding, decoding, and correlations

What accounts for the experimentally observed differences be-
tween encoding and decoding filters? As detailed in Materials and
Methods, both encoding and decoding filters are based on the
cross-correlation between the stimulus and neuronal activity. For
encoding filters, this cross-correlation is normalized by the auto-
correlation of stimulus, whereas for decoding filters it is normal-
ized by the autocorrelation of neuronal responses (Mesgarani et
al., 2009). Therefore, narrow encoding filters can be explained by
the high autocorrelation of the natural stimuli (specifically
speech) compared with the relatively low autocorrelation of neu-
ronal responses. This relatively low autocorrelation cannot be
explained entirely by neural noise because we used the average
firing rate over five trials. We proposed explaining away as a
possible reason for decorrelated neuronal responses. We showed
that, if this inhibitory effect is removed from model neurons,
their encoding filters become wider and resemble their decoding

filters more closely (Fig. 7). Such extension of frequency tuning
has been shown previously by blocking cortical inhibition phar-
macologically (Chen and Jen, 2000; Wang et al., 2002) and sup-
ports the mechanism proposed in the model. This prediction
could be further tested using existing optogenetic techniques: We
would expect that silencing the inhibitory interneurons (such
as parvalbumin-positive neurons) (Moore and Wehr, 2013) in
the auditory cortex would result in broadening of the fre-
quency tuning of the remaining excitatory pyramidal neurons.
We would further predict that encoding and decoding filters
of these excitatory cells would become more similar and their
spike trains would get more correlated after suppression of
inhibitory neurons.

Relation to previous models
Predictive coding in the framework of Bayesian inference has
been used successfully to explain classical and nonclassical RF
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properties in the visual domain such as end-stopping behavior
(Rao and Ballard, 1999), dynamic adaptation to image statistics
(Hosoya et al., 2005), and basic tuning properties and contextual
effects (Spratling, 2010; Lochmann et al., 2012). However, it has
been rarely used to explain neuronal phenomena in the auditory
domain (Turner and Sahani, 2007; Ramirez et al., 2011; Yildiz
and Kiebel, 2011; Wacongne et al., 2012; Yildiz et al., 2013) and,
as far as we know, has never been used for predicting activity at a
single-neuron level as achieved here.

Our functional approach assumes that single neurons repre-
sent specific events in the external world, and we deduce the
neuronal mechanism from basic probabilistic principles. In con-
trast to previous functional approaches, such as efficient coding
hypothesis (Olshausen and Field, 1996; Smith and Lewicki,
2006), we can learn and recognize stimuli in an online fashion,
mimicking the biological auditory processing more closely, and
we propose a plausible neural architecture with local, online
learning rules for the parameters.

Our model is limited by its simple Markovian generative
model. Markovian dynamics were chosen to introduce basic in-
tegrative properties in the model neurons while keeping the
number of free parameters at a minimum. These dynamics could
be improved with a more detailed generative model specific to the
auditory system (Yildiz et al., 2013) and with inclusion of hierar-
chies representing different time scales and more complex fea-
tures (Kiebel et al., 2008; Yildiz and Kiebel, 2011).

Top-down, normative modeling approach followed here is
complementary to bottom-up, descriptive approaches, such as
Linear-Nonlinear cascade (Chichilnisky, 2001), GLMs (Paninski,
2004), contextual RFs (Ahrens et al., 2008), gain control and
adaptation (Rabinowitz et al., 2011; Rabinowitz et al., 2012; Da-
vid and Shamma, 2013; Willmore et al., 2016), stimulus surprise
(Gill et al., 2008), and maximally informative dimensions
(Sharpee et al., 2004; Atencio et al., 2012). In particular, once
these models are tuned for a specific type of stimulus, such as
artificial or noise stimuli, they usually have to be retuned to ex-
plain neural responses with other types of stimuli. Instead, our
model aims to identify the fixed selectivity of each neuron, inde-
pendently of stimulus context and therefore presumably gener-
alizable to different types of stimuli. Using protocols specifically
designed to estimate these PFs rather than the stimulus-specific
RFs of sensory neurons could unmask the underlying richness of
these representations.
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