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Abstract

Two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC–TOFMS) provides a large amount of molecular
information from biological samples. However, the lack of a comprehensive compound library or customizable bioinformatics tool is
currently a challenge in GC × GC–TOFMS data analysis. We present an open-source deep learning (DL) software called contour regions
of interest (ROI) identification, simulation and untargeted metabolomics profiler (CRISP). CRISP integrates multiple customizable deep
neural network architectures for assisting the semi-automated identification of ROIs, contour synthesis, resolution enhancement
and classification of GC × GC–TOFMS-based contour images. The approach includes the novel aggregate feature representative
contour (AFRC) construction and stacked ROIs. This generates an unbiased contour image dataset that enhances the contrasting
characteristics between different test groups and can be suitable for small sample sizes. The utility of the generative models and
the accuracy and efficacy of the platform were demonstrated using a dataset of GC × GC–TOFMS contour images from patients with
late-stage diabetic nephropathy and healthy control groups. CRISP successfully constructed AFRC images and identified over five
ROIs to create a deepstacked dataset. The high fidelity, 512 × 512-pixels generative model was trained as a generator with a Fréchet
inception distance of <47.00. The trained classifier achieved an AUROC of >0.96 and a classification accuracy of >95.00% for datasets
with and without column bleed. Overall, CRISP demonstrates good potential as a DL-based approach for the rapid analysis of 4-D
GC × GC–TOFMS untargeted metabolite profiles by directly implementing contour images. CRISP is available at https://github.com/
vivekmathema/GCxGC-CRISP.
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Graphical Abstract

The CRISP software, which combines multiple deep learning models for the interpretation of two-dimensional gas chromatography–
time-of-flight mass spectrometry (GC × GC–TOFMS) by directly processing contour images and assisting with the biological interpre-
tation of results.
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Introduction
Gas chromatography–mass spectrometry (GC–MS) is
one of the most widely used techniques for metabolic
profiling of body fluids because of its high sensitivity,
excellent separation performance and availability of
databases. It serves as a molecular imaging apparatus
and has been used for various medical applications
such as metabolic disorder profiling and biomarker
discovery for type 2 diabetes mellitus, end-stage renal
disease (ESRD) and chronic kidney disease (CKD) [1–4].
Comprehensive two-dimensional gas chromatography–
time-of-flight mass spectrometry (GC × GC–TOFMS)
is a significant advancement over traditional GC–MS,
improving the separation power and identification of
molecule constituents in the spatial dimensions while
adding a second retention time dimension [5]. GC × GC–
TOFMS, when coupled with a high-resolution mass
spectrometer, enables detailed analysis of biological
fluids with better peak separation and segregation of
molecular intensities [6, 7]. The technique has proved to
be extremely effective in evaluating trace components
in complex mixtures such as human plasma [4, 8]. In
particular, a contour image obtained from GC × GC–
TOFMS defines the ionized molecular features of high-
dimensional chromatogram data as a multichannel two-
dimensional image that can be used for rapid analysis

of the aggregate sample characteristics [9]. However,
limited bioinformatic tools, a lack of standardized
protocols for data analysis, and inadequate mass spectral
libraries are currently the major challenges faced in
GC × GC–TOFMS data analysis. The complex nature of
GC × GC–TOFMS and relatively expensive running costs
make repeated sample runs difficult for large database
generation and analysis. The conventional methods of
metabolomics data analysis are also time-consuming
and require multiple manual data preprocessing and
analysis steps [10]. Furthermore, slight unpredictable
shifting in the two-dimensional retention times of each
metabolite during chromatographic separation makes
it difficult to precisely identify peaks or screen samples
using conventional analysis [3]. Given these challenges,
advanced computational approaches are necessary for
GC × GC–TOFMS data analysis.

Our recent review explored possible applications of
deep learning (DL), a branch of artificial intelligence, in
metabolomics research [11–13]. DL, particularly in the
field of medical technology, has revolutionized the diag-
nostic aspect of several diseases [11, 14]. DL techniques
are now used to predict early stages of cancer as well as
to simulate and de novo synthesize various types of omics
data [15, 16]. Generative adversarial networks (GANs) and
convolutional neural networks (CNNs) have been applied
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in several areas of omics data analysis, including high
fidelity sparse sample data simulation [17], gene expres-
sion simulation [18], single nucleotide polymorphism-
based classification [19, 20], genome-wide association
studies [21, 22] and alphafold protein folding prediction
[23]. Typically, a GAN is a DL model that can learn and
generate entirely new data with the same statistical dis-
tribution as its corresponding training dataset. [24, 25] A
CNN is the class of deep neural network most commonly
used to analyze image features [26]. A region of interest
(ROI) refers to any region within the GC × GC–TOFMS con-
tour image with contrasting features that could be used
to classify the corresponding sample. Previously, non-
negative matrix factorization was used for unsupervised
direct GC × GC–TOFMS contour classification [27], but
the method was unable to identify multiple ROIs within
contour data and its classifier could not be customized.
Furthermore, DL has not yet been used for automated
multi-ROI identification, simulation, and untargeted pro-
filing of GC × GC–TOFMS contour data.

Here, we present the open-source cross-platform soft-
ware contour ROI identification, simulation and untar-
geted metabolomics profiler (CRISP). We demonstrate
the potential utility of this integrated DL approach for
classifying GC × GC–TOFMS contour images of late-stage
diabetic nephropathy and healthy control samples. The
CRISP software can also be used to assist in the rapid
screening of GC × GC–TOFMS contour image data.

Material and methods
Participants and plasma samples
Participants were enrolled by nephrologists at Ramath-
ibodi Hospital, Mahidol University, Thailand. Written
informed consent was obtained from the participants
before the start of the study. The study was approved
by the Ethical Clearance Committee on Human Rights
Related to Research Involving Human Subjects, Faculty
of Medicine, Ramathibodi Hospital, Mahidol University
(COA. MURA2014/369), and all methods were carried out
in accordance with the Declaration of Helsinki.

The samples were categorized into a healthy con-
trol group (CON; N = 20) or a group consisting of ESRD
patients on hemodialysis or continuous ambulatory peri-
toneal dialysis for more than three months with diabetes
mellitus (ESRD/DM, N = 20). The control group consisted
of both male and female subjects with normal renal
function, normal urinalysis, and no history of diabetes.
Subjects with co-morbidities such as hypertension and
those on medication for cardiovascular disease or cancer
were excluded from the study.

Chemical standards and reagents
Hexane, methanol (MeOH), methoxyamine hydrochlo-
ride (MeOX), N-methyl-N-(trimethylsilyl)-trifluoroace-
tamide (MSTFA) + 1% chlorotrimethylsilane (TMCS) and
N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide

(MTBSTFA) were purchased from Sigma-Aldrich (St.
Louis, MO, USA). The stable isotope-labeled internal
standards (IS) DL-alanine-3,3,3-d3 and L-phenylalanine-
1-C13 were purchased from Sigma-Aldrich (St. Louis, MO,
USA) and Cambridge Isotope Laboratories, Inc. (Frontage
Rd, MA, USA), respectively. Pyridine was purchased from
Tokyo Chemical Industry, Inc. (Tokyo, Japan). MeOX
solution (15 μg/μL in pyridine) was freshly prepared
before analysis.

Sample preparation and GC × GC–TOFMS
analysis
The sample preparation for GC × GC–TOFMS analysis
was adapted from a previous protocol [28] with minor
modifications. In brief, 100 μL of plasma sample was
precipitated in 900 μL of pre-cooled 90% aqueous
MeOH containing ISs of DL-alanine-3,3,3-d3 and L-
phenylalanine-1-C13 at 20 ng/μL. The mixed solution was
left at −20 ◦C for 1 h and centrifuged at 19 600 g (4 ◦C) for
10 min. After centrifugation, 200 μL of the supernatant
was transferred to a new Eppendorf tube (1.5 mL)
and then completely dried in a Centrivap concentrator
(Labconco) at 65 ◦C (∼2 h). The sample was kept at
−20 ◦C until analysis. The dried sample was derivatized
by methoximation followed by trimethylsilylation (TMS).
Briefly, 30 μL of (15 μg/μL) MeOX in pyridine was added
to the dried sample, sonicated at 25 ◦C for 3 min, and
incubated at room temperature for 16 h. Subsequently,
the mixture was mixed with 30 μL of MSTFA with 1%
TMCS and sonicated for 3 min at room temperature. The
mixture was incubated at 70 ◦C for 1 h and transferred
into a GC vial for GC × GC–TOFMS analysis. The pooled
sample was used as the quality control [29] and was
prepared by combining 200 μL of supernatant from each
sample and performing the same protocol for sample
derivatization described above. The pooled samples were
distributed along the run order (every 15 samples).

The derivatized samples were analyzed by GC × GC–
TOFMS (Pegasus 4D HRT, Leco Corp. Inc.). The first GC
column was a non-polar Rxi-5sil MS column (30 m length,
0.25 mm ID, and 0.25 μM film thickness, Restek, Belle-
fonte, PA, USA). The second column was a Rxi-17sil MS
column (1 m length, 0.25 mm ID, and 0.25 μM film
thickness, Restek, Bellefonte, PA, USA). One microliter of
the derivatized sample was injected into the GC × GC–
TOFMS using a split ratio of 1:20 and an inlet temperature
of 250 ◦C. The GC × GC–TOFMS oven temperature was
initially set at 50 ◦C (5 min hold), and ramped to 180 ◦C
at 25 ◦C/min (1 min hold), to 220 ◦C at 10 ◦C/min (1 min
hold), to 260 ◦C at 15 ◦C/min, and to 300 ◦C at 15 ◦C/min
(4 min hold). The modulator period was set to 4 s, with hot
and cold pulse durations of 0.8 and 1.20 s, respectively.
Helium was used as a carrier gas with a flow rate of
1 mL/min. The GC × GC–TOFMS contour images were
acquired using ChromaTOF (Version: 5.50, Leco Corp. for
Windows) and then processed by the CRISP software.
All samples were run at least twice to obtain contour
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image data with both low and high column bleeding
to evaluate the ability of CRISP to handle dataset vari-
ation. The GC × GC–TOFMS contour images generated
from the ChromaTOF were used as source images for
the development and validation of the CRISP software
(Supplementary Figure S1). Two sets of contour images
with high and low column bleed were created by running
the same samples 10 months later to evaluate the ana-
lytical performance potential of CRISP in the presence of
experimental instrumental variation. Validation datasets
were created by randomly selecting approximately 15%
of the original GC × GC–TOFMS contour images from
each group.

Software architecture
CRISP consists of four major modules (Figure 1A–D): con-
trasting feature identification (Figure 1A), contour simu-
lation (Figure 1B), resolution enhancement (Figure 1C)
and transfer learning-based GC × GC–TOFMS contour
image classification (Figure 1D). CRISP takes GC × GC–
TOFMS contour images generated from the ChromaTOF
as input data for training or classification and produces
report files and watermarked contour images indicating
the inference results for unknown samples. The first
module of CRISP identifies and enhances the contrasting
features between different groups (Figure 1A). It is
followed by the second module that simulates contour
images (Figure 1B) and the third module that improves
the contour image resolution (Figure 1C) to train a clas-
sifier for the inference of unknown samples (Figure 1D)
and maximize classification efficacy. Although the data
generated from GC × GC–TOFMS are multidimensional,
the contour images provide a direct glance into the
overall feature space of the sample content. Thus, we
explored the possibility of profiling all the contour plots
with respect to their holistic features, which forms the
basis of CRISP’s untargeted metabolite profiling. For
contour feature-based untargeted metabolite profiling
while avoiding spatial-dimension complexity, CRISP
processes the GC × GC–TOFMS contour images in the
four modules, described in detail below.

Module I: Aggregate feature representative
contour and ROI stacking
CRISP introduces the concept of aggregate feature
representative contours (AFRCs) for creating a single
representative GC × GC–TOFMS contour image for each
study group, regardless of differences in sample size
among the study groups. The first module directly uses
GC × GC–TOFMS contour images from the ChromaTOF
(Leco, MI, USA) as input. The software provides an option
to manually select a single ROI (Figure 2A) or construct
an AFRC image (Figure 2B) for stacking multiple ROIs
algorithmically to construct a contour image dataset
(Figure 2C). In addition, a single ROI can be selected
from the whole contour image for the inclusion of all
features. In most cases, the discriminating features are
relatively small and dispersed across the entire contour

plot. To amplify these sparse contrasting features and
minimize manual selection bias, the module uses a
novel extraction procedure to construct a single AFRC
image for each group. The AFRC image construction
approach provides an algorithmic means of representing
generalized GC × GC–TOFMS contour feature of a study
group. The process is unsupervised and does not
discriminate between noise and signal content, resulting
in an unbiased representative contour image for each
group in the dataset. The AFRC is based on the accu-
mulation of features from the cyclic-ordered rotation
of high-resolution contour image content captured at
a fixed viewpoint for further foreground–background
segmentation. The sequence of image data at a fixed
frames per second (FPS) rate is generated by running the
source contour images in an iterative manner. Thus, a
video is temporarily created using the contour images
as frames, and a single aggregate feature of the video
content is extracted as an AFRC image. The feature
extraction process includes a weight accumulation factor
α that specifies the amount of information that an AFRC
image retains of its previous input image during a cyclic
run at a constant FPS. Because the function in OpenCV
(https://opencv.org/) by default supports multi-channel
image data, each channel is processed independently,
preserving the color intensity information in the contour
image data. The function is expressed as follows:

afrc
(
x, y

) ← (1 − α) × afrc
(
x, y

)

+ α · sources
(
x, y

)
if content

(
x, y

) �= 0 (1)

(1)Here, sources denotes the set of multichannel input
image frames in a cyclic order at a given fixed frame rate,
afrc denotes the destination accumulator AFRC image,
which has the same number of channels as the input
image, and parameter α is as described above. The con-
tent condition requires the input contour image data to
exist.

This process creates a single AFRC that captures the
general features of the entire contour content belonging
to the group (Figure 2B). The AFRC content is proportion-
ally influenced by the frequency of the contour feature
content and automatically suppresses any outlier fea-
tures during construction. These AFRCs are subsequently
processed using a novel stacking approach to create the
feature-enhanced GC × GC–TOFMS contour dataset. The
CRISP, for the first time in metabolomics, introduces
the concept of feature-enriched GC × GC–TOFMS contour
image dataset by stacking regions with major differences
between the study classes. The CNN-based model is
utilized to compute similarity between two AFRCs due
to their ability to recognize complex patterns in images.
In brief, the features of the AFRCs for any two groups
are compared via a fixed size scanning window along the
first dimension of retention time. A high performance
CNN-based image feature extraction model (VGG16) [26,
30–32] was implemented using the default architecture

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab550#supplementary-data
https://opencv.org/
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Figure 1. Software architecture. CRISP has four major components. (A) The ROI and deepstacking module take contour data input and identifies the ROIs.
It then stacks the ROIs using feature detecting CNNs to prepare the datasets. (B) The integrated GAN takes the pre-processed data and trains generative
models to synthesize high resolution contour image data within the given distribution of the source dataset. (C) The contour super-resolution module
helps improve the contour image quality prior to use in DNN classifier training. (D) The CNN classifier and inference module is customized for 244 × 244
to 512 × 512 pixels input resolutions. It implements multiple transfer learning architectures for training on the contour datasets produced by (B) and (C).
The trained CNN classifier can be used for the subsequent inference of unknown contour profiling. CNN, convolutional neural network; GAN, generative
adversarial network; ROI, region of interest.

to evaluate the differences in each window and com-
pute the similarity scores. According to these scores, the
corresponding ROIs for all source contours are sorted
in ascending order and stacked to create a contrasting
feature-enhanced dataset called a ‘deepstacked’ dataset
(Figure 2C). CRISP stacks the first five ROIs by default
with the minimum similarity scores to ensure at least
three major ROIs are incorporated in the deepstacked
database. In addition to the standard VGG filter, the
user can experiment with several alternative similarity
metrics such as the Hamming distance [33], PSNR [34],
Fréchet inception distance (FID) [35] and SSIM [36] for
ROI comparison. This dataset can either be directly sent

to the classifier or processed by the GAN synthesizer
module.

Module II: GAN training and contour synthesis
The GAN module consists of the core engine used to
generate synthetic GC × GC–TOFMS contour data based
on a limited number of true samples (Figure 3A). CRISP
uses a modified version of the efficient quadratic poten-
tial (QP)-GAN [37]. This GAN architecture minimizes
the vanishing gradient and Lipschitz constraint, in
contrast to previous GAN algorithms. [37, 38] The model
ignores probability divergence and directly converges the
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Figure 2. ROI and deepstacking module. This CRISP module is designed to preprocess contour image data for enriched feature dataset construction that
can be used by the downstream generative or classifier modules. (A) Manual selection of a single ROI to construct a contour dataset. (B) Construction of
single AFRC image for each study group. (C) Semi-automatic identification of multiple ROIs between two classes of contours using VGG16-based feature
computation method with example of five identified ROIs (m1 – m5) stacked algorithmically in ascending order of feature similarity scores to produce
a deepstacked dataset. AFRC, aggregate feature representative contour; ROI, region of interest; VGG16, visual geometry group-16.

probability distributions into source sample distribu-
tions, iterating to achieve a min–max optimization with
respect to generator loss.

G, T = arg minG arg maxTEx∼p(x) [log σ (T(x))]

+ Ex=G(z);z∼q(z) [log (1 − σ (T(x)))] (2)

For a fixed T, the goal of G can be represented as

G = arg minG Ex=G(z),z∼p(x) [log (1 − σ (T(x)))] (3)

Here, G and T represent the generator and trainer,
respectively, and σ is a sigmoid function such that
σ (x) = 1/(1 + e–x) has a loss function of –log σ (T(x)).
Furthermore, Z, argmax and argmin represent the latent
space vector, maxima and minima of functions G or T
for any given input dataset [37]. The QP-GAN adjusts
the loss of generator G for better optimization instead
of focusing on the original min–max game. The FID
metric is computed to evaluate the distance between
the feature vectors of the simulated and source images
to assess the quality of contour image synthesis. [35,
37, 39, 40] Lower FID scores indicate better quality
in the synthesized contour images. In the synthesizer

training step, the batch size for FID score evaluation
can be set and the vector shape can be customized for
random noise input. CRISP introduces a novel qScore
to estimate the quality of synthesized contour based
on image sharpness. The qScore matric evaluates the
synthesized image blurriness with respect to the source
contour images. For a synthetic contour image, this is
calculated as qScore = sigmoid (∇2 (image)), which is the
value obtained from a sigmoid function applied to the
output of a Laplacian (∇2) operator. [41, 42] A qScore of
0.18 indicates that the sharpnesses of synthesized and
source images are approximately equal. These indicators
and other customization features provide real-time
visualizations of the FIDs (Figure 3B), generator (G Loss)
and discriminator (D Loss) loss functions (Figure 3C),
qScores (Figure 3D) and a user-defined preview of a
simulation image grid for visually inspecting the GAN
model training status. The contour synthesizer is a
well-trained generator G that can synthesize image-
wise unique contours within the given data distribution
and can be customized to obtain various intensity
levels for each synthetic contour (Figure 3E). This was
done by proportionally manipulating the latent space-
associated vector Z for each noise input in the trained
synthesizer. The GAN module consists of multiple
image preprocessing and augmentation features that
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Figure 3. Integrated GAN module. This CRISP module consists of a customizable integrated generative model based on a QP-GAN [37]. (A) The
dataset containing deepstacked or original full-frame source contour images is supplied to the GAN network, which trains the generator to synthesize
corresponding high resolution (256 × 256–512 × 512 pixels) synthetic contours within the source data distribution. Here, fL(x) represents FID or a similar
scoring metric to compute the similarity of synthesized contour during simulation with the true contours. Once the generator is sufficiently trained,
it is able to synthesize numerous contour images independently. Changes in (B) FID (C) model loss and (D) qScore values for synthesized contours
images during GAN training. (E) Manipulation of the latent space Z-vector for intensity variation during contour synthesis. Content inside the dotted
circle represents the core engine of the integrated PQ-GAN networks. GAN, generative adversarial network; GC × GC–TOFMS, gas chromatography time
of flight mass spectrometry; QP-GAN, quadratic potential generative adversarial network; FID, Fréchet inception distance.

include contour sharpening, blurring, noise/denoising,
erosion, dilation, distortion, brightness, contrast, and
edge-enhancement filters for both model training
and synthesis. Once properly trained, the synthesizer
can be used independently to generate random con-
tour images within the distribution of the training
dataset (Figure 3A). The full and deepstacked contour
images were constructed using their corresponding
trained synthesizers to generate datasets that are ten
times larger than the datasets of the original source
images.

Module III: Super-resolution network
CRISP implements a cascading residual network (CARN)-
based super-resolution CNN to enhance the resolution

of the relatively low-resolution contour images [43]. The
contour image synthesized by the GAN module can be
optionally processed by the CARN module to enhance
image resolution without compromising output quality
and speed (Figure 4A). This super-resolution model was
reported to outperform SelNet, DRCN and SRDenseNet
in terms of computational cost and performance
[43]. The CARN network is trained on high-quality
GC × GC–TOFMS contour images to optimize the super-
resolution model and hence improve the quality of the
synthesized contour images. Because GC × GC–TOFMS
contour images resemble a mosaic or have a plasma-like
appearance, a custom simulated high-quality contour-
like dataset was constructed to train the contour-specific
super-resolution network (Figure 4B). The CARN module
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Figure 4. Contour super-resolution module. This CRISP module is based on CARN [43] to improve contour image resolution. (A) The architecture of
CARN, showing the multiple layers of network responsible for image resolution improvement. (B) The super-resolution network is specifically trained
using high quality contour-like features similar to those in the simulated dataset. The network is trained until the (C) model loss and (D) qScore ratio are
sufficiently low. The trained model can be used independently to improve the quality of contours synthesized by the generator module. CARN, cascading
residual network, HR, high resolution; LR, low resolution, GAN, generative adversarial network.

employs the L1-loss as a model loss function, which
is the mean of the absolute difference between the
predicted and true resolution images during training.
The L1-loss was reported to yield better convergence
and performance than the regular L2-loss, which is the
mean-squared error [43]. CRISP also introduces the novel
qScore ratio to view the real-time changes in image
sharpness during training. This score is computed as
the difference in image sharpness of the high- and low-
resolution contour images divided by the sharpness of
the high-resolution contour image during CARN model
training. A qScore ratio of zero indicates approximately
equal levels of sharpness in a super-resolution enhanced
image and its corresponding original high resolution
source image.

Module IV: Classification network (transfer
learning-based contour classifier)
The final CRISP module uses customizable CNN models
capable of increasing image input size from 128 × 128 to
512 × 512 pixels for transfer learning-based classification
of the GC × GC–TOFMS contour image data. The dataset
made from the original, synthesized or combined con-
tour images can be supplied to this module for train-
ing the classifier CNNs. The CNNs available in CRISP
for transfer learning consist of VGG16 [26], VGG19 [44],
Inception V3 [45], RasNet, [46] and DenseNet [47], which
enable high-fidelity contour feature classification [44,
48]. To maximize the feature content input to train the
classifier models, the input resolution was increased to
512 × 512 pixels instead of the default 244 × 244 pixels.
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This enables the models to process more information
from the source contour images (Figure 5A). To simplify
the interpretation and optimize CRISP, VGG16 was used
as the default transfer learning-based CNN model for
contour image classification. The transfer learning mod-
ule of CRISP has two submodules.

The first submodule is the classifier trainer, which
implements transfer learning using an input contour
dataset and can handle multiple classes. The datasets
are separated into training and validation sets for evalu-
ating both the training and validation accuracies, model
losses, and area under the receiver operating charac-
teristic (AUROC) values. In particular, the AUROC met-
ric quantifies the overall performance of the classifier
model in terms of sensitivity and specificity. The training
submodule has a built-in image augmentation option,
which performs additional multiple random image aug-
mentation operations (e.g., image shearing, skewing and
distortion) to increase diversity in the training dataset.

The second submodule is contour inference, and it is
the final process in the CRISP software. This submod-
ule uses the trained classifier model to infer unknown
contour samples at a pre-defined confidence threshold
(set to 85%) and predict their classes. Prior to inference,
the preprocessing of the contour image input for whole
or deepstacked images should be matched to the type
of dataset used to train the classifier model. To inter-
pret results, a customizable report file is generated con-
taining the class prediction and the corresponding con-
tour images tagged with prediction scores. The classifica-
tion accuracies of conventional machine learning classi-
fiers (decision trees, K-nearest neighbors, random forests,
support vector machines, linear regression and simple
artificial neural networks) and Keras-based standard DL
models (https://keras.io) were compared with the classi-
fication accuracy of CRISP. The conventional classifiers
were computed using the Scikit-learn machine learning
package [49]. The conventional approach of principal
component analysis (PCA) was used to validate the raw
GC × GC–TOFMS datasets before they were used to opti-
mize the DL software [50].

Model configuration, logging and updates
CRISP has many settings for GC × GC–TOFMS contour
ROI extraction, deepstacking, simulation, resolution
enhancement and contour classification. In addition,
each trained model has its training history configuration,
which includes iteration counts, model loss, accuracies,
FIDs, AUROCs and other metrics. The settings needed
to run each module can be stored as a plain text
configuration file to restore, edit, or directly execute
the program using the graphical user interface (GUI)
or command-line interface. All model weights and
associated ROI and AFRC settings can be stored so that
the same ROIs can be used for the inference of similar
contour images in future. A plain-text summary of
information including the model type, input dimension,
trained iteration/epoch, source dataset location and

loss function is stored along with the trained weights
to provide a quick overview of the model history. The
platform can also store logs of most activity to assist
error tracking and troubleshooting. Likewise, the updated
or pre-trained models for each module, which are stored
in Google drive or on an HTTP server, can be manually
downloaded and used through a built-in feature of CRISP.
Interested researchers can also submit their custom
trained models or datasets with a proper description
and be listed for download on the CRISP official web
repository after manual review.

Computational hardware and DL software
platform
The construction and computation of all CRISP DL
models were completed using an Intel core i9 processor
with an NVIDIA RTX3070 series CUDA-core compatible
graphics processing unit with 8 Gb VRAM and 32 GB sys-
tem onboard DDR5 RAM. The entire cross-platform com-
patible software was written in Python and TensorFlow-
backend Keras application programming interface. [51,
52] The GUI was designed using PyQt5. Pre-trained base
weights for the CNN models (VGG16, VGG19, ResNet50,
DenseNet and InceptionV3) used in the transfer learning-
based classifier were downloaded from the official Keras
website (https://keras.io/api/applications/#available-
models). CRISP features both GUI and command line
interface architecture for novice to advanced level
customization. The updates and trained DL models of
CRISP can be directly downloaded from its GUI interface.

Results and discussion
Initially, to develop CRISP, we used 15 contour images
from both the ESRD/DM and CON groups to train the
CRISP architecture. We used 3–5 images depending upon
the quality of the datasets from both groups for model
validation. Furthermore, we tested how the variation in
analysis affects the model performance by repeating the
analysis for GC × GC–TOF measurements using the same
source samples (N = 20 for each group) after ten months
had passed.

ROIs, AFRC and deepstacking
The first module of CRISP was designed to take the
GC × GC–TOFMS contour images of samples directly
from the ChromaTOF and construct the feature-enhanced
deepstacked dataset. The contour images from the
ESRD/DM and CON groups were separately processed
to generate AFRC (Figure 2B) images and the five
most contrasting ROIs were identified to construct
a deepstacked dataset (Figure 2C and Supplementary
Figures S2–S4). Although contrasting features are often
small and distributed throughout contour images, CRISP
was able to identify major ROIs that were consistent
with the overall differences observed from conventional
metabolomics data analysis. For instance, the ROIs indi-
cated regions with aberrantly high levels of metabolites

https://keras.io
https://keras.io/api/applications/#available-models
https://keras.io/api/applications/#available-models
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Figure 5. CNN classifier and inference module. The deep CNN is the core engine of CRISP and utilizes transfer learning for feature extraction and
classification on the pre-processed dataset. (A) Multilayer architecture of the transfer learning-based CNN responsible for feature computation and
scoring. The transfer learning model’s (B) loss (C) accuracy, and (D) AUROC for evaluating performance of the CNN classifier. (E) A conventional PCA
analysis plot for the GC × GC–TOFMS data showing the contrasting features between the ESRD and CON groups. AUROC, area under the receiver operating
characteristic; CNN, convolutional neural network; GC × GC–TOFMS, two-dimensional gas chromatography time-of-flight mass spectrometry.

such as maltitol, mannitol, sorbitol and dulcitol, which
were the most contrasting metabolites observed in the
PCA results of the ESRD/DM and CON groups (Figure 5E
and Supplementary Figure S11). In contrast to processing
an entire contour image or a single ROI (Figure 2A
and Supplementary Figure S2), the construction of
a deepstacked dataset for each group enabled the
features to be enhanced by algorithmic means while
minimizing manual selection bias (Figure 2B and C and
Supplementary Figures S3 and S4). It was possible
for the minor ROIs that might have been otherwise

ignored during manual selection to be proportionately
represented in the AFRC images for each class. The
effect of any existing outlier contour image features
was likely diminished because of their low occurrence
among the total samples during AFRC construction. The
creation of an AFRC image for ROI identification and
deepstack database construction might be a suitable
way to enhance features in small to medium contour
image datasets. Column bleed and a slight shift in
retention time are the most common issues that
affect data quality and analysis in gas chromatography
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Figure 6. Comparison of ROIs and deepstacking for samples with different amounts of column bleeding. The HCB and LCB GC × GC–TOFMS contour
datasets were obtained by analyzing the same samples with the same experimental setup again after an interval of 10 months. (A) The ARFC image
and ROI deepstacking for the HCB (top), MIX (middle) and LCB (bottom) datasets using the original GC × GC–TOFMS contour images. The deepstacked
feature map is constructed by stacking the top five least similar scoring ROIs. (B) Full sliding-window feature similarity scores for multiple ROIs based
on VGG16 filter for low, high and combined column bleeding contour datasets using the default settings. Classification AUROCs for classifiers trained
on full and deepstacked contours for the (C) high resolution (512 × 512 pixels) and (D) low resolution (244 × 244 pixels) trained models to compare
classifier performance at different levels of column bleeding and model resolution. LCB, low column bleed; HCB, high column bleed; MIX, a mixture of
LCB and HCB.

[53–55]. Experiments involving contour dataset con-
struction using low, high and mixed levels of column
bleed exhibited a similar pattern of AFRC construction.
In each case, CRISP was able to handle data variation
without compromising the identification of key features
in GC × GC–TOFMS contour images (Figure 6A and B).
Subsequently, a deepstacked dataset was constructed
by incorporating the top five ROIs for the enhancement
of contrasting features that could be sent to downstream
CRISP modules to improve their classifier performance.
The feature-enhanced deepstacked dataset constructed
using mixed column bleed samples was used in this case
because it represented the highest number of samples
without compromising the key features of each test
group.

GC × GC–TOFMS contour image simulation
Generative DL models have the architectural advantage
of being able to learn complex features from training
datasets and synthesize completely new data with
the same distribution. [24, 56] This CRISP module
was designed to use the feature-enhanced datasets
generated by the previous module to train a generator for

creating synthetic GC × GC–TOFMS contour images. The
synthesizer module of CRISP facilitated the generation of
a 10× increase in the number of similar contour images
containing randomly induced variation within the data
distribution for each group (Figure 3A and Supplemen-
tary Figures S5 and S6). The QP-GAN is more suitable for
the CRISP synthesizer module than other GANs because
of its implementation of a Lipschitz constraint [38] on the
discriminator to prevent the vanishing gradient, retain
small source data features and prevent model collapse
[37, 38]. This model is more powerful than previous GANs
(e.g., WGAN, LSGAN and SGAN) because the synthesized
images can be scaled up to 512 × 512 pixels with decent
quality, in contrast to the 128 × 128–256 × 256 pixels
limitations of previous GANs [37]. Although there is
currently no gold standard for directly measuring the
quality of GAN-synthesized images, the highly effective
FID scores provided unbiased estimates of the contour
image likeliness relative to the source datasets [35].
The synthesizer was able to simulate contours with
an FID of <47.00 (Figure 3B) while converging the
losses of the generator and discriminator (Figure 3C),
which correlated with observed decent-quality contours
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for a relatively small source dataset (Figure 3C and
Supplementary Figure S6). The variation introduced by
combining the original samples with synthetic images
provided a reasonably large pool of samples for training
the CRISP classifier module. The custom-trained QP-
GAN synthesizer generated images with a resolution of
512 × 512 pixels, which meant that nearly four times
the amount of contour image details could be sent
to the downstream classifier module when compared
with the default input of 244 × 244 pixels (Figure 3A
and Supplementary Figure S6). The implementation of
QP-GAN may facilitate proper training with a limited
sample size, unlike most generative models in clinical
research that require large image datasets. [57, 58] The
experimental qScore was approximately 0.165, indicating
that contour images were synthesized that were similar
to the source images in terms of image sharpness
(Figure 3D). The qScores together with the FIDs indicate
the qualitative traits for feature similarity and image
quality during GC × GC–TOFMS contour simulation. The
real-time graphs for FIDs, model loss convergence and
qScores, calculated for batches of simulated images
during the training session, indicated a trend highly
similar to the source contour images simulated during
model training (Figure 3B–D). Unlike traditional GANs
[17], the CRISP provides customizable Z-vector enabled
manipulation of the features during contour synthesis
(Figure 3E), which can simulate contour images with
different intensities, which is analogous to the con-
centration variation in true GC × GC–TOFMS contour
data. Because GAN models are relatively hard to train,
the real-time indicators are crucial not only to adjust
the model hyperparameters but also for minimizing
the loss of time and computational resources [25, 37].
CRISP’s optional image-enhancement module uses a
CARN-based DL super-resolution model for fast and
accurate improvement of synthesized contour image
quality (Figure 4A and B and Supplementary Figures S7
and S8) [43]. The custom dataset was able to properly
train the super-resolution model based on the observed
model loss (Figure 4C) and qScore ratios (Figure 4D
and Supplementary Figure S7). Although the use of
super-resolution slightly enhances the quality of the
synthesized contours, no significant improvements were
observed during classifier training. This may be a result
of the features of the dataset, quality of the synthesized
image, and efficacy of the classifier, which was able
to detect contrasting features without the need for
super-resolution. However, this function provides users
the option to train the model and implement super-
resolution on synthesized images for custom datasets.

Classifier training and inference
The performance of the CRISP classifier model is affected
by image resolution because a larger input shape can
hold more contour feature information during training
(Figure 6C and D). However, training at a higher resolu-
tion is memory intensive, time consuming, and limited

by the architecture of the CNNs. The customizable GUI
feature of CRISP classifier (Supplementary Figure S9)
and inference (Supplementary Figure S10) modules
makes it easier to train and predict classes, respectively.
The 512 × 512 pixels high resolution classifier model
trained on the 10× simulated dataset yields promising
improvements in model performance within the first 200
epochs (Figure 5B–D). The result is in agreement with
the PCA score plot (from conventional data analysis;
Figure 5E and Supplementary S11) and confirms the
difference between the ESRD/DM and healthy control
groups. The clear increases in classification accuracy
obtained by CRISP (Table 1) with respect to the accu-
racy obtained by the conventional histogram-based
pixel approach indicates the potential of the transfer
learning models in contour image-based metabolomics
profiling.

Furthermore, column bleeding, retention time shift
and spectrum noise are common problems in GC–MS-
based metabolomics analysis [55]. To address these
issues related to experimental variation, the source sam-
ples were re-evaluated under the same measurement
conditions to obtain GC × GC–TOFMS contour datasets
with high and low amounts of column bleed. The CRISP
classifier model uses an aggregate feature of the contour
images, and hence the slightly different contour images
obtained from both two experiments conducted 10
months apart had no effect on classifier performance.
The full and deepstacked contour datasets derived from
the high, low and mixed column bleed source samples
all had an AUROC of more than 95.00% (Figure 7C) for
the 512 × 512 pixels high resolution classifier models,
indicating the relatively good performance of the trained
classifier models compared to the 244 × 244 pixels low-
resolution classifier models with AUROC values of less
than 95%. For the 244 × 244 pixels low resolution dataset,
the model trained on the mixed samples dataset had per-
formed better (>85.00% AUROC) than the high or low col-
umn bleed datasets (>80.00% AUROC) within 500 epochs.
The improvement in performance of the low-resolution
trained model on only the mixed dataset might be
due to the combined larger sample size (Figure 6C).
Thus, the mixed datasets provide a suitable option for
incorporating maximum diversity during simulation and
classifier training. The 512 × 512 pixels classifier trained
on the full and deepstacked datasets had substantially
lower model loss (Figure 7A) and higher performance
(Figure 7B–D) than the default 244 × 244 pixels-trained
model on the non-simulated contour datasets. Similarly,
the 512 × 512 pixels classifier trained on the full and
deepstacked datasets had substantially lower model
loss (Figure 8A) and higher performance (Figure 8B–D)
than the default 244 × 244 pixels-trained model on the
10× simulated contour datasets. The classifiers trained
with the deepstacked and 10× simulated datasets were
able to consistently achieve higher or similar levels
of classification performance (Figures 7B and 8B) and
model accuracy (Figures 7C and 8C) within one fifth

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab550#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab550#supplementary-data
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Table 1. Comparison of CRISP classification accuracies with conventional histogram-based image profilers and artificial intelligence
models

S.N Model Image histogram-based accuracya

244 × 244 pixels 512 × 512 pixels

1 Direct Tree Classifier 84.14 ± 0.53% 86.00 + 0.45%
2 Extra Tree Classifier 84.54 ± 0.63% 84.00 ± 0.76%
3 K-Nearest Neighbors 70.00 ± 0.45% 70.0 ± 0.54%
4 Random Forest 64.17 ± 1.32% 67.37 ± 1.22%
5 Supervised Vector Machine 62.00 ± 0.35% 65.0 ± 0.75%
6 Linear Regression 62.00 ± 0.35% 30 ± 0.45%
7 Simple artificial neural network (ANN) 62.00 ± 0.36% 68.0 ± 0.55%
8 State-of-art CNNs (Keras DCNN, DenseNet,

VGG19/VGG16,InceptionV3)
≥94.00% N/Ab

9 CRISP 96.45 ± 0.77% >98.45%

aFull-size contour for the mixed column bleed dataset was used for computing classification accuracy. For fetching GC × GC–TOFMS contour image histogram
data to machine learning models, input images were resized to 244 × 244 or 512 × 512 pixels and a three-dimensional color histogram was extracted from the
HSV color space. The values were normalized and flattened to a one-dimensional feature vector which was subjected to different machine learning classifiers. A
train-test-split ratio of 85:15 was applied and each classifier model was tested to fit corresponding models and prediction accuracy was computed. bThe default
input shape for state-of-art CNN is 244 × 244 pixels while CRISP can take up to 512 × 512 pixels RGB image. All neural network and DL models were run for at
least 500 epochs to compute prediction accuracies. CNN, convolutional neural networks; GC × GC–TOFMS, two-dimensional gas chromatography time-of-flight
mass spectrometry; HSV, hue saturation value.

the training epochs used for the non-simulated contour
image datasets. The model performance observed for the
512 × 512 pixels deepstacked-trained models exhibited
substantial increases in discrimination capacities of
classifiers. These models could achieve an AUROC of
>0.96 and accuracy of >96.00% within the first 100
epochs, which supports the potential of the CRISP’s ROI-
stacking approach to efficiently train contour classifier
models with a small sample size. The removal of similar
regions among test groups and inclusion of contrasting
ROIs during feature enhancement could have mitigated
the potential decrease in classifier model efficacy. The
10× increase in the GC × GC–TOFMS training data size
obtained by the CRISP synthesizer could potentially
cause a reduction in model overfitting and compensate
for the lack of a large source dataset. Even though
CRISP tries to compensate for issues related to model
overfitting by using a 10× simulated dataset, the current
limitation in original GC × GC–TOFMS training data
size may exert some level of influence on the actual
performance of the model. The contour features that
could be used as input to classifier models were much
smaller in the default CNN models (Figure 5A), with
an input shape of 244 × 244 pixels needed to gain
good performance. Low-resolution input contour images
fundamentally mean information could be lost from
the start, which could have affected the classifier
performance (Figures 7B and 8B) for the 244 × 244 pixels
contours regardless of the differences among the
sample classes and transfer learning models used. The
deepstacked simulated dataset in combination with a
larger input resolution of 512 × 512 pixels achieved the
best performance, with an AUROC of >0.95 and accuracy
of >96.00%, within the first 100 epochs, which indicates
the potential of the CRISP’s approach to efficiently
training a contour classifier model with a small available
sample size. The training of a classifier with a larger

number of source contour images and the corresponding
simulated datasets might increase the accuracy of the
models.

CRISP could be used to rapidly screen GC × GC–TOFMS
contours for pathogen-related disease and healthy
control groups if substantial differences appear in the
metabolite contents. Some pathogens are known to
produce an aberrant and often unidentified collection
of metabolites as disease fingerprints in host specimens
[59], which could be holistically profiled by CRISP based
on their GC × GC–TOFMS contour image. Most of the
core DL engines of CRISP are based on image analysis
using modified versions of state-of-the-art CNNs. Thus,
significant changes in the GC × GC–TOFMS contour
profiles could even allow CRISP to predict potential
pathogens if the proper training datasets and protocols
are provided. Likewise, CRISP is equipped with many
options for conducting numerous combinations of
experiments that are beyond the scope of the current
study. The novel approach of CRISP demonstrates the
potential of integrated DL in untargeted GC × GC–TOFMS
metabolite profiling that directly implements contour
images.

Summary
The CRISP software uses an integrated DL approach for
untargeted GC × GC–TOFMS contour profiling and was
evaluated using an in-house GC × GC–TOFMS contour
image datasets. The novel approach of AFRC construc-
tion combined with ROI stacking helps enhance contour
image features for contour profiling in an unbiased man-
ner. The synthesizer module enables the use of a small
dataset, highlighting the potential of CRISP to facilitate
DL model training for GC × GC–TOFMS datasets with rel-
atively few samples. The fully operational GUI with real-
time graphs and model configuration storage features
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Figure 7. Comparison of classifier performance in terms of (A) model loss (B) classification AUROC, (C) classification accuracy, and (D) validation
accuracy for GC × GC–TOFMS contour image datasets made using full and deepstacked contour image datasets and trained using a VGG16-based
customized transfer learning technique. The high resolution (512 × 512 pixels) and default low resolution (244 × 244 pixels) transfer learning models were
separately trained for 500 epochs on the corresponding dataset and trendlines of different indicators are plotted. Shaded regions around the trendlines
indicate fluctuation in the data points during training. AUROC, area under the receiver operating characteristic; GC × GC–TOFMS, two-dimensional gas
chromatography time-of-flight mass spectrometry.

Figure 8. Comparison of classifier performance in terms of (A) model loss (B) classification AUROC, (C) classification accuracy, and (D) validation accuracy
for the GC × GC–TOFMS contour image dataset, constructed using 10× simulated full and deepstacked contour image dataset and trained using a VGG16-
based customized transfer learning technique. The high resolution (512 × 512 pixels) and default low resolution (244 × 244 pixels) transfer learning
models were separately trained for 100 epochs on the corresponding dataset and the trendlines of the different indicators are shown. Shaded regions
around the trendlines indicate fluctuation in the data points during training. AUROC, area under the receiver operating characteristic; GC × GC–TOFMS,
two-dimensional gas chromatography time-of-flight mass spectrometry.

make CRISP easy to operate and allows changes to be
tracked. Even though a limited contour dataset and lack
of well-established protocols are few limitations of the

current version, CRISP may provide profiling scheme for
GC × GC–TOFMS data that is an alternative to existing
conventional methods.
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Key Points

• First direct use of contour images in a deep learn-
ing approach for GC × GC–TOFMS untargeted metabolite
profiling is reported.

• The aggregate feature representative contour image,
which automatically identifies contrasting regions
between any two groups of GC × GC–TOFMS contour
images, is introduced.

• Because of the holistic feature analysis, column bleed
and other experimentation variation have little or no
effect on contrasting feature identification and classifi-
cation efficacy.

• A fully operational user interface with real-time indi-
cators and single software pipeline for contrasting fea-
ture detection, simulation and classification of GC × GC–
TOFMS contour images is provided.

Data availability
The source code of CRISP along with information for
installation and operation manuals is available in a
GitHub repository (https://github.com/vivekmathema/
GCxGC-CRISP). The original in-house GC × GC–TOFMS
contour images and associated raw data files used for
construction and optimization of CRISP will be made
available upon reasonable request. The information
about CRISP is also made available at http://metsysbio.
com/CRISP_HTML/crisp_webinfo.html.
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