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 Abstract 
 Heart failure has become a major health problem worldwide with a substantial financial burden 
mainly from hospitalization due to acute heart failure syndrome (AHFS). A considerable num-
ber of patients hospitalized for the treatment of AHFS experience significant worsening of re-
nal function, which is now recognized as type 1 cardiorenal syndrome (CRS) and is associated 
with worse outcomes. Currently known risk factors for acute CRS in AHFS include obesity, ca-
chexia, hypertension, diabetes, proteinuria, uremic solute retention, anemia, and repeated 
subclinical acute kidney injury events. Venous renal congestion due to hemodynamic changes 
also contributes to type 1 CRS. Vascular aging and its aggravated pulsatile hemodynamics have 
been shown to be involved in the pathogenesis of AHFS. Suboptimal recovery of the perturba-
tion of the pulsatile hemodynamics may predict 6-month post-discharge cardiovascular out-
comes in patients hospitalized due to AHFS. Furthermore, on-admission pulsatile hemody-
namics may also be helpful to identify and stratify patients with aggravated pulsatile 
hemodynamics who may benefit from customized therapy. There are close interplays and 
feedback loops between heart and kidney dysfunction. Increased arterial stiffness accelerates 
pulse wave velocity and causes an earlier return of the reflected wave, resulting in higher sys-
tolic, lower diastolic, and higher pulse pressure in the central aorta and renal arteries. Increased 
pulsatile hemodynamics have been associated with deterioration of renal function in subjects 
with a high coronary risk and patients with hypertension or chronic kidney disease. Thus, there 
is a potential role of vascular aging/pulsatile hemodynamics in the pathophysiological path-
ways of acute CRS in AHFS.  © 2013 S. Karger AG, Basel 
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 Introduction 

 Heart failure (HF) affects over 5 million Americans and 15 million Europeans and is a 
major health problem worldwide  [1, 2] . The cost in the United States is over USD 34 billion 
per year, mainly related to hospitalizations, with similar financial burdens for many Europe-
an countries  [2, 3] . The incidence of HF increases sharply with age, and survival is dismal 
following the development of HF  [4] . Optimal treatment of this disabling and fatal condition 
may require functional characterization of the failed left ventricle (LV) and its interaction 
with the arterial system  [5] .

  Over the past decades, it has been demonstrated that there are close interplays and 
feedback loops between heart and kidney dysfunction. The kidneys are recognized as one of 
the organs that receive abundant blood supply. As much as 20% of cardiac output constitutes 
the renal blood flow, >90% of which is distributed to the renal cortex to maintain a high and 
stable glomerular filtration rate (GFR). There are efficient mechanisms of autoregulation in 
the cortex so that renal blood flow and GFR remain constant in the face of large variations in 
systemic blood pressure (BP)  [6] . However, renal impairment in patients with HF is common 
and increasingly recognized as an independent risk factor for morbidity and mortality  [7] . 
The Acute Decompensated Heart Failure National Registry (ADHERE), a large database of 
105,388 patients with HF requiring hospitalization in the United States, reported that 30% of 
the patients had an additional diagnosis consistent with chronic kidney disease (CKD)  [8] . 
Several studies have established that >70% of the patients experience some increase in their 
creatinine (Cr) level during hospitalization for HF, with approximately 20–30% of HF patients 
experiencing an increase of >0.3 mg/dl  [9, 10] . Any change in Cr has been shown to be asso-
ciated with longer length of stay, increased costs, and increased short-term and long-term 
mortality  [9–11] . However, the degree of Cr rise during the treatment of acute heart failure 
syndrome (AHFS), defined as new-onset or gradually or rapidly worsening HF signs and 
symptoms requiring urgent therapy  [12] , has a highly variable effect on mortality that is 
dependent on the population studied  [13, 14] .

  Heart Failure and Vascular Aging 

 In subjects without HF, arterial load is increased among those with hypertension and 
is matched by increased end-systolic LV stiffness  [15] . Increased end-systolic LV stiffness 
may be mediated by enhanced myocardial contractility or processes that increase passive 
myocardial stiffness, the latter may be responsible for the progression to preserved ejection 
fraction (EF) HF  [15] . In patients with HF and impaired LV contractility, the ventriculoar-
terial coupling describes the efficiency of mechanical energetic transfer from the heart to 
the arteries  [16] . Failure of an LV invariably generates reduced mechanical energy, and the 
efficiency of the transfer of the limited energy depends critically on whether or not the 
arterial tree is optimally adjusted to reduce loadings from its various segments. On the 
other hand, the ventriculoarterial coupling implies that afterloads generated from the 
various anatomical or physiological segments of the arterial tree may have an impact on the 
various components of the mechanical function of the failed LV during systole or diastole 
and may thus be involved in the deterioration of and decompensation into AHFS requiring 
hospitalization.
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  Acute Heart Failure Syndrome and Vascular Aging 

 Over the past two decades, there have been significant advances in the treatment of 
chronic reduced EF HF with the application of drugs blocking the major neurohormonal 
responses to the initial injury as well as of cardiac devices such as biventricular pacing recti-
fying the abnormal conduction and contraction in a failed LV. However, HF remains asso-
ciated with a persistently high mortality and morbidity. The post-discharge mortality and 
re-hospitalization rates for AHFS reach 10–20 and 20–30%, respectively, within 3–6 months 
 [17, 18] . We have also shown that about one third of the patients ever been admitted for AHFS 
would have post-discharge adverse events within 6 months  [19] . While the majority of the 
patients appear to respond well to initial therapies consisting of loop diuretics and vasoactive 
agents, the management of AHFS is challenging given the heterogeneity of the patient popu-
lation  [12, 17, 18] , absence of a universally accepted definition, incomplete understanding of 
its pathophysiology, and lack of robust evidence-based guidelines. Furthermore, the hospital-
ization for AHFS per se is one of the most important predictors for post-discharge mortality 
and readmission in patients with chronic HF  [20, 21] .

  Coronary artery disease (CAD), hypertension, valvular heart disease, and/or atrial fibril-
lation, as well as noncardiac conditions such as renal dysfunction, diabetes, anemia, and 
medications (for example, nonsteroidal anti-inflammatory drugs and/or glitazones) may 
contribute to the occurrence of AHFS  [2, 12] . Early vascular aging, a well-known cardiovas-
cular risk factor, usually manifests as increased arterial stiffness, wave reflection phenomenon, 
central BP, carotid intima-media thickness, and endothelial dysfunction  [22] . Aortic pulse 
wave velocity (PWV) is the well-acknowledged gold standard measurement of aortic stiffness  
associated with cardiovascular mortality and morbidity in patients with hypertension or 
diabetes and in the elderly  [23–25] . In addition, the wave reflection phenomenon and the 
local assessments of arterial stiffness such as distensibility, compliance, elastic modulus, and 
β stiffness index may also provide prognostic information. In brief, vascular aging impairs 
cardiac function through aggravated pulsatile hemodynamics and is associated with the 
development and the progression of HF  [19, 26] .

  We have investigated the interval changes of pulsatile hemodynamics in patients hospi-
talized for AHFS  [19] . We found that pulsatile hemodynamics result mainly from arterial stiff-
ening and the wave reflection phenomenon, and both may be involved in the pathogenesis of 
AHFS. Suboptimal recovery of pulsatile hemodynamics may predict 6-month post-discharge 
cardiovascular outcomes in patients hospitalized for AHFS. While pre- or post-discharge 
pulsatile hemodynamics indicate the completeness of treatment for AHFS, on-admission 
pulsatile hemodynamics may also be helpful to identify and stratify patients with aggravated 
pulsatile hemodynamics who may benefit from customized therapies. Our further work have 
disclosed that on-admission measures of wave reflection intensity, including carotid 
augmented pressure, Pb (amplitude of the backward pressure from a decomposed carotid 
pressure wave), and carotid pulse pressure (PP), may be useful for predicting long-term 
outcomes in AHFS patients with either systolic HF or preserved EF HF  [27] . The results 
support a major role of vascular aging/pulsatile hemodynamics, increased wave reflections 
in particular, in the pathogenesis of AHFS  [27] .

  Cardiorenal Syndrome 

 The phenomenon that HF is accompanied by renal failure is termed the cardiorenal 
syndrome (CRS)  [28] . CRS has become a universal clinical challenge, implying both the devel-
opment and worsening of renal insufficiency secondary to HF as well as harmful effects of 
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impaired renal function on the cardiovascular system  [28] . CRS has recently been classified 
into five subtypes depending on the etiological and chronological interactions between 
cardiac and renal dysfunction ( table 1 )  [28] . The mechanisms underlying CRS are multifac-
torial, including hemodynamic alterations, neurohormonal effects, and inflammation  [29] . 
However, despite the increased awareness of CRS, further elucidation of its mechanisms and 
appropriate treatment approaches are clearly warranted. A substantial number of patients 
hospitalized for the treatment of AHFS experience significant worsening of renal function, 
which is associated with worse outcomes  [29–31] . It remains unclear whether worsening 
renal function specifically contributes to poor outcomes or whether it is merely a marker of 
advanced cardiac and renal dysfunction  [32] .

  CRS in AHFS is a particularly difficult condition to manage as treatment to relieve 
congestive symptoms of HF may lead to a further decline in renal function, which is a major 
independent predictor of long-term cardiac morbidity  [30] . Several treatment strategies for 
decongestion in AHFS patients who develop CRS are currently under investigation, including 
invasive hemodynamic monitoring to guide therapy, use of continuous diuretic infusions, 
ultrafiltration, or novel therapies with adenosine or vasopressin receptor antagonists  [33] . 
Surprisingly, in a randomized trial  [30]  involving patients hospitalized for AHFS, worsened 
renal function, and persistent congestion, the use of a stepped pharmacological therapy algo-
rithm was superior to a strategy of ultrafiltration for the preservation of renal function at
96 h, with a similar amount of weight loss with the two approaches. Furthermore, ultrafil-
tration was associated with a higher rate of adverse events. Therefore, the underlying mech-
anisms of CRS in AHFS are complex and not fully understood  [29, 31, 34] . Thus, there is a 
pressing need to continue the search for better strategies to manage acute CRS based on the 
new findings of its pathophysiology  [34] .

  Vascular Aging – The Link between the Heart and Kidneys 

 BP measured at the central aorta is usually lower than BP measured at the brachial artery 
due to the progressive amplification of PP along the arterial tree  [35] . PP amplification indi-
cates the effectiveness of energy transfer and the augmentation by the locally reflected 
pressure wave, and, in addition, is an evaluation of arterial compliance  [36–38] . Increased 
arterial stiffness accelerates PWV and causes an earlier return of the reflected wave, resulting 
in higher systolic BP, lower diastolic BP, and higher PP in the central aorta. Such changes in 
central hemodynamics would adversely have an impact on renal perfusion  [39] . In normal 
individuals, the amplitude of wave reflection but not aortic PWV may be associated with 
filtration fraction and urinary albumin-creatinine ratio independently of systemic BP; both 
are signs of increased glomerular pressure  [40] . In patients with a high risk of CAD, plasma 

Table 1.  Definitions of CRS subtypes

Type 1 Acute decompensated HF that leads to acute kidney injury

Type 2 Chronic HF that leads to chronic kidney disease

Type 3 Acute kidney injury that leads to acute cardiac dysfunction such as arrhythmia or HF

Type 4 Primary CKD contributes to cardiac dysfunction

Type 5 Secondary CRS, combined heart and kidney dysfunction due to systemic disorders such as 
sepsis and systemic lupus erythematosus
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Cr was significantly related to PP in the ascending aorta and the abdominal aorta on the level 
of renal arteries, and to aortic PWV  [41] . In a cohort of 133 patients with CKD stages 3 and 4, 
aortic PWV was independently associated with the rate of change in renal function  [42] . In 
another cohort of 145 CKD stage 3–5 patients, an independent association between brachial-
ankle PWV and renal function decline and progression to commencement of dialysis or death 
was shown  [43] . In addition to brachial-ankle PWV, LVEF was also negatively associated with 
the GFR slope, and higher brachial-ankle PWV and LVEF <40% were independently asso-
ciated with progression to the renal end point  [44] . Thus, central pulsatile hemodynamics 
may be a common basis for the associations among CKD, stroke, and CAD  [39] . The underlying 
mechanism linking aortic stiffening and renal microvascular damage has been recently 
suggested by Hashimoto and Ito  [36, 45] . In 133 patients with hypertension, central PP was 
closely related to changes in renal hemodynamics (resistive index of renal segmental artery) 
and urinary albumin excretion. It is likely that increased central PP causes renal microvas-
cular damage through altered renal hemodynamics resulting from increased peripheral resis-
tance and/or increased flow pulsation  [36, 45] .

  Perspective: Potential Role of Pulsatile Hemodynamics in Type 1 Cardiorenal 
Syndrome 

 Based on the current understanding of the risk factors for acute CRS in AHFS, these 
include obesity, cachexia, hypertension, diabetes, proteinuria, uremic solute retention, 
anemia, and repeated subclinical acute kidney injury events  [29] . In the hospitalized patient, 
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  Fig. 1.  Hypothetical framework for the role of pulsatile hemodynamics (PH) in the pathogenesis of CRS in 
patients hospitalized for AHFS. The first hypothesis states that the perturbation of PH causes both AHFS and 
CRS. The second hypothesis states that the development of type 1 CRS accelerates the occurrence of post-
discharge cardiovascular (CV) events, including myocardial infarction (MI), stroke, mortality, and rehospi-
talization due to AHFS. Arrows point from cause to effect. CHF = Chronic heart failure. 
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hemodynamic changes leading to venous renal congestion, neurohormonal activation, hypo-
thalamic-pituitary stress reaction, inflammation and immune cell signaling, systemic endo-
toxemic exposure from the gut, superimposed infection, and iatrogenesis all may contribute 
to acute CRS  [29] . However, the potential role of vascular aging/pulsatile hemodynamics in 
the pathophysiological pathways of acute CRS in AHFS has not been explored  [29] .

  In perspective, we propose that vascular aging/pulsatile hemodynamics may be a major 
independent determinant of the deterioration of renal function and the development of CRS 
in patients with AHFS. We further hypothesize that CRS independently accelerates the clinical 
aggravation and development of post-discharge adverse events. The hypothetical framework 
is shown in  figure 1 . Future studies are definitely needed to prove the concept and expand 
our armament to target type 1 CRS.
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