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Abstract: Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death
worldwide. Numerous drugs have been developed to treat lung cancer patients in recent years,
whereas most of these drugs have undesirable adverse effects due to nonspecific distribution in the
body. To address this problem, stimuli-responsive drug delivery systems are imparted with unique
characteristics and specifically deliver loaded drugs at lung cancer tissues on the basis of internal
tumor microenvironment or external stimuli. This review summarized recent studies focusing on the
smart carriers that could respond to light, ultrasound, pH, or enzyme, and provided a promising
strategy for lung cancer therapy.
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1. Introduction

Lung cancer is the most diagnosed cancer in the world, with over two million new
cases in 2020 (Figure 1) [1]. The current therapeutics for lung cancer mainly include surgery,
drug therapy, and radiotherapy [2]. Indeed, the development of either small-molecule
anticancer drugs or biologics, such as monoclonal antibodies for immunological targets
has dramatically increased the clinical efficacy for the treatment of lung cancer in recent
years [3]. However, problems remain unsolved, such as relatively low clinical response rates
of monoclonal antibodies, unwanted adverse effects of targeting drugs, and drug resistance
after a duration of exposure to certain agents [4,5]. To further enhance the drug effectiveness,
one important strategy is to deliver drug cargoes specifically into lung cancer tissue using
tailored carrier systems, which would confer ‘desirable’ properties to therapeutic agents
and meanwhile compensate significant drawbacks in clinical applications [6,7].

Drug delivery systems are generally composed of carriers and therapeutic agents,
and the conjugation of these two components would improve drug stability, desirable
drug accumulation, and drug release, thus providing a promising strategy for lung cancer
therapy [8]. Recently, intelligent drug carrier systems could precisely deliver drugs on the
basis of unique tumoral microenvironments or external stimulus, such as pH, enzymes,
reactive oxygen species (ROS), photodynamic, and so on [9–13]. Those stimuli-responsive
drug carriers such as micelles [14], liposomes [15], hydrogels [16], and nanoparticles [17]
have been fabricated and undergo cleavage of chemical bonds or conformational change to
release drugs at a specific pattern.

With the deep understanding of lung cancer studies, researchers have realized the
unique tumor microenvironment that occurs during the progression of lung cancer, such as
acidic tumoral environment [18], elevated intracellular glutathione (GSH) conditions [19],
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and high levels of ROS [20], thereby provides an opportunity for the application of drug
delivery systems for lung cancer therapy. In addition to stimuli-based nanocarriers that are
sensitive to internal (temperature, pH, redox, enzymes reactions) environment, external
(ultrasound, electric field, light, magnetic field) conditions could also be utilized to trigger
fast drug release at a designated localization [21–24]. Additionally, nanocarriers can be
organic, inorganic, or hybrid and follow either an active mechanism or a passive mechanism
for tumor targeting.

Herein, we reviewed the recent studies on stimuli-responsive drug delivery systems
for the diagnosis and therapy of lung cancer. These drug delivery systems could respond
to pH, enzyme, ROS, magnetic field, photodynamic, or ultrasound, aiming to enhance drug
efficacy and meanwhile minimize side effects (Table 1).
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Table 1. Brief information of stimuli-responsive nanocarriers that is discussed in this review.

Stimuli Specific Conditions Nanocarriers Diagnostic
/Imaging Therapeutics Reference

Light

Near-infrared
(NIR) light

Gold nanocage@manganese dioxide
(AuNC@MnO2) nanoparticles

√ √
Lee et al., 2019

Titania-coated gold nanobipyramids
√

Chen et al., 2019
Poly(L-lysine)-conjugated chlorin e6 (Ce6)

derivative nanoparticle
√

Zhang et al., 2020

Palladium nanosheet (PdNS)
√

Wang et al., 2018
Semiconducting polymer
nanoadjuvant (SPNIIIR)

√
Li et al., 2021

CE7Q/CQ/S
√ √

Li et al., 2020
Short-wavelength

and NIR light
O-nitrobenzyl ester modified polymersome

with up-conversion nanoparticles
√

Tsai et al., 2021

Ultrasound

Mechanical effect Perfluoropentane containing nanobubbles
√

Baspinar et al., 2019
Chemical effect PEGylated Co2Fe2O4 nanoflowers (CFP)

√ √
Fu et al., 2021

Synergistically
therapeutic modality

Cerasomal perfluorocarbon nanodroplet
(D-vPCs-O2)

√ √
Ma et al., 2020

EXO-DVDMS
√ √

Liu et al., 2019
Liposome-based nanobubbles

√ √
Lee et al., 2017;

pH pH 5.7–6.9

CHEMS-based liposomes;
HA-ERL/BEV-LPH nanoparticles;

DOX-loaded mixed micelles;
DA-TAT carrier; mPEG-PHis-PSD;

U11-DOX/CUR nanoparticles; Cis-aconitic
anhydride-modified doxorubicin

√

Park et al., 2021;
Pang et al., 2020;
Shih et al., 2020;

Jing et al., 2018; Shi et al., 2018;
Hong et al., 2019;

Xia et al., 2018

Enzyme

MMP-2 Cur-P-NPs
√

Han et al., 2017
MMP-9 MMP-9-sensitive nanocarrier

√
Sidi et al., 2019

MMPs A smart inhalable nanocarrier
√

Vaghasiya et al., 2021
HAase HPGBCA

√
Ren et al., 2019

Esterase Gold nanorod–curcumin conjugate, HAPBA
√

Zhu et al., 2018; Lee et al., 2019
NQO1 QPA-P

√
Park et al., 2021

√
Nanocarriers that designed for diagnostic/therapeutic applications.
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2. Light-Responsive Nanocarriers

Because of its relative safety and noninvasive character, light has been widely applied
for remotely controlled drug delivery [25]. Short-wavelength light, including ultraviolet
(UV) and visible light, can be utilized to destruct photolabile groups directly for on-demand
drug release. However, their limited penetration ability hinders their biomedical applica-
tion. In contrast to short-wavelength light, near-infrared (NIR) light (780–2500 nm) is able
to penetrate deeper through the tissues, and this feature of NIR is preferable for remote
control of the desired drug release. To take advantage of both short-wavelength and NIR
light, up-conversion nanoparticles (UCNPs), which are capable of transferring NIR light to
short-wavelength light, are utilized to fulfill both deep penetration and short-wavelength
light-responsive drug release. For example, Ming-Fong Tsai et al. used a UV-responsive
o-nitrobenzyl ester (ONB) containing amphiphilic block copolymer to construct a polymer-
some [26]. Then core-shell UCNPs and doxorubicin (DOX) were co-encapsulated to the
polymersome, enabling NIR light-inducing photolysis and on-demand drug release for
enhanced chemotherapy of lung cancer.

Apart from the immediate breakdown of photolabile groups and structural transfor-
mation of the therapeutic system triggered by external light sources, some nanoparticles
can be activated by light to generate reactive oxygen species (ROS) or increase local temper-
atures, which can be applied in killing tumor cells [27,28]. These therapeutic strategies are
known as photodynamic therapy (PDT) and photothermal therapy (PTT), respectively. For
instance, the core-shell gold nanocage@manganese dioxide (AuNC@MnO2) nanoparticles
were developed by Ruijing Liang et al. to simultaneously ablate primary triple-negative
breast cancer and prevent lung metastases via oxygen-boosted immunogenic PDT [29].
Gold nanomaterials can be utilized not only as PDT agents but also PTT agents. Jianli
Chen et al. fabricated titania-coated gold nanobipyramids and loaded anticancer drug
combretastatin A-4 phosphate to induce synergistic chemotherapy and PTT to lung cancer
with 1064 nm laser irradiation [30].

Accumulating evidence indicates that the combining of various therapeutic modalities
(e.g., PTT, PDT, immunotherapy, chemotherapy) is a promising strategy for enhanced
anti-tumor efficiency with minimized side effects. Additionally, the ROS or thermal effects
generated during PDT or PTT can also trigger the drug release in the meantime. For
instance, afatinib was loaded into the poly(L-lysine)-conjugated chlorin e6 (Ce6) derivative
nanoparticle and covered by hyaluronic acid (HA) shells by Man Zhang et al. [31]. Upon
NIR irradiation, the photosensitizer Ce6 generated ROS which induced the oxidation of the
thioether linker and subsequently triggered the release of afatinib for improved therapeutic
efficacy in non-small-cell lung cancer (NSCLC) treatment. Similarly, Chongchong Wang
et al. fabricated a palladium nanosheet (PdNS) to carry carbon monoxide via reaction with
transition metals, which could be destroyed by the heat generated from the PdNS upon 808
nm laser irradiation [32].

Among multiple therapeutic modalities, immunotherapy is now regarded as the first-
line therapy for many cancer indications and revolutionized the field of oncology during
the past decade [33]. Specifically, it has been demonstrated that phototherapy can trigger
immunogenic cell death (ICD) of tumor cells [34]. However, with the immunosuppressive
tumor microenvironment, as well as multiple mechanisms involved, adaptive immune re-
sistance may restrain the anti-tumor activity of the ICD cascade. Thus, immunotherapeutic
molecules are sometimes introduced into the delivery system for enhanced immunotherapy-
assisted synergistic treatment. Additionally, light-controlled release can further raise the
specificity [35,36]. For instance, Jingchao Li et al. proposed a second near-infrared (NIR-II)
photothermal immunotherapy using a semiconducting polymer nanoadjuvant (SPNIIR),
which was composed of a semiconducting polymer nanoparticle core, a toll-like receptor
agonist R848, and a thermally responsive lipid shell (DPPC) [37]. Under the irradiation of a
NIR-II laser, the thermal effect of the semiconducting polymer nanoparticle core caused the
removal of the DPPC shell and induced the on-demand release of R848. Consequently, the
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synergistic photothermal immunotherapy could suppress primary tumors and eliminate
lung metastasis in vivo (Figure 2).
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Figure 2. NIR-II light-responsive semiconducting polymer nanoadjuvant (SPNIIR) is designed and
applied for synergetic photothermal immunotherapy, not only to the primary and distant tumors
but also the metastasis in the lung [37]. PTT, photothermal therapy; TLR, toll-like receptor; DC,
dendritic cell; R848, a TLR agonist; TAA, tumor-associated antigens; ATP, adenosine triphosphate;
CRT, calreticulin; HMGB1, high mobility group box 1 protein.

Light-triggered drug release can also be combined with other stimuli, including
internal stimuli (e.g., pH [38–40], enzyme [41], glutathione [42,43], and other external
stimuli (e.g., radio frequency [44]), for enhanced targeted therapy to lung cancer. For
example, as the tumor microenvironment is enriched in esterase, introducing the esterase-
labile ester bond to the therapeutic system can achieve tumor microenvironment-responsive
drug release in situ. Combined with the photoexcited effect, the encapsulated drug is able
to be released to its maximum extent [45]. Similarly, introducing a disulfide bond to a
photosensitive therapeutic system can fabricate a dual-responsive (GSH/light) therapeutic
agent as well [42]. Radio frequency stimulation is also a widely adopted noninvasive
therapeutic tool by generating heat like laser irradiation. Based on this concept, Animesh
Pan et al. loaded DOX and iron oxide nanoparticles (IONs) coated with a gold nanoshell
into the layersome to perform combined hyperthermia and triggered drug release via radio
frequency or NIR stimulation. Compared to the single PTT or radio frequency treatment,
the DOX and nanoparticles-loaded layersome with dual stimulation displayed a higher
therapeutic effect on non-small cell lung cancer A549 cells [44].

Light-responsive therapeutics exhibit multiple advantages as mentioned above and
hold great potential for clinical treatment of lung cancer [41]. Furthermore, molecules that
absorb light and generate heat or ROS sometimes can also emit fluorescence or transfer
the heat to photoacoustic (PA) signal and thus are employed for imaging diagnosis during
the therapeutic process. For instance, indocyanine green (ICG) is a typical photothermal
molecule and can also be utilized for NIR fluorescence and PA imaging [43]. Other flu-
orescent molecules, such as IR780 [46,47], Cy7 [48], and NIR770 [41], are also applied
as theranostic agents to the treatment of lung cancer. Ziying Li et al. [48] established a
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chitosan-based nanocomplex CE7Q/CQ/S to deliver molecular-targeted drug erlotinib
(Er), Survivin shRNA-expressing plasmid (SV), and Cy7 for simultaneous NIR fluorescence
imaging and monitored chemo/gene/photothermal tri-therapies therapy for NSCLC bear-
ing epidermal growth factor receptor (EGFR) mutations. With the guidance of NIR imaging,
the therapy was more accurate, and the therapeutic outcome was able to be observed in
real-time.

3. Ultrasound-Responsive Nanocarriers

Ultrasound (usually defined as > 20 kHz) is widely used for diagnosis and therapy in
the clinic [49]. Due to its merits in clinical application, including cost-effectiveness, simplic-
ity, and particularly noninvasiveness, ultrasound has been adopted as an external stimulus
for smart therapeutics to trigger amplified therapeutic effects. Micro-/nanobubbles, li-
posomes, liquid perfluorocarbon droplets, micelles, or mesoporous silica nanoparticles
(MSN) have been developed as ultrasound-responsive drug carriers after rational design
and synthesis.

The fundamental mechanisms underlying ultrasound-mediated therapy mainly in-
clude thermal effect, mechanical effect, and chemical effect [50]. The thermal effects are
attributed to acoustic energy produced by propagating ultrasound. Surrounding biological
tissues can absorb part of the energy and thus lead to a temperature increase in the respec-
tive areas. Relative high temperature is able to kill cancer cells directly, while hyperthermia
(above 80 ◦C) caused by high intensity focused ultrasound (HIFU) may be associated with
undesired complications, such as second- and third-degree skin burns [51]. On the other
hand, the temperature increase induced by ultrasound could probably trigger the thermal
instability of the drug delivery system and enable targeted controlled drug release.

The mechanical effects are mainly generated from ultrasound pressure, acoustic stream-
ing, and ultrasound-induced oscillation or cavitation [49], among which cavitation is often
leveraged for drug delivery owing to its specific influence on biological processes. For exam-
ple, upon exposure to intense ultrasound energy, perfluoropentane containing nanobubbles
would go through rapid bubble destruction triggered by rapid contraction and expansion
of the bubbles. The bubble shell can be weakened by this mechanical stress until the bubble
ruptures, leading to the drug release in situ [52]. Sonoporation is the process of pore forma-
tion in a cell membrane upon exposure to ultrasound and belongs to one of the cavitation
effects, which could facilitate the intracellular transport of drugs. Moreover, cavitation can
also widen the interspace between endothelial cells and thus enhance the penetration into
adjacent tissues [50]. However, unwanted cavitation effects may take place in the presence
of residual air bubbles, and thus the implementation of ultrasound in the treatment of lung
cancer would lead to undesired drug release in the process of drug transportation.

The chemical effects of ultrasound mediated treatment can also be called sonodynamic
therapy (SDT). Oxygen, sonosensitizer, and appropriate ultrasound are three necessary
components to complete the process of SDT, and the generation of ROS upon focused
ultrasound exposure can cause site-specific profound damage to tumor tissues [53]. The
combinatorial treatment of SDT with other therapeutic strategies, such as chemother-
apy and chemodynamic therapy (CDT), has a synergistic effect in the treatment of lung
cancer [54]. For example, Shiyan Fu et al. synthesized PEGylated Co2Fe2O4 nanoflowers
(CFP) [55]. This CFP occupying multivalent elements (Co2+/3+and Fe2+/3+) exhibited strong
Fenton-like and catalase-like activity. Moreover, CFP could also be employed for high-
performance SDT as a brand-new sonosensitizer attributed to the ultrasound-triggered
electron (e−)/hole (h+) pair separation from the energy band. After efficient accumulation
in the tumorous region as revealed by magnetic resonance imaging, CFP could generate
•OH for CDT relying on Fenton-like reactions and generate molecular oxygen due to
the catalase-like activity which may promote the production of 1O2 for SDT. Combined
SDT/CDT could further efficiently trigger ICD and thus synergistically suppress primary
and distant tumors, as well as lung metastasis.
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Thermal, mechanical, and chemical effects are not entirely independent and sometimes
two or three of them may result in a synergistically therapeutic modality. For instance,
Xiaotu Ma et al. fabricated a cerasomal perfluorocarbon nanodroplet (D-vPCs-O2) with an
atomic layer of polyorganosiloxane and pH-sensitive tumor-targeting peptide [55]. Oxygen
and doxorubicin were co-loaded into the nanodroplets. HIFU was utilized to trigger the
release of cargoes and simultaneously enhance ultrasound imaging, therefore achieving
imaging-guided drug delivery. Mild-temperature HIFU (M-HIFU) could also be applied
to slightly elevate tumor temperature and accelerate tumor blood flow. Consequently,
ultrasound-triggered oxygen release and temperature elevation jointly relieved tumor
hypoxia and alleviated multiple drug resistance, and these two effects jointly enhanced the
drug therapeutic efficacy to lung metastasis [56] (Figure 3).
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Figure 3. Ultrasound-responsive nanodroplets are designed, fabricated, and capable of inhibiting
tumor metastasis in the lung [56]. HIFU, high intensity focused ultrasound; MDR, multi-drug
resistance; EMT, epithelial-mesenchymal transition; P-gp, P-glycoprotein; TGF-β1, Transforming
Growth Factor-β1; HSPs, heat-shock proteins.

Two ultrasound parameters, acoustic frequency, and intensity, are often manipulated
to induce desired biological effects. For example, Yichen Liu et al. constructed a func-
tionalized smart nano sonosensitizer (EXO-DVDMS) by loading sinoporphyrin sodium
(DVDMS), which was an excellent porphyrin sensitizer with both therapeutic and diag-
nostic features, onto homotypic tumor cell-derived exosomes [53]. A guided-ultrasound
(US1, 2 W, 3 min) was first introduced to promote the accumulation of EXO-DVDMS in
the tumor region, and subsequently, the therapeutic-ultrasound (US2, 3 W, 3 min) was
applied for SDT, thus enhancing the targeted delivery of DVDMS to primary as well as
metastatic lung tumors. In addition, other external stimuli, such as magnetic fields, can
be incorporated with ultrasound-responsive delivery systems and achieve precisely con-
trolled release. Senay Hamarat Sanlier et al. fabricated liposome-based nanobubbles [57].
Pemetrexed and pazopanib were conjugated with peptide and then attached to the surface
of magnetic nanoparticles. After the functionalized magnetic nanoparticles were encapsu-
lated into the liposomes, pemetrexed and pazopanib carrying nanobubble systems with
magnetic responsiveness and ultrasound sensitivity were constructed for NSCLC targeted
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delivery [58]. Furthermore, the inclusion of magnetic nanoparticles can not only enable the
magnetic field-guided targeted delivery but also considerably improve both the stability
and phase conversion efficiency of nanodroplets.

4. PH-Responsive Nanocarriers

The lactic acid and certain end products produced by lung cancer cells, which are re-
lated to an abnormally fast metabolism and proliferation, lead to a more acidic environment
(pH 5.7–6.9) in tumor tissues than normal physiological pH (pH 7.4) [59,60]. pH-sensitive
nanoparticles could maximize drug release in the pulmonary tumor microenvironment and
minimize drug release en route to the tumor, enhancing the accumulation of nanosystems
in the tumor tissue and meanwhile improving the reliability and safety of targeted therapy
for lung cancer.

Lee and coworkers found that the CHEMS-based liposomes could be efficiently trig-
gered by the acidic pH and these drug-loaded carriers exhibited an outstanding anti-tumor
effect in NSCLC. Folate receptor beta (FRβ), which was usually overexpressed in M2 tumor-
associated macrophages (TAMs) and NSCLC cells, was associated with the poor prognosis
of NSCLC patients [61]. Since cholesteryl hemisuccinate(CHEMS) was unstable in acidic
conditions, the conjugation of CHEMS onto PEG-Folate was used to construct pH-sensitive
liposomes to achieve targeted drug release. As a result, these liposomes showed a faster
drug release profile at pH 6.5 than that at neutral pH, and a burst release was observed at
pH 4.0. Acylhydrazone bond could also be used as a pH-sensitive linker between polyethy-
lene glycol (PEG) and tumor-targeted hyaluronic acid (HA), resulting in HA-ERL/BEV-LPH
nanoparticles to treat NSCLC. In vitro release profiles of HA-ERL/BEV-LPH nanoparticles
demonstrated that pH-sensitive adipic acid dihydrazide (ADH) could effectively control
drug release in the acidic pH and release drugs faster than that at physiological pH [62].
The poly-γ-benzyl-l-glutamate and an amphiphilic copolymer d-α-tocopherol polyethylene
glycol succinate mixed micellar system could control the release of DOX by changing
the secondary structures of poly-γ-benzyl-l-glutamate. The DOX-loaded mixed micelles
exhibited great anti-tumor efficacy in human lung cancer A549 cells-bearing nude mice [63].

Additionally, the acid pH of the tumor environment also could trigger charge rever-
sal to promote cellular internalization and nuclear entry in the treatment of lung cancer
(Figure 4). Nanocarriers with positive surface charge usually bear short blood circulation
half-life due to an unspecific adsorption, whereas the addition of TAT peptide would
overcome this drawback by improving drug uptake of tumor cells. Anhydride (DA) groups
can be utilized to mask the positive charges of TAT. Once the carrier accumulated in the
tumor acidic environment, a charge reversal from negative to positive occurred and the
targeting ability of TAT was recovered. Zhou et al. generated a DA-TAT carrier for pH-
triggered cell uptake and nuclear targeting, which possessed beneficial effects in treating
lung metastasis [64]. Similarity, Zhao et al. developed a pH-responsive poly(histidine)
(PHis) based polymer consisting of a cationic lipid core and a triblock copolymer methoxy
poly(ethylene glycol)-poly(histidine)-poly(sulfadimethoxine) (mPEG-PHis-PSD or PHD).
Acidic pH transformed PSD from a negative to neutral charge, which resulted in a fast
dissociation from lipid core, thus achieving tumor-selective accumulation, effective inter-
nalization, and efficient anti-tumor activity for NSCLC therapy [65].
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Prodrug-based nanosystem was a great choice with high drug-loading capacity and
could load additional drugs for synergistic treatment [66,67]. Ma and coworkers con-
structed a pH-sensitive doxorubicin (DOX) prodrug for lung cancer therapy. The hy-
drophilic segment U11-PEG was introduced to DOX by pH-responsive PHis. Curcumin
(CUR) was loaded into DOX-based nanoparticles as a secondary anti-tumor drug. When
the prodrug-based codelivery system U11-DOX/CUR nanoparticles were exposed to the
tumor acidic microenvironment, DOX and CUR were released simultaneously because
of the protonation of pHis. This study suggested that the U11-DOX/CUR nanoparticles
are pH-responsive systems and had a potent anti-tumor effect on lung tumor cells [68].
Cis-aconitic anhydride-modified doxorubicin (CAD) was designed for pH-sensitive drug
release in another study. CAD showed specific distribution in the tumor tissues after 12 h
post-injection, exhibiting excellent lung tumor-targeting ability of these nanoparticles. The
acid-responsive cis-aconityl linkage between the cis-aconitic anhydride (CA) and antitumor
drug DOX could be hydrolyzed, and the release of DOX would accelerate the linkage
breakdown once the nanoparticles reached tumor tissues [69].

5. Enzyme-Responsive Nanocarriers

Enzymes are essential biomolecules that maintain normal functions of living organ-
isms, e.g., growth, development, metabolism, aging, disease, and immunity. Aberrant
enzyme expression was commonly observed in multiple disease-associated microenvi-
ronments and cells, especially lung cancer [70,71]. The overexpressed enzymes mainly
include matrix metalloproteinases (MMPs), hyaluronidase (HAase), esterase, NAD(P)H,
and quinone oxidoreductase1 (NQO1). Enzyme-responsive nanoparticles have attracted
considerable attention owing to their selectivity, effectiveness, and rapidity of enzymatic
reactions in lung cancer treatment [72–74]. For example, MMPs are a family of proteolytic
zinc-dependent secreted endopeptidases that can specifically degrade a variety of composi-
tions in extracellular matrices (ECMs). Abnormally high expression of MMPs within lung
tumor tissues could be utilized for the development of enzyme-responsive drug delivery
systems [72,75]. Based on the concept that MMP-9 and MMP-2 can specifically degrade
collagen and basement membrane, gelatin or the MMP-responsive peptides are generally
conjugated onto the surface of nanoparticles for targeted lung cancer therapy [76]. Guo et al.
conjugated MPEG to PCL using an MMP-2 sensitive peptide linker (GPLGIAGQ), resulting
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in lung targeted Cur-P-NPs, which exhibited a superior drug release profile than that of
the non-responsive control [77]. Likewise, an engineered shell composed of phosphoryl-
choline (PC) and enzyme-responsive peptides was constructed by Kang and coworkers.
The functional vehicle facilitated the precise delivery of loaded protein drugs once reaching
the lung tumor sites; then the therapeutic agents would bind to pulmonary tumor cell
surface receptors to suppress cell growth [78]. Gianneschi designed an MMP-9-sensitive
nanocarrier to deliver the immunotherapeutic small molecule (1V209) for selective immune
activation. The aforementioned platform enhanced drug efflux and inhibited in vivo lung
tumor metastasis [78]. In addition, gelatin can also be used as a substrate for MMPs, and
be incorporated as the carrier skeleton. Verma designed a smart inhalable nanocarrier by
complexation of gelatin with cisplatin for lung tumor therapy. After the degradation of
gelatin, cisplatin was exposed to physiological salts and exchanged with chloride ions,
leading to the fast release of cisplatin at the tumor site [79].

Apart from MMPs, HAase is usually combined with other sensitive patterns to gener-
ate dual- or multi-responsive nanoparticles to improve lung cancer therapeutic effectiveness.
Hyaluronic acid (HA) was used to construct the hydrophilic shell, while hydrophobic com-
pounds could be introduced into the HA backbone by environmentally responsive bonds.
For example, Tang’s group utilized pH-sensitive hydrazone bonds to construct enzyme and
pH dual-responsive hyaluronic acid nanoparticles [80]. In a similar study, He and cowork-
ers designed lung cancer cells’ active-targeting, enzyme, and ROS-sensitive nanoparticles
named HPGBCA to deliver afatinib for NSCLC therapy. Poly(glycidylbutylamine) (PGBA)
was a cationic amphiphilic compound with a ROS-sensitive thioether linker. The anionic
HA shell could actively target CD44 receptor-overexpressed tumor cells and mask the
positive charge of PGBA for long circulation in the bloodstream. When HPGBCA reached
HAase-enriched lung tumor sites, the HA shell was degraded to expose positively charged
cores and accelerate the lysosomal escape. Subsequently, the Ce6 of HPGBCA could pro-
duce ROS under NIR irradiation to trigger the oxidation of ROS-sensitive linkers for drug
release [31].

The esterase-sensitive nanocarrier is also a great choice in enzyme-responsive drug
delivery systems for the lung. A nanoparticle named HAPBA, which was designed by Cho
and coworkers for lung cancer therapy, would release drugs at esterase-enriched tumor
tissue environment. Ester bonds were used to join 4-Phenylbutyric acid (PBA) and HA
backbone for the quick release of curcumin and PBA. PBA was not only the hydrophobic
segment in the structure of these nanoparticles but also an efficient inhibitor of histone
deacetylase (HDAC). The cleavage of ester bonds realized the rapid release of curcumin and
PBA, exhibiting efficient tumor growth suppression in lung adenocarcinoma [81]. Similarly,
Ren et al. designed a gold nanorod–curcumin conjugate held together by an esterase-labile
ester bond. This conjugate showed a rapid and sustained release of curcumin. In the
absence of esterase, encapsulated drugs were completely restricted inside the nanoparticles.
When the concentration of esterase increased, an abrupt curcumin release was observed,
suggesting that ester hydrolysis was an essential trigger of drug release. As a result, the
introduction of the ester bond enhanced the inhibitory effects of the nanorod–curcumin
conjugate on human lung cancer A549 cells [45].

NQO1 enzyme is a cytosolic reductase that is abnormally overexpressed in multiple
cancers, including lung cancer [82,83]. Trimethyl-locked quinone propionic acid (QPA)
reacts with NQO1 to form a lactone-based group via intramolecular cyclization. To take
advantage of the fundamental features of NQO1, an NQO1-responsive nanoparticle termed
QPA-P was designed by Kim et al. for lung cancer therapy. Poly(ethylene glycol) (PEG)
was used as the hydrophilic segment and QPA-locked polycaprolactone (PCL), which was
conditionally triggered by NQO1, was the hydrophobic tail that imparted amphiphilic
property to QPA-P. After a cascade two-step cyclization process with the NQO1 enzyme,
the particle size of QPA-P increased and loaded DOX rapidly released into surrounding
medium and tumor cells, indicating that NQO1-sensitive micelles were promising for drug
delivery in lung cancer [84].
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There are still some issues that should be considered. The drug release efficiency
totally depends on the specific enzyme concentration of lung tumor cells. Hence, the type
and the stage of the tumor must be taken into full consideration. Furthermore, the stability
of enzyme-responsive nanoparticles in the physiological environment is also important.

6. Discussion and Perspective

In the last ten years, lung cancer therapy has attracted intense attention not only
because of the fact that lung cancer is still the most common type of cancer in the world but
also considering the fast development of targeted therapy drugs for lung cancer. However,
those medicines that have already benefited millions of patients are faced with undesirable
adverse effects and thus, cause discontinuation of the treatment, which would substantially
undermine the effectiveness of therapeutic drugs. Stimuli-responsive carriers provide a
promising solution to overcome the drawbacks of traditional medicine, mainly through
enhancing the accumulation of drugs and precisely releasing drugs at lung tumor sites.
However, major challenges still remain and hinder the wide application of these drug
carriers. Most of these carriers are complicated in terms of structure and formulation, and
it is difficult to control the stability, integrity, and physiochemical property in the scale-up
production. Additionally, the tumor microenvironment is one of the critical obstacles that
devastate the transport of drug carriers and also greatly affect the drug release under
certain circumstances, whereas few drug carriers have fully considered the complexity of
the lung cancer microenvironment at the time of original design and development. In spite
of these current hurdles, scientists are making tremendous efforts to fabricate drug carriers
and optimize their features.

It is worth mentioning that several stimuli-responsive systems have already been
approved by the FDA and are currently under clinical trials. For example, the first heat-
activated nanocarrier (lyso-thermosensitive liposomal doxorubicin, LTLD, ThermoDox®)
that was utilized in clinical trials has shown a promising advantage in improving the overall
survival of primary liver cancer patients [85]. Some other systems, such as ferumoxytol
and oral iron, which could be used for the treatment of iron deficiency anemia in the setting
of chronic kidney disease and enhanced MRI, have shown their clinical applications in
therapeutic functions and cancer diagnosis [86]. An intelligent, target-controlled liposome
formulation (LiPlaCis®) has been evaluated for its therapeutic effects in prostate cancer
treatment [87]. These inspiring results elicited that the exploration of unique targeted
biomarkers was necessary to utilize interior stimulus, and meanwhile, the precise manip-
ulation of external stimulus would lead to a sophisticated release of cargo drugs from
nanocarriers. In addition, the strategy to combine those drug delivery systems which
are based on tumor microenvironment or external stimuli with other anticancer drugs or
immunoregulatory agents might display synergistic effects in lung cancer therapy.

Overall, the path to find the most suitable stimuli-responsive drug delivery systems
for lung cancer therapy still requires numerous contributions in the near future.
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