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Abstract: Background: In patients with metabolic-associated fatty liver disease (MAFLD), hepatic
steatosis is the first step of diagnosis, and it is a risk predictor that independently predicts insulin
resistance, cardiovascular risk, and mortality. Urine biomarkers have the advantage of being less
complex, with a lower dynamic range and fewer technical challenges, in comparison to blood
biomarkers. Methods: Hepatic steatosis was measured by magnetic resonance imaging (MRI), which
measured the proton density fat fraction (MRI-PDFF). Mild hepatic steatosis was defined as MRI-
PDFF 5–10% and severe hepatic steatosis was defined as MRI-PDFF > 10%. Results: MAFLD patients
with any kidney diseases were excluded. There were 53 proteins identified by mass spectrometry
with significantly different expressions among the healthy control, mild steatosis, and severe steatosis
patients. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
of these significantly changed urinary molecular features correlated with the liver, resulting in the
dysregulation of carbohydrate derivative/catabolic/glycosaminoglycan/metabolic processes, insulin-
like growth factor receptor levels, inflammatory responses, the PI3K–Akt signaling pathway, and
cholesterol metabolism. Urine alpha-1-acid glycoprotein 1 (ORM1) and ceruloplasmin showed the
most significant correlation with the clinical parameters of MAFLD status, including liver fat content,
fibrosis, ALT, triglycerides, glucose, HOMA-IR, and C-reactive protein. According to ELISA and
western blot (30 urine samples, normalized to urine creatinine), ceruloplasmin (ROC 0.78, p = 0.034)
and ORM1 (ROC 0.87, p = 0.005) showed moderate diagnostic accuracy in distinguishing mild
steatosis from healthy controls. Ceruloplasmin (ROC 0.79, p = 0.028) and ORM1 (ROC 0.81, p = 0.019)
also showed moderate diagnostic accuracy in distinguishing severe steatosis from mild steatosis.
Conclusions: Ceruloplasmin and ORM1 are potential biomarkers in distinguishing mild and severe
steatosis in MAFLD patients.

Keywords: metabolic-associated fatty liver disease; proteomics; hepatic steatosis

1. Introduction

Non-alcoholic fatty liver disease (NAFLD), characterized by ectopic fat deposition in
the liver, affects up to 30% of the worldwide population [1–3]. The overall prevalence of
NAFLD in China over the past two decades reached 29.6%, accounting for more than 20%
of the global NAFLD population [4,5]. The spectrum of NAFLD extends from liver steatosis
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to non-alcoholic steatohepatitis (NASH), and sequentially extends to liver fibrosis, cirrhosis,
or hepatocellular carcinoma. Despite the gains in our understanding of NAFLD/NASH
over the past two decades, some dissatisfaction has been proposed with the name of
“non-alcoholic”, which overemphasizes “alcohol” and underemphasizes metabolic risk
factors [6]. A name changing from NAFLD to metabolic-associated fatty liver disease
(MAFLD) has been suggested [7]. Of note, NAFLD was more defined as a biopsy-proven
diagnosis disease; however, in the new definition of MAFLD, the majority of patients with
hepatic steatosis have been detected firstly by imaging techniques or biomarkers, combined
further with being overweight, obesity, and type 2 diabetes mellitus (T2DM), which could
directly result in a diagnosis of MAFLD. Therefore, MAFLD is more focused on metabolic
factors and obesity, rather than a biopsy-proven diagnosis.

Hepatic steatosis is the first step of MAFLD diagnosis, and it is a risk predictor
that independently predicts insulin resistance, cardiovascular risk, and mortality [8–13].
Liver biopsy is still the gold standard to assess liver steatosis, ballooning, and lobular
inflammation, as in previous NAFLD and NASH diagnoses. However, the limitations of a
biopsy, such as the associated risks, sampling errors, invasiveness, and poor acceptability,
are driving studies towards non-invasive methods. On the other hand, the diagnosis of
MAFLD emphasizes a diagnosis based on three alternative methods, i.e., “detected either
by blood biomarkers/scores, imaging techniques or by liver histology”. Therefore, serum-
and image-based methods were recently proposed in multiple studies for the screening
and diagnosis of mild/severe hepatic steatosis and NAFLD/MAFLD [14–21].

Magnetic resonance imaging (MRI), which measures the proton density fat fraction
(MRI-PDFF), is a new quantitative imaging technique that enables the accurate and precise
assessment of the liver triglyceride content and steatosis over the entire liver [15,22]. Mild
hepatic steatosis is defined as MRI-PDFF 5–10%, and severe hepatic steatosis is defined as
MRI-PDFF > 10% [15,22]. Hepatic fat content > 10% is defined as MRI-PDFF > 10% as this
threshold has been used in several therapeutic trials as an inclusion criterion [15]. Of note,
MRI-PDFF has been proposed and generally accepted as an endpoint in several early-phase
clinical trials [15,23–25] and a gold standard in observational studies [26,27]. However,
challenges including potential radiation exposure risks, the demand for technical expertise,
and a high time/labor costs (30–60 min per patient) have restricted the use of MRI-PDFF in
screening patients with MAFLD in general clinical practice.

In proteomics studies, urine represents many frequently used biomarkers in moni-
toring and diagnosing human diseases, due to its accessibility. Urine samples have the
additional advantage of easily reflecting dynamic changes in disease or health conditions,
resulting in a better screening and diagnosis biomarker that can predict the progression
of diseases [28,29]. Recently, mass spectrometry diagnosis of NAFLD/MAFLD has been
utilized to study proteomics data of liver tissue and serum [11,30–35]. However, little is
known about whether urine samples can reflect the altered metabolic/lipid features in the
liver and the severity of hepatic steatosis. There is an urgent need for reliable, low-cost,
and low-invasiveness diagnostic techniques using a urine sample to differentiate severe
hepatic steatosis patients from mild hepatic steatosis patients.

The aim of the present study was to investigate whether the urine molecular pattern
could reflect the pathobiochemistry for MAFLD patients who were classified as having
mild hepatic steatosis or severe steatosis by MRI-PDFF. Next, we aimed to explore the urine
proteins most strongly correlated with hepatic steatosis by information analysis. Lastly, an
independent validation cohort was established to validate the potential urine biomarker
that could non-invasively diagnose mild and severe hepatic steatosis in MAFLD patients
by using western blot and ELISA.

2. Method
2.1. Patients and Urine Sample Collection

Patients were diagnosed in the hepatologic disease center of West China Hospital of
Sichuan University. The inclusion criteria were as follows: (1) patients 18 to 39 years old;



Diagnostics 2022, 12, 1412 3 of 19

(2) patients diagnosed with MAFLD according to the guideline [7,36], which is described
in detail in the following paragraph; and (3) MAFLD patients without any other kind
of disease, such as cancer or inflammatory diseases, etc. The exclusion criteria were as
follows: (1) patients with missing clinical parameters; (2) patients with renal insufficiency
(creatinine level of >1.5 mg/dL in men or >1.4 mg/dL in women) or a previous diagnosis
of any kind of chronic or acute kidney disease; (3) patients who had received treatment for
MAFLD; and (4) patients with contraindications to MRI, extreme claustrophobia, weight
or girth exceeding MRI scanner capability. The discovery set of 27 participants were
recruited and their urine samples were collected from May 2020 to July 2020, and the
validation set of 30 participants was recruited and their urine samples were collected
from August 2020 to October 2020. Patients were divided into 3 groups: healthy control
group, mild hepatic steatosis group, and severe hepatic steatosis group. MRI-PDFF was
used to measure mild hepatic steatosis defined as MRI-PDFF 5–10% and severe hepatic
steatosis was defined as MRI-PDFF > 10%. The study protocol conformed to the ethical
guidelines of the 1975 Declaration of Helsinki. The Institutional Review Board Committee
of West China Hospital of Sichuan University approved the study protocol. The study was
performed by following the ethical guidelines expressed in the Declaration of Helsinki
and the International Conference on Harmonization Guidelines for Good Clinical Practice.
Informed consent was obtained from all subjects.

The diagnosis was in line with MAFLD criteria [7,36]. In detail, the diagnosis of
MAFLD is based on recognizing underlying alterations in metabolism, beyond the histolog-
ical classification of NAFLD. MAFLD is defined by the presence of steatosis (by histology
or imaging) and overweight or at least two metabolic risk factors: overweight/obesity,
diabetes mellitus, or metabolic dysfunction. Metabolic syndrome was defined regarding
the presence of at least two of the following symptoms: (1) waist circumference of >102 cm
for males or >88 cm for females, (2) hypertension defined as arterial blood pressure of
≥130/85 mmHg, as well as those under anti-hypertension therapy, (3) hyperlipidemia
(triglyceride (TG) ≥ 1.70 mmol/L or under specific therapy for hyperlipidemia), (4) low
high-density lipoprotein cholesterol (HDL-C) level (<1.0 mmol/L for males or <1.3 mmol/L
for females), (5) diagnosis of prediabetes, or (6) a hypersensitive C-reactive protein level of
>2 mg/L [7].

Patients with other liver diseases, such as viral hepatitis and autoimmune liver disease,
were excluded. Participants with excessive alcohol intake were excluded. Of note, patients
with any kind of kidney disease (GFR, albumin excretion) were excluded to reflect the
natural characteristics of steatosis. The (Controlled Attenuation Parameter) CAP, MRI-
PDFF, and laboratory tests were used for healthy controls to exclude MAFLD and any
other metabolic-associated diseases, including hypercholesteremia, hypertriglyceridemia,
abnormal transaminase, etc. Similarly, healthy controls with liver disease, cancer, excessive
alcohol intake, kidney disease, and any other disease were excluded. FIB-4 was calculated
as: age ([yr] × AST [U/L])/((PLT [109/L]) × (ALT [U/L])1/2) [37].

Urine samples were obtained on the day of performing MRI-PDFF. As urine samples
are diluted simply by drinking water, all the urine samples were collected when the
participants visited the clinic after dry fasting for >8 h. The midstream of the morning urine
was obtained for this study. Urine was centrifuged (1800× g for 10 min) to remove debris
and was stored frozen at −80 ◦C. All the urine sample collection and storage conditions
followed the same procedure, as follows.

2.2. MRI-PDFF-Measured Liver Fat Content

For MRI-PDFF, advanced magnetic resonance imaging (MRI)-based phenotyping was
performed at the UCSD MR3T Research Laboratory using the 3T research scanner (GE
Signa EXCITE HDxt; GE Healthcare, Waukesha, WI, USA), with all participants in the
supine position, in the Radiology Department of West China Hospital. MRI-PDFF was
used to measure mild hepatic steatosis, defined as MRI-PDFF 5–10%, and severe hepatic
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steatosis was defined as MRI-PDFF > 10%. The details of the MRI protocol have been
previously described in references [15,26].

2.3. Controlled Attenuation Parameter (CAP) and Liver Stiffness Measurements (LSM)

Liver steatosis was defined by the controlled attenuation parameter, and liver fibrosis
was assessed via liver stiffness measurements, performed through transient elastography
(FibroScan®EchoSens, Paris, France), which is most frequently used in patients with fatty
liver disease [38,39]. The stratification of the severity of steatosis was as S0–3, and the
cut-off of CAP for steatosis was 248 for S1, 268 for S2, and 280 for S3, respectively [40].
Significant liver fibrosis ≥ F1 [39].

2.4. Proteomics Sample Preparation and LC–MS/MS Analysis

All 27 urine samples were analyzed by LC–MS/MS in one batch with randomiza-
tion and were double-blinded between the sample collector and manipulator/analyzer of
LC–MS/MS. All the urine sample collections and storage conditions followed the same
procedure described in the following. Human urine proteomics samples of 1 mL were
collected and centrifuged at 2000× g for 4 min to remove cell debris. The supernatant was
transferred into a 10 kDa ultrafiltration tube (Merk Millipore, Tullagreen, Carrigtwohill, Co.,
Cork, Ireland) and washed twice with 200 µL UA buffer (8 M urea, 0.1 M Tris, pH 8.5).
The urinary proteins were resuspended with 200 µL UA buffer containing 20 mM dithio-
threitol (DTT) and incubated at 37 ◦C for 16 h. The mixture was then alkylated by 50 mM
iodoacetamide (IAA) in the dark at room temperature for 30 min. After this, the samples
were washed three times with 200 µL of 50 mM ammonium bicarbonate (NH4HCO3) by
centrifugation at 13,000× g for 15 min at room temperature. Then, proteome samples
were digested with 1 µg of trypsin (Promega; Madison, WI, USA) and Lys-C (Promega;
Madison, WI, USA), and incubated at 37 ◦C for 14 h. Both trypsin and Lys-C were added
simultaneously to reduce the number of missed cleavages. The filter tubes were washed
twice with 100 µL of water by centrifugation at 13,000× g for 15 min at room temperature.
The flow-through fractions were collected. The peptide concentration was determined
using a quantitative colorimetric peptide assay kit (Thermo Fisher Scientific, Waltham,
MA, USA) based on absorbance at a wavelength of 480 nm. The digested peptides were
dried under vacuum before LC–MS/MS analysis. Moreover, the digested peptides were
normalized to 500 µg/uL, the same concentration at the peptide level.

Then, 1 µg of each sample was taken for LC–MS/MS analysis on an Orbitrap Ex-
ploris 480 coupled with EASY-nLC 1200 (Thermo Fisher Scientific, Waltham, MA, USA)
and FAIMS.

The samples were loaded into one column of the capillary device (25 cm multiple
by 75 µm), which was packed with C18 reverse phase particles (1.9 µm, Phenomenex,
Torrance, CA, USA). The peptides were eluted with a 78 min nonlinear gradient: 3–8% B
for 2 min, 8–25% B for 52 min, 25–38% B for 14 min, 38–100% B for 2 min, and 100% B for
8 min. Buffer A contained 0.1% FA in H2O, and Buffer B contained 0.1% FA and 80% ACN
in H2O, with a flow rate of ~300 nL/min.

The MS parameters during detection were as described in the following steps for
MS1: an ultra-high-field Orbitrap analyzer was used for the full MS survey scans at a
resolution of 60,000 at m/z 200 over a mass range of m/z 350–1550. FAIMS CV was set
as −45 V, and an automatic gain control (AGC) target value of 3 × 105 with a maximum
injection time of 50 ms was used. For MS2, 45 DIA variable windows were acquired at an
Orbitrap resolution of 15,000 at m/z 200. Cycle time for the full scan spectrum and multiple
secondary spectra was 3 s, and an AGC target value of 105 with a maximum injection time
of 22 ms was used. HCD collision energy was 30%.

DIA–MS data analyses for proteomics were processed using Spectronaut (version
15.0.210615.50606). The parameters were as follows: the raw data files were all directly
searched in “directDIA” mode against the Swiss-Prot protein database (September 2020,
20,375 entries). The fixed modification was Carbamidomethyl (C). Variable modifications
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contained Oxidation (M) and Acetyl (Protein N-term). The other settings were set at the
default values, and the filtration of the assigned peptides was performed at the peptide level
with 1% false discovery rate (FDR). Identifications were kept with more than two unique
peptides, which were 1% FDR and ion score more than 20, restricted to 1% FDR at the
protein level. Quantification of all the identified peptides was calculated by peak areas
derived from MS2 intensity. The data presented in this study can be obtained via the
Proteome Xchange Consortium repository, accession number PXD026333.

2.5. Western Blot and ELISA

Urine pretreatment: Briefly, thawed urine was centrifuged (1800× g for 10 min) to
remove debris before processing. 100µL urine sample was mixed with 1.5 mL of ice-cold
acetone methanol (1:1). The mixture was placed at −20 ◦C for 24 h to obtain protein
precipitation. The protein precipitation was dissolved in 100µL lysis buffer (25 mM Tris-
HCl, pH 7.6, 150 mM NaCl, 1% NP-40, 1% deoxysodium cholate, and 0.1% SDS) at 30 ◦C
for 1 h.

The concentration of proteins of each sample were quantified by the bicinchoninic
acid method (Pierce, Rockford, IL, USA); and 20 ug of total protein were taken for elec-
trophoretic separation on 12% SDS-PAGE gels, and then transferred onto polyvinylidene
difluoride membranes and blocked by 5% nonfat dry milk (NFDM). Membranes with
protein samples were subsequently reacted with anti-ceruloplasmin (cat. no. ab157452;
Abcam, Cambridge, UK), anti-ORM1 (cat. no.16439-1-AP; Proteintech, Wuhan, China)
overnight at 4 ◦C, followed by HRP-conjugated secondary antibody (Jackson ImmunoRe-
search Laboratories, Inc., Baltimore Pike, PA, USA) for 1 h at room temperature. Both
chemiluminescent visualization by an ECL detection system and densitometric analysis
by Image Lab Software 5.1 (Bio-Rad Laboratories, Hercules, CA, USA) were carried out to
assess the immune signals specific to immunoblots. Both ceruloplasmin and ORM1 were
quantified using relative absorbance units and normalized to urine creatinine excretion, as
described in previous studies [41–43]. Quantification of urinary creatinine concentration
was performed using the Jaffe reaction [44].

An ELISA kit was used to measure ceruloplasmin (ELISA Kit, ab110449, Abcam, ILC)
and ORM1 (ELISA Kit ab243675, Abcam, ILC) according to the handbook.

2.6. Statistics

Reporting of data was according to the most frequently used, with the mean ± standard
deviation presented for normal continuous variables and median (interquartile range)
for non-normal continuous variables. Otherwise, the frequency was used for discrete
variables. The normality of distribution and the homogeneity of variance were checked
with shapiro.test and bartlett.test in R, respectively. We used Student’s t-test and ANOVA
with Bonferroni adjustments for continuous samples, and Fisher’s exact test or chi-square
test for the qualitative ones. Non-parametric alternatives (Mann–Whitney U and Kruskal–
Wallis tests) were used for non-normal distributions.

Ten patients per group (in both proteomic data and validation cohort) would provide
the study with approximately 80% power to detect a 40% difference in each protein level.
The power/sample size calculation was based on a 2-sided type I error rate of 0.025 using
PASS software (version 11.0.7). We also confirmed the results by using Fisher’s exact test.

The proteins with a missing value ratio above 50% across all samples were removed
and imputation was implemented with the k-Nearest Neighbor (KNN) algorithm based
on the log2 transformed median normalized protein abundances [45]. One-way ANOVA
test was performed in R (version 4.0.5, aov function) to identify differential proteins among
all groups of samples. The proteins with q-value-corrected p values less than 0.05 and a
relative fold change of 1.5 folds were considered significant [46]. The principal component
analysis (PCA) was performed using the R function prompt. The unsupervised hierarchical
clustering was implemented with the heatmap package (https://cran.r-project.org/web/
packages/pheatmap/index.html (accessed on 20 May 2021)). Fuzzy c-means clustering
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of protein profiles was carried out using the Mfuzz package [47]. The selection of cluster
number was subjective. When we analyze our data, we manually tried the different
cluster number (e.g., 6, 9, and 12); when the cluster number was 12, the best tendency or
changed reflected the present dynamic changed of urine proteins. The Gene Ontology
(GO) processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis
were enriched by the cluster Profiler package [48]. Significant associations were calculated
by linear regression with filtered proteins and clinical parameters, including BMI, TG,
ALT, AST, glucose, etc. The diagnostic/predictive cut-off of each factor was established
by means of the Receiver Operating Characteristic (ROC) curve method at a value that
maximized specificity and sensitivity according to the Youden index. The best cut-off value
was not determined in the present study due to the limited sample size. R version 4.0.5 and
GraphPad Prism version 7 were used for the data analyses.

3. Results
3.1. Characterization of Urine Proteomes in Healthy Controls and Patients with MAFLD

Five participants were excluded because of missing data. Three participants were
excluded because of a reported history of liver disease. Finally, a total sample of 57 subjects
were included for analysis, 27 for the discovery proteomics analysis set and 30 for the
validation set, respectively. Figure 1A summarizes the sample compilation and statistical
analyses. In total, 27 urine specimens passed the quality check (QC), with 7 healthy controls
and 20 MAFLD patients without any kind of kidney disease. All patients were subjected
to liver fat content measurement with MRI-PDFF; 8 patients were defined as having
mild hepatic steatosis, and 12 patients were defined as having severe hepatic steatosis.
(Figure 1A,B) Laboratory procedures were all followed to detect sample heterogeneity
by the same sample preparation processes, as well as the mass spectrometry analysis.
Of the included participants, the BMI, waist circumference, body weight, ALT, TG, total
cholesterol, and HDL-cholesterol were significantly different among the healthy control,
mild hepatic steatosis, and severe hepatic steatosis groups, while age, male gender, ALP,
GGT, glucose, and FIB-4 were not different (Figure 1C).

The number of identified proteins in the control group, mild steatosis group, and
severe steatosis group grew quickly and gradually became saturated when the sample
size increased (Figure 2A). The protein numbers for the healthy control, mild steatosis,
and severe steatosis groups were 2152 ± 187.2, 2552 ± 149.5, and 2404 ± 135.7, respec-
tively. Detailed information about the identified proteins for each sample is presented in
Supplementary Figure S1.

In total, 2087 proteins were commonly identified and were numerically quantified
among the healthy controls, mild steatosis patients, and severe steatosis patients (Figure 2A).
Among these identified proteins, 304 and 310 proteins were uniquely and specifically
expressed in mild steatosis patients and severe steatosis patients, respectively (Figure 2A).
The average abundance was nearly the same for the mild and severe steatosis samples
compared with the healthy controls (Figure 2B). Principal component analysis (PCA) was
further performed to corroborate the previously distinct clusters, resulting in the healthy
controls and MAFLD being divided into two groups (Figure 2C).

3.2. Urine Proteomics Differentiates Mild/Severe Hepatic Steatosis of MAFLD Patients from
Healthy Controls

An obvious distinction of urine proteomes between healthy control, mild hepatic
steatosis, and severe hepatic steatosis patients was indicated by the adjusted p-value (as
q-value) < 0.05 of the ANOVA. There were 53 proteins identified with 331 significantly
different expressions among the three groups (Supplementary Table S1). We found that
mild and severe hepatic patients and healthy control samples could be divided into three
categories by using hierarchical cluster analysis (performed only on the 53 proteins signifi-
cant by ANOVA analysis), suggesting the specific characteristics of molecular conditions
between the healthy and MAFLD groups (Figure 3).
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Figure 1. Proteomics study by using MAFLD patients’ urine samples. (A) The experimental design
of urine profiling in proteomics for distinguishing mild/severe hepatic steatosis in MAFLD patients.
Quantitative data were expressed as mean ± SD. For all laboratory measures and for continuous
demographics: 1-way analysis of variance test with Bonferroni adjustments. Proportions: percentage.
(B) Hepatic steatosis was measured by MRI-PDFF. (C) Baseline characteristics of included participants
in discovery proteomics set according to mild hepatic steatosis (liver fat content 5–10%) and severe
hepatic steatosis (liver fat content > 10%). ALT, alanine transaminase; AST, aspartic transaminase;
ALP, alkaline phosphatase; GGT, γ-glutamyl transferase; TG, triglycerides; HbA1c, glycosylated
hemoglobin, type A1C; INS, insulin released test; HOMA-IR, homeostasis model assessment-insulin
resistance; and FIB-4, fibrosis 4 score.

GO analysis was performed to find significantly changed urinary molecular features
of MAFLD dysregulation, including the carbohydrate derivative catabolic process, the
glycosaminoglycan process, the aminoglycan metabolic process, the catabolic process,
the inflammatory response, insulin-like growth factor receptors, and GTPase complexes
(Supplementary Figure S2). KEGG analysis also implied that the significantly changed
urinary molecular features in MAFLD could relate to the PI3K–Akt signaling pathway and
cholesterol metabolism (Supplementary Figure S3).
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Figure 2. Identification and quantification of MAFLD urine samples from mild/severe steatosis and
healthy controls. (A) The Venn diagram for the identified urine proteins from the healthy volunteers
and mild and severe steatosis MAFLD patients. (B) The dynamic range of the intensity-based absolute
quantification (iBAQ) algorithm of abundance of identified proteins from healthy volunteers and mild
and severe steatosis MAFLD patients. (C) Principal component analysis (PCA) of urine proteome of
MAFLD patients and healthy controls.
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To identify specific proteins to distinguish mild from severe hepatic steatosis, the
2087 proteins that were completely shared set by the Venn map (Figure 2A), were clustered
into 12 significant distinct clusters with the quantified values through Mfuzz, which was
performed randomly according to the tendency of protein expression among the groups [47]
(Supplementary Figure S4). Mfuzz intended to find the cluster of urine protein that
was up- or down-regulated from the healthy controls, to mild steatosis and to severe
steatosis, of which their expression level could directly reflect the severity of hepatic
steatosis and be easier for clinical practice. In our study, cluster three contained consistently
up-regulated proteins from healthy controls to mild hepatic steatosis and to severe hepatic
steatosis patients, whereas clusters one and eight contained the consistently down-regulated
filter panels (Figure 4A). We processed ANOVA and Mfuzz using the full set of proteins
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parallelly and independently. The ANOVA analysis helped us find 53 significant proteins,
but it could not tell us the tendency of proteins, and the Mfuzz analysis could help us
obtain the tendencies of protein expressions among the groups (cluster one, three, and
eight are the ones we were interested in). Then we combined these results together and
identified 15 significantly changed proteins, (Supplementary Figure S5) including nine
unique proteins in the up-regulated panel and six specific proteins in the down-regulated
panel (Figure 4B). These filtered proteins were highly associated with liver development,
immune system processes, the regulation of immune system processes, carboxypeptidase
activity, and GTPase activity (Figure 4B). Moreover, among these 16 proteins, Pearson
correlation analysis found that there were 2 of 15 unique proteins, urine alpha-1-acid
glycoprotein 1 (ORM1) and ceruloplasmin, that showed the most significant correlation
with the clinical parameters of MAFLD status, including liver fat content, fibrosis, ALT,
triglycerides, glucose, HOMA-IR, and C-reactive protein (Figure 4C, data expressed as
log2). Numerically, the alpha-1-acid glycoprotein 1 (ORM1) from cluster three (up-regulated
panel) was 4.5-fold (Un-log2) higher in mild steatosis, and 7.1-fold higher in severe steatosis.
Ceruloplasmin from cluster three (up-regulated panel) was 3.1-fold higher in mild steatosis
and 4.8-fold higher in severe steatosis (Figure 4D). The diagnostic accuracy of ORM1
and ceruloplasmin for mild hepatic steatosis (ROC 0.911, 95% CI 0.763–1.000, p = 0.008
(sensitivity 87.5% and specificity 85.7%) and ROC 0.964, 95% CI 0.877–1.000, p = 0.003
(sensitivity 100.0% and specificity 85.7%)) and severe hepatic steatosis (ROC 0.625, 95%
CI 0.366–0.884, p = 0.135 (sensitivity 66.7% and specificity 62.5%) and ROC 0.708, 95% CI
0.474–0.943, p = 0.123 (sensitivity 58.3% and specificity 87.5%)) was calculated based on the
expression intensity of proteomic data (Figure 4E).

3.3. Validation by Western Blot and ELISA

Western blot and ELISA (results were normalized to the urine creatinine excretion)
were performed to validate the expression of ORM1 and ceruloplasmin in the urine samples
of MAFLD patients. In the validation set, 30 cases without any kidney disease or other liver
diseases were also included, with 10 healthy controls, 10 mild hepatic steatosis patients, and
10 severe hepatic steatosis patients. Figure 5A shows the baseline characteristics of patients
in the validation set, in which the distribution was equal between age (p = 0.395), male
gender (p = 0.451), fasting glucose (p = 0.056), etc. In the ELISA test, both ceruloplasmin
(healthy control 3.02 ± 1.43 vs. mild steatosis 4.27 ± 1.18 vs. severe steatosis 5.61 ± 1.31,
p < 0.001) and ORM1 (healthy control 1.19 ± 1.085 vs. mild steatosis 3.41 ± 2.61 vs. severe
steatosis 4.68 ± 3.154, p = 0.011) showed an increased tendency from healthy controls to
mild steatosis and severe steatosis (Figure 5B), and these results were further validated
by the western blot (Figure 5C). Moreover, based on the ELISA, ceruloplasmin (ROC 0.78,
95% CI 0.57–0.91, p = 0.034, sensitivity 81.5%, specificity 79.5%) and ORM1 (ROC 0.87, 95%
CI 0.69–0.94, p = 0.005, sensitivity 96.5%, specificity 82.5%) showed moderate diagnostic
accuracy in distinguishing mild steatosis from the healthy controls. Ceruloplasmin (ROC
0.79, 95% CI 0.58–0.92, p = 0.028, sensitivity 91.5%, specificity 80.5%) and ORM1 (ROC 0.81,
95% CI 0.61–0.91, p = 0.019, sensitivity 82.5%, specificity 81.5%) also showed moderate
diagnostic accuracy in distinguishing severe steatosis from mild steatosis (Figure 5D).
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Figure 4. Two proteins were finally filtered for distinguishing mild/severe steatosis. (A) Among
12 clusters, cluster 3 included consistently up-regulated proteins from healthy controls to mild hepatic
steatosis and to severe hepatic steatosis patients, whereas clusters 1 and 8 included consistently
down-regulated proteins. (B) The GO analysis and expression (log2) of the filtered proteins (red color
for up-regulated and green for down-regulated). (C) The Pearson association of 9 unique filtered
proteins with clinical parameters. (D) The expression intensity (Un-log2) of selected ORM1 and
ceruloplasmin, which were most strongly correlated with liver fat content (measured by MRI-PDFF),
fibrosis, ALT, triglyceride, glucose, HOMA-IR, and C-reactive protein. (E) The diagnostic accuracy of
ORM1 and ceruloplasmin for hepatic steatosis from healthy controls (right panel) and severe hepatic
steatosis from mild hepatic steatosis patients (right panel) was calculated based on the expression
intensity of proteomic data.
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Figure 5. Validation of ceruloplasmin and ORMA1 in urine samples. (A) Baseline characteristics of
participants included in the validation set according to mild hepatic steatosis (liver fat content 5–10%)
and severe hepatic steatosis (liver fat content > 10%). Quantitative data were expressed as mean ± SD.
For all laboratory measures and for continuous demographics: 1-way analysis of variance test with
Bonferroni adjustments. Proportions: percentage. (B) ELISA. (C) Western blot; figure below was
calculated by relative absorbance units and normalized to urine creatinine excretion. (D) The ROC
curve (using ELISA results) for distinguishing mild steatosis and severe steatosis. NC, healthy control;
MS, mild steatosis; SS, severe steatosis.

4. Discussion

The present study provides the first urine proteomics data on mild/severe hepatic
steatosis according to the measurement of MRI-PDFF in MAFLD patients. Rather than
focusing on a single biomarker or a subset of molecular markers, the present proteomics
data provide a multiparameter and multistage map of NAFLD and NASH. In the present
study, we found that the urine molecular characteristics of hepatic steatosis patients showed
dysregulation of the carbohydrate derivative catabolic process, the glycosaminoglycan
process, the aminoglycan metabolic process, the catabolic process, the inflammatory re-
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sponse, the insulin-like growth factor receptor level, and GTPase complexes. Furthermore,
we demonstrated that urine ceruloplasmin and ORM1 were most associated with liver fat
content, fibrosis, ALT, triglycerides, glucose, HOMA-IR, and C-reactive protein. Validation
by western blot and ELISA confirmed the expression levels and diagnostic value of urine
ceruloplasmin and ORM1.

Urine is more accessible and non-invasive than blood tests; thus, urine has been
proposed in multiple research fields as a biomarker of human diseases [29,49,50]. Our data
and further validation studies could provide specific targeted clinical assays that could
be developed for future clinical use. The GO and KEGG analyses in the present study
showed the glycosaminoglycan/carbohydrate/inflammatory response/GTPase complex
in urine, which was a consistent molecular pattern with previous hepatic tissue and serum
proteomics data [32,33], indicating that the urine proteome could reflect the natural features
of the human body in MAFLD. Similarly to previous metabolomic data focusing on steatosis
without T2DM [11], the majority (19 of 20) of patients included in the present study were
from the Hepatology Center of the Infectious Disease Department, and only one of them
was clinically diagnosed with T2DM. However, GO analysis showed that insulin-like
growth factor receptors have also been identified, indicating that several proteins could
be identified to screen pre-diabetic patients. Moreover, it is generally well known that
severe NAFLD is associated with chronic kidney disease [51]. A recent meta-analysis
indicates that NAFLD is significantly associated with a ~1.45-fold increased long-term risk
of incident chronic kidney disease stage ≥ 3 [52]. Urine is a direct product of the kidney,
and its composition is greatly influenced by kidney function. In humans with normal
kidney function, large proteins are unlikely to filter through the permselective barrier into
the urine. However, the patients included in the present study were all confirmed not to
have any kidney diseases, further suggesting that our results directly reflect the natural
characteristics of patients with steatosis. Moreover, the results of the western blot and
ELISA were normalized by urine creatinine, as described in a previous method that was
applied in the investigation of kidney and prostate cancer [41–43]. There was a possible
explanation wherein the previous study found that rats exposed to perfluorooctanoic acid
showed body weight loss, significant liver swelling, reduced urea metabolism, a reduced
urea concentration in urine, and an increased urea concentration in serum, in comparison
with normal control rats [53]. A high urea content in serum rather than in urine may
suggest that perfluorooctanoic acid exposure either decreases the ability of the liver to
metabolize urea, or that urea may leak into the bloodstream due to the hepatocyte damage.
Taken together, the urine molecular pattern was consistent with the molecular pattern of
the hepatic tissue and serum proteomics data, indicating that urine is an important source
of biomarkers.

The metabolic mechanisms leading to NAFLD reflect an imbalance of energy
metabolism in the liver: excess energy, mostly in the form of carbohydrates and fat, en-
tering the liver relative to the ability of the liver to oxidize this energy to CO2 or export
it as very-low-density lipoproteins (VLDLs) [54]. On the other hand, glucokinase and
hepatic glycogen synthesis reflect the importance of direct hepatic insulin signaling in
regulating hepatic glycogen metabolism [55]; thus, the increased insulin further promotes
de novo lipogenesis [54]. The class I-PI3-kinase (PI3K)–Akt/protein kinase B (PKB)–mTOR
signaling pathway, through which insulin indirectly activates mTOR and suppresses au-
tophagy, is also known to regulate glycophagy [56]. Placental factors may also promote
NAFLD, including enhanced lipid and glucose transport, oxidative stress, and inflamma-
tion [57]. However, if hepatic steatosis can be reversed through metabolic interventions,
then liver inflammation, liver fibrosis, and diabetes can be resolved, providing a rationale
and a roadmap for the development of new strategies to address metabolic dysregula-
tion in NAFLD and NASH [2,3,54]. In the present study, all the factors mentioned above
deregulated the carbohydrate, glyco-, inflammatory response, insulin, PI3K–Akt signaling
pathway, and cholesterol metabolism-related alteration, which could be detected in the



Diagnostics 2022, 12, 1412 14 of 19

urine of MAFLD patients, providing an early and non-invasive insight into the diagnosis
of hepatic steatosis.

Ceruloplasmin is a copper-containing circulating protein, known as “blue substance
from plasma”, which is synthesized and secreted by hepatocytes and is mostly reported in
Wilson’s disease. Non-alcoholic fatty liver disease, with the lowest liver and circulating
concentrations of Cu2+, as well as ceruloplasmin, has a more severe iron overload [58].
Genetically, ceruloplasmin variants are associated with reduced serum ceruloplasmin,
which is associated with iron deposition in the liver and disease progression in patients
with NAFLD [58–60]. Regarding the mechanism, ceruloplasmin is a multi-copper protein
and it plays a critical role in iron homeostasis because it is a ferroxidase transforming
noxious Fe2+ to Fe3+ and also serves as a transmembrane iron passage, allowing the release
of iron to plasma Transferrin by stabilizing Ferroportin-1 [58,60,61]. However, it is still
controversial that Cu and ceruloplasmin are related to clinical outcomes in patients with
NAFLD and obesity. In one study, both Cu and serum ceruloplasmin were negatively
associated with siderosis, ferritin, and HOMA-IR, but not liver steatosis [58]. Another
cross-sectional study also found no association between the risk of NAFLD and serum Cu
and ceruloplasmin levels [12]. On the contrary, some researchers found that Cu is elevated
in visceral adipose tissue and liver, with little steatosis in obese patients, likely due to the
concurrent increase in ceruloplasmin [62,63]. The present study showed that the urine level
of ceruloplasmin, instead of serum ceruloplasmin, was associated with liver fat content,
fibrosis, ALT, triglycerides, glucose, HOMA-IR, BMI, and C-reactive protein, indicating that
a loss of urine ceruloplasmin is related to MAFLD. As a possible explanation, a previous
study reported that the clearance of ceruloplasmin, IgG4, and IgG was significantly higher
in the impaired glucose tolerance group and T2DM than in the control group [64–66].

Alpha-1-acid glycoprotein (AGP or ORM1) is an acute-phase protein and is majorly
synthesized by hepatocytes in response to pro-inflammatory cytokines and immunomod-
ulatory effects [67]. ORM1 was also found to be increased in T2DM [68]. ORM1 was
significantly elevated in sera, liver, and adipose tissues from mice with high-fat-diet (HFD)-
induced obesity and could function through leptin receptors to regulate food intake and
energy homeostasis in response to nutrition status [69]. The enforced expression of ORM1
in the arcuate nucleus significantly decreased food intake, body weight, and serum insulin
levels [69]. Moreover, a recent study reported that the administration of ORM1 ameliorated
obesity and exerted a direct anti-fibrosis effect in adipose tissue via AMPK activation [70].

There were other highlighted proteins in the present study with future prospects for
clinical translation, including 3-mercaptopyruvate sulfurtransferase (MPST), cell adhe-
sion molecule (CADM1), angiotensin-converting enzyme (ACE), ORM1 and alpha-1-acid
glycoprotein1 (ORM2), beta-ala-his dipeptidase (CNDP1), and Ras-related protein Rab-
5B (RAB5B). Of 15 identifed proteins in the present study, the GO anlaysis showed that
almost 40% were related to metabolic/carboxypeptidase activity, which are the keys to
pathogenesis of a simple non-alcoholic fatty liver; the GO analysis showed that another
40% were related to immune dysregulation, including CADM1, Prolactin-inducible protein
(PIP), and ORM1 and ORM2, of which the immune dysregulation was of liver inflam-
mation and a progression to non-alcoholic steatohepatitis (Ref. Sheka AC et al. Jama.
2020;323(12):1175–1183). Of the 15 identifed proteins, MPST was reported to be a poten-
tial therapeutic target for NAFLD, and that the fatty acids promote fatty liver disease
via the dysregulation of the MPST/hydrogen sulfide pathway (Ref. Li M et al. Gut.
2018;67(12):2169–2180). On the other hand, RAB5B, belonging to the family members of
Ras-related protein, is the regulator of membrane trafficking and exosome formation, which
might be related to the excretion of unidentifed proteins from donor cells (Peinado H et al.
Nat Med. 2012;18(6):883–891). Nevertheless, the other 11 of 15 identifed proteins were not
investigated in NAFLD, which require future studies to further investigate the underly-
ing mechanism.

There were limitations in the present study. Firstly, the number of patients included in
the present study was relatively small. Even the urine samples that are simple to collect,
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process, and store, the MRI-PDFF to determine the hepatic steatosis was a time-cost of
40–60 min for one participant, especially during the present pandemic time of COVID-19
causing the limited medical resource to be overwhelmed. Larger samples in a future study
will likely mitigate the possible sampling bias. However, the discovered potential urine
biomarkers were further confirmed by western blot and ELISA, indicating the possible med-
ical bench-to-bed transmission. Due to the limited sample size, logistic regressions were not
performed to validate whether the urine-based ORM1 and ceruloplasmin were indepen-
dent biomarkers after adjusting for confounding factors, including BMI, age, transaminase,
insulin resistance, etc. A future larger study would ideally address those confounding
factors. Secondly, the absence of liver biopsies restricted the distinction of progressive
liver diseases and represents a drawback of the present approach. However, the current
study describes the first urine proteomics approach to address hepatic steatosis in MAFLD
patients. Thus, the MAFLD diagnosis was more based on metabolic disorders, and steatosis
was diagnosed by imaging techniques such as MRI-PDFF; a liver biopsy was not required
in the design of the present study, which was based on hepatic steatosis diagnosis. More
importantly, urine ORM1 and ceruloplasmin were safer to obtain, with fewer technical
challenges than MRI-PDFF. Lastly, the present study was focused on hepatic steatosis, the
results of fibrosis was not separately analyzed and discussed in present study. We are
currently expanding our sample size and adding Magnetic Resonance Elastography (MRE)
data to further investigate how urine proteomic data could diagnose fibrosis among the
MAFLD patients in the future study.

In conclusion, current MAFLD and hepatic steatosis diagnoses are more based on
imaging techniques or biomarkers rather than a liver biopsy. Proteomics profiling demon-
strated that the molecular pattern was present in the urine samples in hepatic steatosis
patients. ORM1 and ceruloplasmin are potential biomarkers to distinguish mild steatosis
from healthy controls, and severe steatosis from mild steatosis, in patients with MAFLD.
Urine-based ORM1 and ceruloplasmin are more accessible and non-invasive compared
to blood tests; in addition, they carry no radiation risk and there is no requirement for
technical expertise as with MRI-PDFF.
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proteins in the MAFLD patients. Figure S4, Clustering of commonly identified proteins illustrating
specific clusters of proteins in MAFLD patients. Cluster 3 stands for the unique, consistently up-
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