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INTRODUCTION: Adverse histopathological status (AHS) decreases outcomes of gastric cancer (GC). With the lack of

a single factor with great reliability to preoperatively predict AHS, we developed a computational

approach by integrating large-scale imaging factors, especially radiomic features at contrast-enhanced

computed tomography, to predict AHS and clinical outcomes of patients with GC.

METHODS: Five hundred fifty-four patients with GC (370 training and 184 test) undergoing gastrectomy were

retrospectively included. Six radiomic scores (R-scores) related to pT stage, pN stage, Lauren &

Borrmann (L&B) classification, World Health Organization grade, lymphatic vascular infiltration, and

an overall histopathologic score (H-score) were, respectively, built from 7,0001 radiomic features.

R-scores and radiographic factors were then integrated into prediction models to assess AHS. The

developed AHS-based Cox model was compared with the American Joint Committee on Cancer (AJCC)

eighth stage model for predicting survival outcomes.

RESULTS: Radiomics related to tumor gray-level intensity, size, and inhomogeneity were top-ranked features for

AHS. R-scores constructed from those features reflected significant difference between AHS-absent

and AHS-present groups (P < 0.001). Regression analysis identified 5 independent predictors for pT

andpNstages, 2 predictors for Lauren&Borrmannclassification,WorldHealthOrganization grade, and

lymphatic vascular infiltration, and 3 predictors for H-score, respectively. Area under the curve of

models using those predictors was training/test 0.93/0.94, 0.85/0.83, 0.63/0.59, 0.66/0.63, 0.71/

0.69, and 0.84/0.77, respectively. The AHS-based Cox model produced higher area under the curve

than the eighth AJCC staging model for predicting survival outcomes. Furthermore, adding AHS-based

scores to the eighth AJCC staging model enabled better net benefits for disease outcome stratification.

DISCUSSION: The developed computational approach demonstrates good performance for successfully decoding

AHS of GC and preoperatively predicting disease clinical outcomes.

SUPPLEMENTARY MATERIAL accompanies this paper at http://links.lww.com/CTG/A94
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INTRODUCTION
Gastric cancer (GC) is the fifth most common cancer and the
second leading cause of cancer deathworldwide (1). Although the
incidence of GCs worldwide has generally declined in recent
decades, the 5-year survival rate is still not optimistic (2). Gen-
erally, the 5-year survival rate of GCswas found to be significantly

correlated with TNM (tumor, lymph node, and metastatic)
staging (3–5). However, there were also large variations in clinical
outcomes among patients receiving similar treatment at the same
TNM stage (4,6). An increasing number of studies have found
different histopathological types are closely related to the prog-
nosis of GCs. Studies have found patients with medium and
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poorly differentiated carcinomas, signet ring cell carcinomas, and
mucinous carcinomas (histopathological type according to the
World Health Organization [WHO] classification) are proved to
be more aggressive (7–11). Previous studies indicated that diffuse
type (histopathological type according to Lauren classification)
and Borrmann type IV (histopathological type according to
Borrmann classification) patients were associated with poor
prognosis (7,12–14). Besides, several studies demonstrated that
lymphatic vascular infiltration (LVI) of the tumor is an additional
prognostic marker (6,7,15,16). Taken together, the histopatho-
logical status is an important risk factor and exerts excellent
ability to classify survival of patients with GCs. If high-risk
patients are identified before radical gastrectomy, individualized
treatment regimens can be provided for these patients. Hence, it is
very important to establish preoperative biomarkers and/or sig-
natures for decoding histopathological status and predicting the
postoperative outcomes of patients with locally advanced GCs.

Currently, preoperative endoscopic biopsy is usually used to
obtain histopathological results of GC. However, endoscopic bi-
opsy is invasive and subjective to evaluate the tumor stage and
histopathological status, and there are no uniform guidelines for
biopsy specimen identification (17). The role of computed to-
mography (CT), even if controversial, can show the site, shape,
and depth of infiltration of a tumor, which is fundamental for
evaluating T and N stages of the gastric disease (3,18,19). Re-
cently, several studies have shown the preoperative implications
of CT findings for GCs’ histopathological status (16,20,21). But
despite encouraging results in recent clinical studies have been
demonstrated, expert-level performance of radiographic imaging
for gastric disease is still controversial, and a variety of imaging
findings have been described with variable examination utilities.
Previously described morphologic or functional methods at CT
or magnetic resonance images have shown inconsistent re-
producibility. Therefore, task difficulties remain about how to
best design adequate measurement that achieves the goals of risk
communication to enable lesion to be identified or outcome to be
predicted accurately. Recently, radiomics, a newly emerging form
of imaging analysis that extracts relevant features from large-scale
imaging data, has shown an advantage to offer improved di-
agnostic, prognostic, and predictive accuracy as compared to
conventional radiographic approaches (22–24). However, the use
of radiomics as clinical biomarkers still necessitates evidence
supports, and the method of which still necessitates amelioration
to achieve routine clinical adoption. Its prospective aspect in the
evaluation of gastric diseases is still unclear.

Therefore, the purpose of this study was to develop a compu-
tational-assisted approach that relies primarily on large-scale
radiographic-radiomic (RR) features from contrast-enhancedCT
images, with the aim to elaborate on this quantitative approach
could help decipher histopathological characteristics of GCs and
predict patients’ postoperative outcomes.

MATERIALS AND METHODS

Patients

This was a retrospective study involving routine at a single
medical center. Ethics committee approval was granted by local
institutional ethics review board with a waiver of written in-
formed consent. All procedures performed in studies involving
human participants were in accordance with the 1964 Helsinki
Declaration and its later amendments.

We queried our institution’s medical database to derive all
histologically proved cases of GCs between January 2014 and
December 2016. A total of 783 histologically proved cases of GCs
were identified in this query. Among all patients, we included
patients who fulfilled the following criteria: (i) patients who had
preoperative CT images with optimal gastric distension;
(ii) patients whose primary gastric lesion was detectable on CT
images; and (iii) patients who underwent standard gastrectomy
and without the history of preoperative chemoradiation therapy.
Thereafter, a total of 554 consecutive patients were identified and
comprised the primary cohort according to the patient recruitment
pathway as well as the inclusion and exclusion criteria listed in
supplemental data (see Figure S1, Supplementary Digital Content,
http://links.lww.com/CTG/A94). Median time interval between
CT examination and surgery was 9 days (range, 6–14 days).

CT image acquisition

For all examinations, a 128-slice CT scanner was used (SOMA-
TOM; Definition AS1, Siemens, Forchheim, Germany). The CT
scans, covering from the liver to the hypogastric region, were
acquired during a breath-hold with the patient supine. The detail
parameters and imaging methodologies were summarized in
supplemental data (S-text-1, see Supplementary Digital Content,
http://links.lww.com/CTG/A94).

Surgical procedure and histopathological classification

All patients underwent primary gastrectomy with regional lymph
node (LN) dissection according to the Japanese GC treatment
guidelines 2010 (25). The perigastric LNs (N1), the LNs along the
left gastric, common hepatic, celiac, and splenic arteries, and those
at the splenic hilum (N2) were systematically dissected, regardless
of their appearance on the CT images. LNs in the hepatoduodenal
ligament, retropancreatic artery,mesenteric artery,midcolic artery,
and para-aortic regions (N3/N4) were dissected if they were visible
and palpable at surgery. Node packets were sent separately for
microscopic examination for the presence of metastasis.

Postoperative histopathological specimens and node packets
were analyzedbypathologistswithin the sameacademic institution
with subspecialty training in gastrointestinal (GI) pathology. His-
topathological variables included thepTstage (pT1–pT4), pNstage
(pN0–pN4), Lauren & Borrmann (L&B) classification, WHO
classification, and absence or presence of LVI. Pathological stage
was assessed according to the eighthAmerican JointCommittee on
Cancer (AJCC) staging system (26).

Prognostic association of histopathologic status of GCs with
overall survival (OS) was demonstrated in previous studies
(7,9,12,13,15). Thus, in the current study, the histopathological
status was scaled by: (i) pT1-2 stage (0 score) vs pT3-4 stage
(1 score); (ii) pN0 stage (0 score) vs pN1 stage (1 score); (iii) low-
L&B stage (0 score, intestinal types and Borrmann types I–III) vs
high-L&B stage (diffuse type or Borrmann type IV) grade;
(iv) low-WHO grade (0 score, papillary carcinoma or high
differentiated tubular adenocarcinoma) vs high-WHO grade
(1 score, medium differentiated tubular adenocarcinoma or
poorly differentiated tubular adenocarcinoma or mucinous ade-
nocarcinoma or signet ring cell carcinoma); and (v) LVI2 (0 score)
vs LVI1 (1 score). Finally, an overall histopathological score
(H-score), representing the disease’s overall aggressiveness, was
derived by summing all status scores at each histopathological
subtype. Patients were classified into low-H-score (0–3) and high-
H-score (4–5) category, respectively. Adverse histopathological
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status (AHS) was those with higher pT stage, higher pN stage,
higher L&B grade, higher WHO grade, LVI1, or higher H-score.

Follow-up

After curative surgery, all patients were followed upwith intervals
of 3–6 months on the base of imaging examinations and were
censored at the time of recurrence, death, emigration, or
December 31, 2018, whichever came first.

Radiographic evaluation

All CT images were retrospectively interpreted by 2 radiologists
(C.L. and L.Q.) who had 3-year (C.L.) and 10-year (L.Q.) expe-
rience in reading GI images. Both the readers were members of
the institution’s GI diseasemanagement team and had read.500
GI CT studies.

Our radiographic evaluation, referring to the methods pre-
viously reported (18,26–28), included several structured imaging
features of GCs as follows: (i) region of tumor involvement
(cardia, fundus, body, or antrum); (ii) maximum length of the
tumor (L-max); (iii) tumor margin (sharply defined and ill de-
fined); (iv) tumor growth pattern (intramural, extramural,
transmural, diffusive, or invasive); (v) intratumor necrosis (ab-
sent or present); (vi) tumor ulceration (absent or present);
(vii) serosal invasion (absent or present), wherein the serosal
invasion was defined as an irregular or nodular outer margin of
the serosal layer and/or a dense band-like perigastric fat in-
filtration (8,13) and blurry perigastric fat space (absent or pres-
ent); (viii) radiographic T stage (rT1, rT2, rT3, and rT4); (ix)
tumor arterial enhancement (TAE), which measured the CT
Hounsfield unit at the target region; (x) tumor parenchymal en-
hancement (TPE); (xi) the tumor contrast between arterial and
parenchymal enhancement (CAP); and (xii) the short axis length
of the largest LN discernible (LND) was individually determined,
and LNDs of less than 5 mm were rounded down to 0 mm.

All cases were scored individually first and then reviewed to-
gether by 2 readers 2 weeks after individual evaluation. Any dis-
agreement at informed consent between the readers was discussed
until a final standard consensus was generated. Individual scores
were designated for the calculation of interobserver agreement.
Consenting scores were used for classification performance. The
measurable radiographic features such as L-max, LND, TAE, TPE,
and CAP were averaged between the 2 radiologists.

Radiomic features

In the next step, 2 radiologist residents (Q.L., reader #3; and
Q.-X.F., reader #4) whowere not involved in the abovementioned
radiographic interpretation analysis were asked for radiomic
analysis. Lesion segmentation was semiautomatically performed
with a dedicated commercial software package (Frontier, Syngo
via, Siemens healthcare), wherein a user-defined region of interest
was contoured by the radiologist to initially overlay the lesion and
perinormal tissue, then a dichotomic classification algorithm was
used to automatically segment the tumor from perinormal lesion
step by step (Figure 1).

After lesion segmentation, imaging features were analyzed
from target volumes using an open-source python package for the
extraction of radiomic features (https://pyradiomics.readthedocs.
io/en/latest/#) (23). Image normalization was performed using
amethod that remaps the histogram tofit withinm6 3s (m: gray-
level mean between the volumetric interest and s: gray-level SD).
A total of 1,210 radiomic features were computed for target

volume based on the following 9 texture analysis methods
available in the software package: (i) 19 features of first-order
intensity; (ii) 13 features of shape; (iii) 16 features of gray-level
size zone matrix (GLSZM); (iv) 16 features of run-length matri-
ces; (v) 5 features of neighborhood gray-tone difference matrix;
(vi) 14 features of gray-level difference matrix; (vii) 23 features of
gray-level co-occurrencematrix; (viii) 368 features of log-sigma 2,
3, 4, and 5 mm; and (ix) 736 features of wavelets. The extracted
radiomic features were normalized to a standard unit with
0 center using the following equation:

xn
!normalized ¼ xn

!2 xn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1n2 1 x2n2 1…1 xmn
2

p ; (1)

where xn
! is the value of feature N, and xn is the average value of all

features.
To evaluate intraobserver reliability, reader #3 repeated the

feature extraction twice in a 1-week period. Reader #4 completed
the remaining image segmentations, and the readout sessions
were conducted over a period of 2 months. The reliability was
calculated by using intraclass correlation coefficient (ICC).
Radiomic features with both intraobserver and interobserver ICC
values greater than 0.9 (indicating excellent stability) were se-
lected for subsequent investigation.

AHS-related R-scores

Six R-scores related to pT stage, pN stage, L&B classification,
WHO grade, LVI status, and H-score were developed, re-
spectively. Data were randomly designated training/validation
(n5 370) and test (n5 184) group, respectively. The test data set
helped test the accuracy of model conducted from training data.

Reducing the feature space dimension aims to discard un-
informative characteristics, prevent overfitting, speed up the
learning process, and improve themodel’s interpretability. A least
absolute shrinkage and selection operator (Lasso) logistic re-
gression algorithm, with penalty parameter tuning conducted by
10-fold cross-validation, was then applied to select AHS-related
radiomic features with nonzero coefficients from the primary
training cohort. The R-score was generated through a linear
combination of selected features weighted by their respective
coefficients as depicted in equation 1:

Y ¼ intercept1+
n

i¼ 1
bi 3 logðxiÞ (2)

where Y is the output, bi is the nonzero coefficient, and xi is the
variable selected by Lasso analysis.

Development, performance, and validation of predictive models

Univariate and multivariate regression analyses were used to
develop the riskmodels, namely RRmodel, for predicting AHS in
the primary cohort of training set. Candidate variables were age,
sex, 13 consenting radiographic features, and 6 developed
R-scores. Variables at univariate analyses at a significant level
were candidates for stepwise multivariate analysis. Predictive
model was formulated based on the results of multivariate re-
gression analysis. The model is based on proportionally con-
verting each regression coefficient in multivariate logistic
regression to a 0- to 100-point scale. The effect of the variable with
the highest b coefficient (absolute value) is assigned 100 points.
The points are added across independent variables to derive total
points, which are converted to predicted probabilities (Pi).
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Statistical analysis

Categorical variables were compared by using the x2 test or
Fisher exact test. Continuous variables were compared by
using the Student t test or Mann-Whitney U test, when
appropriate.

The discrimination performance of established models
was quantified by the receiver operating characteristic
curve and area under the curve (AUC) value. The performance
of the RR models was internally validated in an indepen-
dent test set by using the formula derived from the primary
cohort.

OS was computed from the date of surgery to the date of
death or censored at the date of last follow-up. Recurrence-
free survival (RFS) was defined as the interval between surgery
and radiographic detection of recurrence, last follow-up, or
death. Survival curves were generated by using the Kaplan-
Meier method and compared by 2-sided log-rank tests. Uni-
variable and multivariable analyses with Cox proportional
hazards regression determined predictors of disease-specific
recurrence and disease-specific mortality. Variables that
reached statistical significance at the univariable analysis were
considered for the multivariable model. Statistical analysis
was performed by using R software (version 3.4.4, R Project
for Statistical Computing, www.r-project.org). A 2-sided P
value less than 0.05 was considered to indicate statistical
significance.

RESULTS
Table 1 describes the characteristics of the analysis cohort. The
prevalence of high-pT stage, pN1 stage, high-L&B classification,
high-WHO grade, and LVI1 was 60.1% (333/554), 60.5% (335/
554), 55.2% (306/554), 78.9% (437/554), and 51.6% (286/554),
respectively, according to the histopathological definition. The
overall histopathological score was lowH-score in 52% (288/554)
and high H-score in 48.0% (266/554), respectively. The detailed
histopathological results of nodal packages resected at surgery
were summarized in supplemental data (see Table S1, Supple-
mentary Digital Content, http://links.lww.com/CTG/A94).

Radiographic findings

The results of radiographic evaluation are summarized in Table 2.
The interobserver agreement was good for reporting gastric
cardia involvement, L-max, intramural growth, radiographic T
stage, TAE, TPE, and CAP measurement, wherein the kappa or
ICC ranges from0.65 to 0.88. The agreementwas intermediate for
reporting gastric fundus, body and antrum involvement, extra-
mural and transmural growth, necrosis, ulceration, blurry fat
space, and N stage, wherein the coefficient ranges from 0.40 to
0.59. The agreement was relatively poor for defining the margin,
diffuse and invasive growth, and peritoneal seeding sign of the
tumor, wherein the coefficient ranges from 0.29 to 0.39.

With the Spearman or Pearson correlation test, 21 radio-
graphic features were associated with pT stage and pN status

Figure 1. Stepwise segmentation of GC with a Frontier software package on Syngo via workstation: First, radiologists manually draw a seed region that
encloses the contour of tumor and adjacent tissues on the target volume (a–b), then tumor contour was semiautomatically segmented slice by slice with
dedicated algorithms and a hand-craft approach, followed by an entire volumetric interest (VOI) (c) and a 3-dimensional view (d) of the tumor were
determined. GC, gastric cancer.
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(correlation coefficients 0.09–0.66, P, 0.05), 12 radiographic
features were associated with L&B classification (correlation
coefficients 0.09–0.19, P, 0.05), 9 radiographic features were
associated with WHO grade (correlation coefficients
0.11–0.17, P, 0.05), 18 radiographic features were associated
with LVI (correlation coefficients 0.05–0.32, P, 0.05), and 18
radiographic features were associated with H-score (correla-
tion coefficients 0.12–0.43, P , 0.05). Among all features,
L-max and radiographic T stage were 2 strong predictors
of AHS.

AHS-related R-scores

The results of radiomic analysis are summarized in Table 3. Lasso
regression model selected 26 pT-related features, 71 pN-related
features, 85 L&B-related features, 39 WHO grade–related fea-
tures, 89 LVI-related features, and 75 H-score–related features,
respectively, on the basis of the primary training cohort (see
Figure S2, Supplementary Digital Content, http://links.lww.com/
CTG/A94). The R-score was then generated through a linear
combination of selected feature weights by their respective coef-
ficients using the formula depicted in equation 1. The AUCs of

Table 1. Clinicopathologic characteristics in training and test groups

Imaging findings Training (n5 370) Test (n 5 184) P

N (%) 66.8 33.2 0.206

Age, n (%) — — 0.200

#60 yr 164/370 (44.3) 86/184 (46.7) —

>60 yr 206/370 (55.7) 98/184 (53.3) —

Sex — — 0.043

Male 276/370 (74.6) 135/184 (73.4) —

Female 94/370 (25.4) 49/184 (26.6) —

Eighth AJCC stage (c-TNM), n (%) — — 0.713

I 64/370 (17.3) 39/184 (21.2) —

II 75/370 (20.3) 41/184 (22.3) —

III 231/370 (62.4) 104/184 (56.5) —

Treatment, n (%) — — 0.941

Gastrectomy 145/370 (39.2) 73/184 (39.7) —

Gastrectomy 1 adjuvant therapy 225/370 (60.8) 111/184 (60.3) —

Pathological T stage, n (%) — — 0.955

pT1 stage 102/370 (27.6) 54/184 (29.3) —

pT2 stage 45/370 (12.2) 20/184 (10.9) —

pT3 stage 70/370 (18.9) 34/184 (18.5) —

pT4 stage 153/370 (41.3) 76/184 (41.3) —

Pathological N stage, n (%) — — 0.539

pN0 stage 146/370 (39.5) 73/184 (39.7) —

pN1 stage 55/370 (14.9) 24/184 (13.0) —

pN2 stage 57/370 (15.4) 27/184 (14.7) —

pN3a stage 70/370 (18.9) 30/184 (16.3) —

pN3b stage 42/370 (11.3) 30/184 (16.3) —

Histopathologic type

WHO score, median (range)a 2.5 (3) 2.5 (3) 0.617

Lauren score, median (range)a 1 (1) 1 (1) 0.872

Borrmann score, median (range)a 0 (1) 0 (1) 0.988

LVI, n (%) 193/370 (52.2) 93/184 (50.5) 0.788

H-score, n (%) — — 0.769

Score 0–3 192/370 (51.9) 96/184 (52.2) —

Score 4–5 178/370 (48.1) 88/184 (47.8) —

Values are no. of findings, and values in parentheses are percentages, unless indicated otherwise.
AJCC, American Joint Committee on Cancer; H-score, histopathologic score; LVI, lymphatic vascular infiltration; WHO, World Health Organization.
aReports are median and range. The pT and pN stages are based on the WHO for Gastric Cancer Guidelines.
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Table 2. Radiographic findings and correlation tests with AHS of GC

Radiographic finding Kappa value

Training

(n 5 370)

Test

(n5 184)

Correlation coefficient

pT

stage

pN

stage

LVI

status

L&B

grade

WHO

grade

H-

score

Zone involved

Cardia 0.75 (0.69–0.81) 122/370 (33.0) 62/184 (33.7) 0.22d 0.11c 0.10c 0.09c 0.07 0.17d

Fundus 0.42 (0.28–0.55) 46/370 (12.4) 26/184 (14.1) 0.24d 0.17d 0.06 0.02 0.12d 0.16d

Body 0.53 (0.46–0.60) 247/370 (66.8) 109/184

(59.2)

0.28d 0.18d 0.13d 0.09c 0.05 0.18c

Antrum 0.59 (0.53–0.66) 208/370 (56.2) 98/184 (53.3) 20.22d 20.09c 20.04 20.06 20.04 20.10

L-max, cma 0.88 (0.86–0.90) 4.68 6 2.26 2.7 6 2.17 0.63d 0.48d 0.32d 0.19d 0.17d 0.43d

Tumor margin (ill defined) 0.35 (0.29–0.42) 235/370 (63.5) 120/184

(65.2)

0.35d 0.33d 0.18d 0.08d 0.12d 0.28d

Tumor growth pattern

Intramural 0.67 (0.23–0.98) 370/370 (100) 182/184

(98.9)

20.05 20.05 0.00 0.01 20.03 0.01

Extramural 0.45 (0.32–0.58) 46/370 (12.4) 20/184 (10.9) 0.28d 0.25d 0.11c 0.11c 0.05 0.17d

Transmural 0.40 (0.27–0.53) 46/370 (12.4) 19/184 (10.3) 0.26d 0.24d 0.15d 0.09c 0.04 0.16d

Diffusive 0.38 (0.27–0.50) 72/370 (19.5) 30/184 (16.3) 0.31d 0.27d 0.20d 0.11d 0.06 0.20d

Invasive 0.39 (0.30–0.48) 138/370 (37.3) 59/184 (32.1) 0.50d 0.35d 0.01 0.13d 0.14d 0.28d

Intratumoral necrosis 0.42 (0.10–0.75) 7/370 (1.9) 4/184 (2.1) 0.06 0.04 0.08 0.02 0.07 0.04

Intratumoral ulcer 0.47 (0.40–0.53) 246/370 (66.5) 117/184

(63.6)

0.32d 0.27d 0.11c 0.03 0.08 0.16d

Blurry fat space 0.46 (0.36–0.56) 87/370 (23.5) 38/184 (20.7) 0.28d 0.30d 0.11c 0.07 0.08 0.14d

Peritoneal seeding sign 0.29 (0.12–0.47) 26/370 (7.0) 12/184 (6.5) 0.27d 0.18d 0.05c 0.03 0.07 0.08

Radiographic T stageb 0.65 (0.60–0.70) 0.66d 0.50d 0.26d 0.15d 0.15d 0.35d

rT1-2 116/370 (31.4) 60/184 (32.6)

rT3-4 154/370 (41.6) 124/184

(67.4)

Radiographic N statusb

rN1 stage (stations 1–6) 0.57 (0.50–0.64) 274/370 (74.1) 131/184

(71.2)

0.45d 0.45d 0.20d 0.11d 0.11d 0.26d

rN2 stage (stations 7–11) 0.59 (0.52–0.66) 135/370 (36.5) 66/184 (35.9) 0.36d 0.35d 0.15d 0.09c 0.09c 0.19d

rN3 stage (stations 12–14) 0.47 (0.34–0.61) 45/370 (12.2) 19/184 (10.3) 0.22d 0.20d 0.13d 0.06 0.02 0.11c

rN4 stage (stations 15 and

16)

0.57 (0.44–0.69) 45/370 (12.2) 18/184 (9.8) 0.12d 0.21d 0.12d 0.06 0.03 0.08

LND, cma 0.74 (0.69–0.78) 0.62 6 0.62 0.61 6 0.67 0.48d 0.52d 0.15d 0.10c 0.11d 0.26d

TAEa 0.85 (0.82–0.87) 1.12 6 0.28 1.09 6 0.25 0.27d 0.17d 0.12d 0.04 0.03 0.12d

TPEa 0.84 (0.81–0.86) 1.23 6 0.27 1.21 6 0.28 0.36d 0.19d 0.13d 0.04 0.09c 0.14d

CAPa 0.84 (0.81–0.87) 0.92 6 0.16 0.91 6 0.18 20.09c 20.03 0.01 20.01 0.01 0.04

Values are no. of findings, and values in parentheses are percentages, unless indicated otherwise.
Continuous data are analyzed by the t test, and counted data are analyzed by x2 tests.
AHS, adverse histopathological status; CAP, tumor contrast between arterial and parenchymal enhancement; GC, gastric cancer; H-score, histopathological score; L&B
grade, Lauren & Borrmann grade; L-max, maximum length of the tumor; LND, the short axis diameter of the largest lymph nodes discernible; LVI, lymphatic vascular
infiltration; TAE, arterial enhancement of the tumor; TPE, parenchymal enhancement of the tumor; WHO, World Health Organization.
aReports are mean and SD.
bRadiographic T and N status are based on Japanese Research Society for Gastric Cancer Guidelines.
cp-value, 0.05.
dp-value, 0.01.
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R-scores in test set were very close to those of training set, sug-
gesting good reproducibility of the newly developed radiomic
signatures in internal validation.

RR classification models

pT status. R-score (odds ratio [OR], 45.6; 95% confidence
intervals [CIs], 14.4–143.9, P, 0.001), TAE (OR, 7.78; 95% CIs,
2.09–28.9, P5 0.002), TPE (.0.42; OR, 0.002; 95% CIs, 0–0.022,
P , 0.001), rT stage (OR, 3.60; 95% CIs, 2.29–5.65, P , 0.001),
and L-max (OR, 1.32; 95% CIs, 0.94–3.19, P 5 0.007) were the
independent predictors of pT status. The classificationmodel was
formed: Y5 22.871 3.823 R-score 1 2.05 3 TAE 2 6.383
TPE 1 1.28 3 rT stage 1 0.27 3 L-max. The resulting classifi-
cation model demonstrated good accuracy in discriminating the
low- from the high-pT stage, with an AUC of 0.93 (95% CI,
0.92–0.94) in training and 0.94 (95 CI, 0.92–0.95) in test data
(Figure 2a).

pN status. R-score (OR, 4.26; 95% CIs, 1.44–12.6, P 5 0.009),
LND (OR, 4.80; 95% CIs, 2.69–8.59, P , 0.001), rT stage (OR,
1.54; 95% CIs, 1.12–2.12, P5 0.008), L-max (OR, 1.15; 95% CIs,
0.98–1.34, P 5 0.047), and blurry fat space (OR, 2.12; 95% CIs,
1.09–4.11, P 5 0.026) were the independent predictors of pN
status. The classificationmodel was formed: Y523.131 1.453
R-score1 1.573 LND1 0.433 rT stage1 0.143 L-max1 0.75
3 blurry fat space. The model demonstrated good accuracy in
discriminating pN1 from pN0, with an AUC of 0.85 (95% CI,
0.82–0.86) in training and 0.83 (95% CI, 0.80–0.85) in test data
(Figure 2b).

L&B grade. R-score (OR, 6.93; 95% CIs, 1.43–33.5, P 5 0.016)
and L-max (OR, 1.12; 95% CIs, 1.01–1.23, P 5 0.023) were the
independent predictors of L&B-related status. The classification
model was formed: Y 5 21.36 1 1.94 3 R-score 1 0.11 3
L-max, demonstrating with an AUC of 0.63 (95% CI, 0.59–0.65)
in training and 0.59 (95% CI, 0.55–0.63) in test data for dis-
criminating the low- from the high-L&B grade (Figure 2c).

WHO grade. R-score (OR, 60.8; 95% CIs, 9.54–387.5, P, 0.001)
and diffusive growth pattern (OR, 2.52; 95% CIs, 1.05–6.04, P5
0.039) were the independent predictors of WHO grade. The
classification model was formed: Y521.951 4.113 R-score1
0.923 diffusive growth, with anAUCof 0.66 (95%CI, 0.63–0.68)
in training and 0.63 (95% CI, 0.61–0.64) in test data for dis-
criminating the low- from the high-WHO grade (Figure 2d).

LVI status.R-score (OR, 15.6; 95%CIs, 4.32–56.2,P, 0.001) and
L-max (OR, 1.17; 95% CIs, 1.05–1.30, P 5 0.005) were the in-
dependent predictors of LVI status. The classification model was
formed: Y522.061 2.743 R-score1 0.153 L-max, with an
AUC of 0.71 (95% CI, 0.68–0.73) in training and 0.69 (95% CI,
0.67–0.71) in test data for discriminating LVI1 from LVI2
(Figure 2e).

H-score. R-score (OR, 7.19; 95% CIs, 4.27–12.1, P , 0.001), tu-
mor margin (OR, 1.65; 95% CIs, 1.06–2.58, P 5 0.028), and
L-max (OR, 1.15; 95% CIs, 1.03–1.28, P 5 0.016) were the in-
dependent predictors of H-score. The classification model was
formed: Y523.321 1.973 R-score1 0.503 tumor margin1

Table 3. Top-ranked radiomic features and AHS-related R-scores with Lasso analysis

Status Features selected Top 3 features

R-score AUC

AHS2 AHS1 P Training Test

pT 26 (1) Wavelet-HLL first-order mean; (2) original

GLRLM long run emphasis; and (3) log-sigma-

3-0-mm 3D GLSZM gray-level variance

0.33 (0.28) 0.79 (0.21) ,0.001 0.88 (0.86–0.91) 0.87 (0.84–0.90)

pN 71 (1) Log-sigma-4-0-mm-3D GLSZM gray-level

variance; (2) wavelet-HLH GLRLM short run

high gray-level emphasis; and (3) wavelet-HLL

first-order mean

0.46 (0.24) 0.69 (0.21) ,0.001 0.75 (0.71–0.79) 0.73 (0.70–0.77)

L&B 85 (1) Log-sigma-5-0-mm-3D GLRLM run

variance; (2) log-sigma-2-0-mm 3D GLSZM

gray-level variance; and (3) wavelet-HLH

GLCM cluster prominence

0.48 (0.17) 0.55 (0.18) ,0.001 0.62 (0.57–0.65) 0.61 (0.55–0.64)

WHO 39 (1) Wavelet-HHL GLSZM zone entropy; (2)

wavelet-HHL GLSZM gray-level variance; and

(3) wavelet-LHH first-order mean

0.74 (0.11) 0.81 (0.11) ,0.001 0.65 (0.61–0.69) 0.63 (0.59–0.67)

LVI 89 (1) Wavelet-LLH GLSZM gray-level variance;

(2) wavelet-HLH NGTDM complexity; and (3)

log-sigma-5-0-mm-3D GLSZM zone entropy

0.45 (0.17) 0.58 (0.16) ,0.001 0.69 (0.65–0.72) 0.68 (0.64–0.71)

H-score 75 (1) Log-sigma-5-0-mm-3D GLSZM zone

entropy; (2) log-sigma-4-0-mm-3D GLSZM

gray-level variance; and (3) wavelet-HLL first-

order mean

0.41 (0.20) 0.74 (0.25) ,0.001 0.79 (0.74–0.82) 0.78 (0.73–0.80)

AHS, adverse histopathological status; AUC, area under the curve of ROC analysis; H-score, histopathologic score; L&B grade, Lauren & Borrmann grade; LVI, lymphatic
vascular infiltration; ROC, receiver operating characteristic; WHO, World Health Organization.
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Figure 2. The ROC curves of RR classification models for predicting adverse histopathological status (AHS) in training and test set: (a) The areas under
the ROC curves representing the satisfactory results can be achieved in discriminating the low- from the high-pT stage. Keys in (a) are the same for
(b) pN status, (c) L&B grade, (d) WHO grade, (e) LVI status, and (f) H-score. FP, false positive; H-score, histopathologic score; L&B grade, Lauren &
Borrmann grade; LVI, lymphatic vascular infiltration; TP, true positive; ROC, receiver operating characteristic; RR, radiographic-radiomic; WHO, World
Health Organization.
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0.14 3 L-max, with an AUC of 0.84 (95% CI, 0.81–0.86) in
training and 0.77 (95% CI, 0.75–0.79) in test data for discrimi-
nating the low- from the high-H-score (Figure 2f).

Validation of RR models

The predictive models were tested in the validation cohort. Using
an optimal threshold that maximizes the Youden index of ROC
analysis from training data, the diagnostic performance of 6 RR
predictive models was summarized in Table 4.

Preoperative predictors of survival

As of December 2018, 428/554 patients (77.3%) were entirely
followed up, and the remaining 126/554 patients (22.7%) were
lost to follow-up. The recurrence rate for this cohort of patients
(including censored data) was 28.5% (158/554); the overall
death rate for this cohort of patients was 36.2% (147/554). The
median RFS was 36 (95% CIs: 21.8–50.3) months; it was 41.2
(95% CIs: 30.8–51.7) months for those with no evidence of re-
currence and 16.5 (95% CIs: 5.2–27.8) months for those with
recurrence. The median OS for all patients was 37.4 (95% CIs:
24.1–50.7) months; it was 41.2 (95% CIs: 30.8–51.6) months for
those with no evidence of death and 18.9 (95% CIs: 7.5–30.3)
months for those with death. The 1-year to 5-year RFS and OS
status are summarized in lift tables in supplemental data (see
Tables S2 and S3, Supplementary Digital Content, http://links.
lww.com/CTG/A94).

The preoperative factors including age, sex, AJCC eighth
stage (26), history of postoperative adjuvant therapy, radiologic
features, and R-scores were integrated into a multivariate Cox
model to determine the predictors associated with disease-
specific recurrence and mortality of the patients after surgery. It
demonstrated that higher L-max (OR, 1.11; 95%CI, 1.03–1.20;P
5 0.008), presence of peritoneal seeding sign (OR, 1.87; 95% CI,
1.18–2.96; P5 0.008), higher R-score of pT (OR, 3.89; 95% CI,
2.22–6.79; P, 0.001), and higher R-score of pN (OR, 1.64; 95%
CI, 1.04–2.57; P 5 0.032) were the independent predictors of
disease-specific recurrence. The older age (OR, 1.02; 95% CI,
1.00–1.19; P 5 0.009), higher L-max (OR, 1.10; 95% CI,
1.01–1.19; P5 0.022), presence of peritoneal seeding sign (OR,
2.04; 95% CI, 1.28–3.26; P5 0.003), higher R-score of pT (OR,
3.96; 95% CI, 2.18–7.23; P , 0.001), and higher R-score of pN
(OR, 1.96; 95% CI, 1.19–3.21; P5 0.008) were the independent

predictors of disease-specific mortality. The AHS-based Cox
model produced higher AUC (0.766; 95% CIs: 0.728–0.801)
than the eighth AJCC staging model (0.653; 95% CIs:
0.611–0.692) for predicting disease-specific recurrence and
produced higher AUC (0.778; 95% CIs: 0.742–0.812) than the
eighth AJCC staging model (0.655; 95% CIs: 0.613–0.694) for
predicting disease-specific mortality. The decision curve anal-
ysis (Figure 3) and Kaplan-Meier analysis (Figure 4) demon-
strated that adding AHS-based scores to the AJCC staging
model resulted in better net benefits and predictive abilities for
stratifying recurrence and death risk of the patients after
surgery.

DISCUSSION
This study was proposed to investigate prognostic aspects of in-
tegration between large-scale radiographic and radiomic features
for preoperative individualized prediction of AHS and clinical
outcomes in a cohort of 554 patients with GC.We report that CT
radiomic features, converted into quantitative R-scores, can be
the independent predictors ofAHS. The riskmodel by integrating
radiographic factors and R-scores can identify various types of
AHS accurately. The model-computed AHS risk showed better
discriminative ability than the eighth AJCC staging model in risk
stratification, and the prognosis could be more accurately pre-
dicted by adding the AHS-based score to the eighth AJCC stage,
which making us believe our research findings can play an im-
portant role and make a significant difference in the current
clinical work of GC.

Clinically distinguishing the degree of pT and assessing the
N stage are crucial for the clinical treatment protocols. Same
with the previous study (3,18,19,28), we found that the accu-
racy of preoperative radiographic evaluation alone for
detecting pT and pN stages was not satisfactory, while the
computational model by integrating multiscale imaging fac-
tors had a great improvement in performance. R-score, TAE,
TPE, rT stage, and L-max were the independent predictors of
pT status, in which R-score was generated through 26 radiomic
features derived from CT images. R-score, LND, rT stage,
L-max, and blurry fat space were the independent predictors of
pN status, in which R-score was generated through 71 radio-
mic features derived from CT images. In addition, Lasso
analysis identified those features related to gray-level intensity,
size, and inhomogeneity of the tumor were the primary com-
ponents of R-scores, suggesting tumors with high pT and pN
stages provided a larger size, a high degree of intratumoral
heterogeneity, and a higher degree of TAE while a lower degree
of TPE. In a study of 153 patients, researchers found that CT
texture parameters, including the maximum frequency, mean,
mode, and entropy, were correlated with pT and pN stages of
GCs (29). Previous studies have shown that GLSZMs have
shown better performance at capturing tumor heterogeneity
than histogram-based features (23,24). Besides, our study in-
cluded more samples, extracted more features, and had higher
predictive accuracy for pT status. And importantly, our simple
RR model, comprising 5 risk factors, could serve as an effective
index to recognize pT and pN status, which can optimize
the individualized treatment program and management of
patients with GCs.

The predictive value of our RR model for L&B classification
was not satisfactory. R-score and L-max were the independent
predictors of L&B-related status, in which gray-level run-length

Table 4. Diagnostic performance of RR models for AHS of GC

Classification

Training Test

SEN SPE ACC SEN SPE ACC

Low- vs high-pT 90.0% 78.6% 85.7% 94.2% 80.0% 88.0%

Low- vs high-pN 84.6% 64.3% 76.8% 83.3% 63.2% 75.0%

Low- vs high-L&B 73.7% 43.0% 59.5% 71.3% 40.0% 58.5%

Low- vs high-WHO 73.2% 44.5% 60.3% 72.8% 43.1% 59.4%

LVI- vs LVI1 67.2% 62.8% 65.1% 76.4% 50.0% 62.7%

Low- vs high-H-score 78.1% 76.8% 77.3% 79.3% 63.8% 71.9%

ACC, accuracy; AHS, adverse histopathological status; AUC, area under the
curve; GC, gastric cancer; H-score, histopathologic score; L&B grade, Lauren &
Borrmann grade; LVI, lymphatic vascular infiltration; RR, radiographic-
radiomic; SEN, sensitivity; SPE, specificity; WHO, World Health Organization.
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matrix run variance, GLSZM gray-level variance, and wavelet-
related cluster prominence were top-ranked radiomic features.
These findings indicated that patients with diffuse type and
Borrmann type IV have more vascular invasiveness, heteroge-
neity, and larger sizes, which makes the lesion more aggressive.
Previous research studies have indicated that Borrmann type IV
and diffuse type in GCs were associated with more advanced and
unfavorable pathological features (7,12–14). However, few
studies have reported the correlation of CT performance and

Borrmann type IV/diffuse type in GCs, which makes it chal-
lenging to predict L&B grades based on radiographic character-
istics. Liu et al. (21) found that CT texture analysis, especially the
maximum attenuation, had a good effect in distinguishing the
diffuse type of GC before surgery, whereas the study informed
rarely used radiomic features, whichmay lead to a disappreciation
of radiomic significance. Kim et al. (30) found that the accuracy of
CT in diagnosing Borrmann type IV is 74.6%. However, the
sample size in their study is small and the radiologists already

Figure 3. TheROC curves and decision curve analysis for eachmodel: (a) ROCs between the AJCC stagingmodel andAHS stagingmodel for the prediction
of disease-specific recurrence. (b) Decision curve and net benefit of the AJCC staging (red) vs AJCC1 AHS staging model (green) for stratification of
disease-specific recurrence. (c) ROCs between the AJCC and AHS stagingmodel for the prediction of disease-specificmortality. (d) Decision curve and net
benefit of the AJCC staging (red) vs AJCC1AHS stagingmodel (green) for stratification of disease-specificmortality. AHS, adverse histopathological status;
AJCC, American Joint Committee on Cancer; AUC, area under the curve; ROC, receiver operating characteristic.
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known the results of gastroscopy before interpreting the CT
image, so the accuracy may be deviate.

Our data showed R-score formed by 39 radiomic features
and diffusive growth pattern were the independent predictors of
WHO grade, and the top 3 radiomic features were all related to
wavelet, which indicated the high propensity for proliferation
and tumor heterogeneity in medium and poorly differentiated
carcinomas, signet ring cell carcinomas, and mucinous carci-
nomas. Li et al. (20) found that quantitative iodine concentra-
tion measurement using dual-phase–enhanced spectral CT
examination is helpful to distinguish poorly differentiated GC
from well-differentiated GC, while the radiation dose is higher
than conventional CT that limited the current clinical applica-
tions. Nevertheless, we did not find study using radiomics to
predict signet ring cell carcinomas in GCs. Taking a step for-
ward, our approach might serve as alternative to assess WHO
grade of GCs.

Our model was stable and reliable for detecting LVI pre-
operatively with an AUC of 0.71 in training and 0.69 in test data.
R-score formed by 89 radiomic features and L-max were the
independent predictors of LVI status. The top 3 radiomic features

are wavelet-related gray-level variance, complexity, and log-
sigma–related zone entropy.These results suggest that patientswith
LVI had a higher risk of intratumoral heterogeneity and neo-
vascularization, which coincided with those reported in literatures.
More evidences had confirmed the potential prognostic value of
LVI in patients with GCs (7,15,16,31). However, few studies have
reported the correlation of the CT and LVI status. Ma et al. (16)
reported that tumor CT attenuation difference between non-
contrast and portal and tumor-spleen attenuation difference in the
portal phase are the independent predictors of LVI in GCs. How-
ever, the study involved only patients with advanced GC, which
led to inevitable research bias. Therefore, it is urgent to estab-
lish a model suitable for patients at an early advanced stage.

Owing to the spatial and temporal heterogeneity of GCs,
a single pathological state cannot accurately provide the complete
histopathological characteristics of the tumor. Therefore, build-
ing a model noninvasively summing all histopathological status
to extract biological information of tumors is an urgent need. The
RRmodel shows a strong ability to stratify patients with GCs into
low and high H-score groups with an AUC of 0.77–0.84, better
than using L&B grade, WHO grade, and LVI status alone, which

Figure4.Kaplan-Meier survival curves of RFS andOS according to the eighth AJCC stage andAHS-based stage. (a) RFS stratified by the eighth AJCC stage.
(b) OS stratified by the eighth AJCC stage. (c) RFS stratified by the AHS-based stage. (d) OS stratified by the AHS-based stage. The AHS-based stagewidens
the distance between the curves and better stratifies the recurrence and death probabilities. AJCC, American Joint Committee on Cancer; OS, overall
survival; RFS, recurrence-free survival.
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can provide additional prognostic information and improve the
pathological risk stratification system of GCs.

In the end of the study, we found that the predicted AHS stage
was independently associated with disease-specific recurrence
and long-term mortality. The prognosis was poor in those with
higher-AHS stage even after radical resection. The AHS-based
Cox model produced higher AUC than the eighth AJCC staging
model for predicting disease-specific recurrence and mortality.
Although the assessment of AHS might not make significant
influence on patient management according to the current
treatment guidelines for locally advanced GC because all these
patients would undergo active surgery, from recent Japanese GC
treatment guidelines, the endoscopic submucosal dissection, D1,
or D1 gastrectomy is preferred in cT1 and cN0 cancers because of
minimal injury, lower cost, high safety margin, and long-term
excellent prognosis. In addition, neoadjuvant chemotherapy is
recommended in those p-stage II or more categories before sur-
gery. However, the major challenges exist on correctly defining
the tumor stage on the base of the conventional imaging staging
system. By this AHS staging scheme, “stage migration”might be
reduced. Therefore, our study is an important preclinical step
targeting for personalized medicine and prognostication.

Our study possesses several limitations. First, this was a ret-
rospective and single center study. Further independent pro-
spective multicenter validation cohort with large-scale data is
needed to validate the robustness and ruggedness of our pre-
diction model. Second, we did not include other possible risk
factors, such as serological markers associated with GCs (33), and
immunohistochemical features, such as Her-2, Ki67, and
VEGFR-2 expression levels (34–36). If combined with other
possible risk factors, the model may provide more accurate
prognosis. Third, the median RFS and OS were relatively short,
and we will improve this defect in our later work.

In conclusion, our study indicated that risk factors derived
from our computational models could serve as strong biomarkers
for preoperatively stratifying AHS in patients with GCs. More-
over, patients with high risk of histopathological status carried
a worse prognosis. Therefore, our models incorporating radio-
graphic and radiomic features might contribute to clinical de-
cision support and personalized medicine in GCs.
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