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Upregulation of an estrogen
receptor-regulated gene by first
generation progestins requires
both the progesterone receptor
and estrogen receptor alpha

Meghan S. Perkins †, Renate Louw-du Toit †, Hayley Jackson,
Mishkah Simons and Donita Africander*

Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
Progestins, synthetic compounds designed to mimic the activity of natural

progesterone (P4), are used globally in menopausal hormone therapy. Although

the older progestins medroxyprogesterone acetate (MPA) and norethisterone

(NET) have been implicated in increased breast cancer risk, little is known

regarding newer progestins, and no significant risk has been associated with P4.

Considering that breast cancer is the leading cause of mortality in women,

establishing which progestins increase breast cancer incidence and elucidating

the underlyingmechanisms is a global priority. We showed for the first time that

the newer-generation progestin drospirenone (DRSP) is the least potent

progestin in terms of proliferation of the estrogen-responsive MCF-7 BUS

breast cancer cell line, while NET and P4 have similar potencies to estradiol (E2),

the known driver of breast cancer cell proliferation. Notably, MPA, the

progestin most frequently associated with increased breast cancer risk, was

significantly more potent than E2. While all the progestogens enhanced the

anchorage-independent growth of the MCF-7 BUS cell line, MPA promoted a

greater number of colonies than P4, NET or DRSP. None of the progestogens

inhibited E2-induced proliferation and anchorage-independent growth. We

also showed that under non-estrogenic conditions, MPA and NET, unlike P4
and DRSP, increased the expression of the estrogen receptor (ER) target gene,

cathepsin D, via a mechanism requiring the co-recruitment of ERa and the

progesterone receptor (PR) to the promoter region. In contrast, all

progestogens promoted the association of the PR and ERa on the promoter

of the PR target gene, MYC, thereby increasing its expression under non-

estrogenic and estrogenic conditions. These results suggest that progestins

differentially regulate the way the PR and ER converge to modulate the

expression of PR and ER-regulated genes. Our novel findings indicating

similarities and differences between P4 and the progestins, emphasize the

importance of comparatively investigating effects of individual progestins

rather than grouping them as a class. Further studies are required to

underpin the clinical relevance of PR/ERa crosstalk in response to different

progestins in both normal and malignant breast tissue, to either confirm or

refute their suitability in combination therapy for ER-positive breast cancer.
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Introduction

Progestins are synthetic progestogens (progesterone

receptor (PR) ligands), that are classified into four consecutive

generations, with the newer fourth-generation progestins

reported to elicit effects more similar to natural progesterone

(P4) than progestins from earlier generations (1–4). For example,

we have shown that fourth-generation progestins, like P4, display

anti-androgenic activity, while the earlier generation progestins

display androgenic activity (5, 6). These progestins are used

globally in both contraception and menopausal hormone

therapy (MHT) (2–4, 7).

While both progestins and estrogens used in MHT have

previously been implicated in increased breast cancer incidence

(8), MHT containing progestins such as first generation

medroxyprogesterone acetate (MPA) (8–12) or norethisterone

(NET) (8, 10, 12), or second generation levonorgestrel (LNG) (8,

12) have been associated with a higher risk than estrogen-only

MHT [reviewed in (11)]. The role of progestins in breast cancer

is, however, not straightforward as some studies have suggested

that progestins such as norethisterone acetate (NET-A) and

LNG are not linked to increased breast cancer risk, while

progestins like MPA and megestrol acetate have been used for

breast cancer treatment [reviewed in (13, 14)]. An added

complexity is the fact that a diverse range of progestins,

known to elicit effects different to each other and P4, are

available for therapeutic use (2, 7, 15). It is thus evident that

both large-scale clinical trials and more molecular studies are

required to directly compare the effects of progestins on breast

cancer risk.

In addition to the estrogen receptor (ER), the PR, previously

considered to only be an indicator of a functional ER in breast

cancer tumors (13, 16, 17), also plays an important role in breast

cancer biology [reviewed in (18)]. Although the importance of

the PR in breast cancer had in fact been recognized by many

research groups (19–26), particularly in terms of the roles of the

PR isoforms, PR-A and PR-B, its significance has only been

appreciated in recent years. The role of the PR in breast cancer is

quite complex, and dependent on several factors. For instance,

the unliganded PR constitutively regulates a gene profile that is

distinct from the profile regulated by the progestogen-activated

PR [reviewed in (27)]. Moreover, the PR can form complexes

with ERa (24, 25, 28–30) and for unliganded PR-B, results in
02
increased ERa-regulated gene expression and breast cancer cell

proliferation (25). Agonist activation of both the PR and ERa,
however, resulted in ERa being directed to new chromatin

binding sites, leading to a gene expression profile that is

associated with a good prognosis in ER-positive breast cancer

(28). Consistent with a positive outcome, it has also been shown

that activation of the PR by P4 or MPA inhibited ERa-associated
gene expression in breast cancer patient-derived xenografts (31).

While the two former studies did not specify the contribution of

the individual PR isoforms, a study by the Greene laboratory

showed that the PR isoforms differentially reprogram estrogen

signaling when both the ER and PR are activated, resulting in

either pro- or anti-tumorigenic effects (32).

This study aimed to directly compare the effects of P4 and

three progestins on breast cancer cell proliferation, anchorage-

independent cell growth and the expression of an ER as well as a

PR target gene, while also elucidating the role of the PR and ERa.
Since progestins are often co-administered with estrogens in

hormone therapies (33) and breast cancer tumors often have

high intratumoral estrogen levels (34), we also investigated the

effects of estrogen-progestin combinations on the above-

mentioned responses. Underpinning these mechanisms would

further our understanding of the differential effects elicited by

progestins, and whether these effects are influenced by the

presence of estrogen, all of which may assist in the design of

hormone therapies with fewer side-effects.
Materials and methods

Cell culture and inducing compounds

The human MCF-7 BUS (also known as MCF-7 BOS) breast

cancer cell line was received from Prof. Ana Soto (Tufts

University, Boston), and authenticated by short-tandem repeat

profiling (NorthGene). The cells were maintained in Dulbecco’s

Modified Eagle’s Medium (DMEM) containing 4.5 g/L glucose

(Sigma-Aldrich, RSA), 5% heat-inactivated (HI) fetal calf serum

(FCS) (Biochrom GmbH, Germany) and 100 IU/ml penicillin

and 100 mg/ml streptomycin (Sigma-Aldrich, RSA) as previously

described (35). All experiments were conducted within the first

35 passages since the cell line was thawed from storage, and only

mycoplasma-negative cells were used. 17b-estradiol (E2), P4,
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MPA, NET, drospirenone (DRSP) and fulvestrant (ICI-182,780;

ICI) were obtained from Sigma-Aldrich, RSA.
Cell viability assays

MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium

bromide) cell viability assays were conducted as previously

described (36) to evaluate effects of E2 and the progestogens

on the proliferation of the MCF-7 BUS breast cancer cell line.

Briefly, MCF-7 BUS cells were seeded into 96-well plates at a

density of 1 × 104 cells per well in phenol red-free DMEM

supplemented with 5% HI-charcoal stripped (CS)-FCS and 100

IU/ml penicillin and 100 mg/ml streptomycin. The next day the

cells were treated with increasing concentrations of E2, P4, MPA,

NET or DRSP, or 1 nM or 100 nM of the progestogens in the

absence and presence of 1 nM E2 for 72 hours. Thereafter, the

cells were retreated with the ligands and incubated for another

48 hours. The cells were subsequently incubated with pre-

warmed MTT solution at a final concentration of 1.25 mg/ml

for 4 hours. The medium was removed and 200 mL dimethyl

sulfoxide (DMSO) was added to each well before the absorbance

was measured at 550 nm.
Anchorage-independent growth

Soft agar assays were conducted as previously described (36).

Briefly, MCF-7 BUS cells were incubated with 1 nM or 100 nM

P4, MPA, NET or DRSP in the absence or presence of 1 nM E2,

or 1 nM or 100 nM E2 only for 21 days. Thereafter, the colonies

were fixed with 37% formaldehyde and stained with 0.005%

crystal violet. Colonies were quantified using ImageJ software

(Version 1.49).
Small interfering RNA transfections

MCF-7 BUS cells were seeded into 10 cm2 dishes at a density

of 2 x 106 cells in phenol red-free DMEM supplemented with 5%

HI-CS-FCS and 100 IU/ml penicillin and 100 mg/ml

streptomycin. The next day the cells were transfected with

either 10 nM non-silencing scrambled sequence control (NSC)
Frontiers in Endocrinology 03
siRNA (Qiagen, USA) or siRNA directed against the human PR

isoforms (GS5241; a combination of 4 target-specific siRNAs,

Qiagen, USA), or 25 nM NSC siRNA or siRNA directed against

human ERa (SC-29305; a combination of 4 target-specific

siRNAs, Santa Cruz, USA), using Dharmafect transfection

reagent (Dharmacon, USA) as per the manufacturer’s

instructions. After 24 hours, the cells were replated into 12-

well plates at a density of 2 x 105 cells per well. The next day, cells

were treated with 100 nM E2, MPA or NET for 24 hours. For the

quantification of mRNA expression by real-time quantitative

PCR (qPCR), total RNA was harvested, and cDNA synthesized.

Reduction in protein levels was confirmed by immunoblotting.
Real-time qPCR

MCF-7 BUS cells were plated and treated with 100 nM E2,

P4, MPA, NET or DRSP, or equimolar concentrations of

progestogens and E2 for 24 hours. Total RNA was isolated

using Tri-reagent (Sigma-Aldrich, RSA) and reverse

transcribed using the ImProm-II™ Reverse Transcription

System (Promega, USA) as per the manufacturer ’s

instructions. Real-time qPCR was performed using the KAPA

SYBR® FAST ABI Prism qPCR Kit (Roche Applied Science,

RSA) according to the manufacturer’s instructions. The mRNA

expression of CTSD (cathepsin D), MYC and the reference gene

GAPDH (glyceraldehyde3-phosphate dehydrogenase) was

measured using the primer sets described in Table 1. Agarose

gel electrophoresis and melt curve analyses were performed to

confirm the presence of a single amplicon of the correct size

(data not shown). The primer efficiency of each primer set for

each cell line is shown in Table 1, and the relative transcript

levels were determined as previously described (40).
Immunoblotting

MCF-7 BUS cell lysates from siRNA transfections were

subjected to electrophoresis on a 10% SDS-polyacrylamide gel,

before transfer of proteins to nitrocellulose membranes (AEC

Amersham, RSA). The membranes were then probed with

primary antibodies specific to ERa (F-10, Santa Cruz

Biotechnology, USA), the PR isoforms (NCL-L-PGR-312, Leica
TABLE 1 Primers used for real-time qPCR.

Gene Primer sequence Amplicon Length Primer Efficiency Ref.

CTSD 5’-GCGAGTACATGATCCCCTGT-3’ (fwd)
5’-CTCTGGGGACAGCTTGTAGC-3’ (rev)

89 bp 1.93 (37)

MYC 5’-GACGCGGGGAGGCTATTCTG-3’ (fwd)
5’-GACTCGTAGAAATACGGCTGCACCGAGTC-3’ (rev)

236 bp 2.05 (38)

GAPDH 5’-TGAACGGGAAGCTCACTGG-3’ (fwd)
5’-TCCACCACCCTGTTGCTGTA-3’ (rev)

307 bp 1.86 (39)
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Biosystems, Germany) or the loading control, GAPDH (0411,

Santa Cruz Biotechnology, USA), followed by incubation with a

horseradish peroxidase (HRP)-conjugated secondary antibody

(anti-mouse, sc-2005, Santa Cruz Biotechnology, USA). Proteins

were visualized using enhanced chemiluminescence (Biorad, RSA)

and a MyECL imager and quantified using ImageJ software

(version 1.49).
Chromatin immunoprecipitation and
re-ChIP assays

ChIP and re-ChIP assays were conducted as previously

described (41), with a few modifications. Briefly, MCF-7 BUS

cells were seeded into 10 cm2 dishes at a density of 2 x 106 cells in

phenol red-free DMEM supplemented with 5% HI-CS-FCS and

100 IU/ml penicillin and 100 mg/ml streptomycin. After 24

hours, the cells were treated with 1 nM P4, MPA, NET or

DRSP for 2 hours. Following cross-linking of the chromatin and

proteins using 1% formaldehyde, cells were harvested in PBS

containing protease inhibitors, lysed and sonicated. An aliquot

of the sonicated lysate (30 µg) was used as an input control.

Approximately 100 µg of chromatin was immunoprecipitated

with IgG or antibodies specific to ERa or the PR. Chromatin was

collected using pre-blocked protein A/G-PLUS agarose beads.

After thorough washing, the DNA-protein complexes were

eluted. For ChIP assays, a 1% SDS, 100 mM NaHCO3 elution

buffer was used, while a 1% SDS, 10 mM dithiothreitol elution

buffer containing protease inhibitors was used for re-ChIP

assays. For the latter, an aliquot of the supernatant was used

as confirmation that the first immunoprecipitation was

success fu l , and the remaining chromat in was re-

immunoprecipitated with anti-ERa, anti-PR or anti-IgG

antibodies. The cross-linking of all the DNA-protein eluents

was then reversed by adding NaCl, followed by incubation

overnight at 65°C. Proteinase K (Roche Applied Science, RSA)

was added to the samples the following day and incubated at 45°

C for 1 hour for protein digestion. The input and

immunoprecipitated samples were subsequently purified using

the Machery Nagel NucleoSpin® Extract II kit (Separations,

RSA) as per the manufacturer’s instructions. Purified DNA

samples were analysed by real-time qPCR using the primer

sets described in Table 2.
Frontiers in Endocrinology 04
Data and statistical analysis

Data analysis, graphical presentations and statistical analysis

were performed using GraphPad Prism® version 9 (GraphPad

Software). Non-linear regression analysis was used to determine

efficacies and potencies. One-way ANOVA analysis of variance

with Tukey’s multiple comparison or two-way ANOVA with

Bonferroni’s multiple comparison post-tests were used to

determine statistical significance of results. The results of at

least three independent experiments are shown and the error

bars indicate the standard error of the mean (SEM).
Results

P4, MPA, NET and DRSP
increase proliferation and
anchorage-independent growth of
the estrogen-responsive MCF-7 BUS
breast cancer cell line

Progestins often elicit biological effects that are distinct from

each other and natural P4 [reviewed in (2, 44, 45)]. Indeed, it is

known that some progestins have been linked to increased breast

cancer risk, while oral micronized P4 has not [reviewed in (14,

17)]. Here, we directly compared the effects of the older first-

generation progestins MPA and NET, as well as the newer

fourth-generation progestin DRSP, relative to each other and

natural P4 on cell proliferation (Figures 1A–C) and anchorage-

independent growth (Figure 1E) in the MCF-7 BUS breast

cancer cell line. Although NET-A is administered in MHT, we

used its active metabolite (46) in our study, as it has previously

been shown that NET-A and NET elicit similar effects to each

other (47). MPA and NET were included in this study as they

have both been linked to increased breast cancer incidence

[reviewed in (14)], and are known to differentially activate

steroid receptors such as the glucocorticoid receptor (GR) (47,

48) and ERa (5). DRSP was included as we have previously

shown that it elicits effects similar to P4, but dissimilar to MPA

and NET-A (5, 49). For proliferation assays, the cells were

incubated with increasing concentrations of E2, P4, MPA, NET

and DRSP (Figure 1A) and proliferation quantified using the

MTT cell viability assay. Since the MCF-7 BUS breast cancer cell
TABLE 2 ChIP and re-ChIP primers used for real-time qPCR.

Gene Primer sequence Amplicon length Ref.

CTSD 5’-TCCAGACATCCTCTCTGGAA-3’ (fwd)
5’-GGAGCGGAGGGTCCATTC-3’ (rev)

240 bp (42, 43)

MYC 5’-TCTCTGCTGACTCCCCCGGC-3’ (fwd) 71 bp (24)

5’-CCGCGGGACCGGACTTCCTA-3’ (rev)
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FIGURE 1

The progestogens display similar efficacies, but not potencies, to each other and E2 for increased proliferation of the MCF-7 BUS breast cancer
cell line, while enhancing anchorage-independent growth of the MCF-7 BUS cells to differential extents to each other and E2. The MCF-7 BUS
cell line was incubated for 120 hours with (A) increasing concentrations of E2 (■), P4 (●), MPA (▲), NET (♦) or DRSP (×) or (D) 1 nM E2 in the
absence and presence of 1 nM progestogens. Cell proliferation was quantified using the MTT cell viability assay, and the vehicle response was
set as one, with all other responses calculated relative to this. (B) Plots of the maximal response and (C) log EC50 values of the test compounds
for proliferation from (A) are shown. (E, F) MCF-7 BUS cells were treated for 21 days with (E) 1 nM E2, P4, MPA, NET or DRSP, or (F) 1 nM
progestogen in the presence of 1 nM E2. Anchorage-independent growth was quantified using the soft agar assay. The colonies formed were
quantified using ImageJ software (Version 1.49). Results are shown as relative colony formation with the response obtained with the vehicle
control set as one, and all other responses calculated relative to this. One-way ANOVA with Tukey’s multiple comparison or two-way ANOVA
with Bonferroni’s multiple comparison post-tests were used for statistical analysis. Statistically significant differences are indicated by the letters
a, b, c or d, where the values that differ significantly from others are assigned a different letter, or ** or *** to indicate p<0.01 or p<0.001. No
statistical significance (p>0.05) is indicated by ns. One-way ANOVA with a Dunnett’s multiple comparison post-test was performed to compare
responses of estrogen-progestogen combinations relative to E2 alone, and no statistical differences were obtained between the E2 response and
E2 in combination with any progestogen.
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line is estrogen-sensitive and highly proliferative in response to

E2 treatment (50), we included treatment with E2 alone as a

positive control. Surprisingly, the selected progestins and P4 had

similar efficacies to each other and E2 for proliferation of the

MCF-7 BUS cells (Figures 1A, B). While P4 and NET were

equipotent to each other and E2, MPA was approximately 20-

fold more potent than E2, and DRSP approximately 1600-fold

less potent (Figures 1A, C). The maximal responses (efficacies)

and EC50 values (potencies) for proliferation are summarized in

the table in Figure 1A. Notably, proliferation in response to 1 nM

DRSP was significantly lower than that observed for the other

progestins and P4 (Supplementary Figure 1A).

We also investigated progestogen effects in the presence of

E2. These experiments were crucial as progestogens are used in

combination with an estrogen in MHT (14), and it has been

argued that experiments with P4 and the PR should include

conditions where the individual and combinatorial effects of

estrogen and the progestogen are investigated, as physiologically,

women are always exposed to both P4 and some level of

endogenous estrogens (51). We examined the effects in the

presence of equimolar concentrations of E2 and the

progestogens, as well as in the presence of 100x more

progestogen than E2, which is representative of the ratios in

which these hormones are used in MHT [reviewed in (45)]. Our

results show that the progestogens did not inhibit E2-induced

proliferation, while the addition of E2 did not modulate the

proliferative effects of either 1 or 100 nM P4, MPA and NET

(Figure 1D; Supplementary Figure 1B). In contrast, the

proliferative effects of 1 nM, but not 100 nM, DRSP, was

significantly different in the presence of E2 (Figure 1D), likely

due to the effects of E2 only.

Since the ability of tumor cells to survive and grow

anchorage-independently is essential for metastasis, the soft

agar assay was used to quantify the number of colonies

formed in response to 1 nM progestogens in the absence

(Figure 1E) and presence of 1 nM E2 (Figure 1F). Results show

that all progestogens increased colony number, albeit to a lesser

extent than E2 (Figure 1E). In line with the proliferation results

(Supplementary Figure 1A), the number of colonies formed in

response to 1 nM MPA was significantly greater than that of 1

nM P4, NET or DRSP. Notably, no differences in the number of

colonies were observed for the test compounds at 100 nM

(Supplementary Figure 1C). While the number of colonies

were similar for MPA in the absence and presence of E2, a

significant increase in colonies, like the effects of E2 only, were

observed when P4, NET and DRSP were combined with E2
(Figure 1F). As observed for proliferation, 1 nM E2 did not

modulate the effects of 100 nM of the progestogens on

anchorage-independent growth (Supplementary Figure 1D),

neither did 1 or 100 nM progestogens influence the E2-

induced anchorage-independent growth of the MCF-7 BUS

cells (Figure 1F and Supplementary Figure 1C).
Frontiers in Endocrinology 06
The regulation of the ER-regulated CTSD
gene by MPA and NET requires both PR
and ERa

Considering that biological phenotypes of cancer, such as

cell proliferation and anchorage-independent growth, are

mirrored by changes in gene expression (52), we next

investigated whether the selected progestogens could modulate

the expression of the known ER-regulated CTSD gene. Results

show that P4 and DRSP had no effect on CTSD mRNA

expression, while both MPA and NET significantly increased

the expression, albeit to a lesser extent than E2 (Figure 2A). The

increase in CTSD gene expression observed when E2 was added

to P4 and DRSP was most likely because of E2. While E2-induced

CTSD mRNA expression was not inhibited by equimolar

concentrations of the progestogens, E2 enhanced the MPA-

and NET-induced upregulation of CTSD mRNA expression

(Figure 2B). Knowing that both MPA and NET can bind to

the PR, whilst NET-A, but not MPA, can bind to ERa (5), we

next silenced the expression of the PR isoforms and ERa to

assess their roles in the MPA and NET-mediated regulation of

the CTSD gene. Western blotting (Figures 3A, B) confirmed that

transfection of the MCF-7 BUS cell line with PR-A/B siRNA

resulted in a 73% and 71% knockdown of PR-A and PR-B

respectively, while ERa siRNA resulted in a 60% decrease in

ERa expression. Both PR and ERa knockdown abrogated MPA-

and NET-induced CTSD mRNA expression (Figures 3C, D). As

expected, the E2-induced increase in CTSD mRNA expression

was inhibited when ERa was silenced (Figure 3D). We also

showed that silencing of ERa resulted in 80% knockdown of PR-

A and 86% knockdown of PR-B (Figures 3A, B), which raised the

question as to whether both the PR and ER, or only the PR, are

required. To exclude the latter, we confirmed that the ER is

indeed required by showing that the effects of MPA and NET on

CTSD gene expression are abrogated in the presence of the ER

antagonist, ICI-182,780 (Figure 3E), which does not decrease PR

levels in MCF-7 cells (53). Consistent with our findings that both

the PR and ER are required for regulation of CTSD gene

expression by MPA and NET, both receptors were required

for CTSD transcription by the progestin, promegestone (R5020),

in MCF-7 cells (53).
The PR and ERa are co-recruited to both
the CTSD and MYC promoters

It is known that the PR and ERa can occur in a complex both

in the absence and presence of ligand (24, 28). Thus, we next

investigated whether MPA or NET treatment would cause both

the PR and ERa to be recruited to the promoter of the endogenous

CTSD gene, as only these two progestins increased CTSD gene

expression. MCF-7 BUS cells were incubated for 2 hours with
frontiersin.org
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MPA, or NET, and then subjected to immunoprecipitation with

an anti-IgG antibody (negative control) or a PR-A/B-specific

antibody followed by an ERa-specific antibody, and vice versa.

Results show that the PR and ERa are co-localized on the

endogenous CTSD promoter in the presence of MPA

(Figure 4A) and NET (Figure 4B). As co-localization of these

receptors has previously been shown on PR binding sites in the

promoter of the progestogen-responsive proto-oncogene MYC in

response to MPA in the T47D breast cancer cell line (24), we first

investigated the regulation ofMYCmRNA expression in response

to our panel of progestogens in the MCF-7 BUS cell line, and

subsequently whether these ligands would induce PR and ERa co-

localization on the MYC promoter. As shown in Figure 5A, P4,

MPA, NET and DRSP increased MYC mRNA expression to a

similar extent as each other and E2, and these effects were not

modulated in the presence of E2 or vice versa (Supplementary

Figure 2). We show that MPA treatment induced PR and ERa co-

localization on the MYC promoter in MCF-7 BUS cells

(Figure 5C), consistent with previous findings in T47D cells

(24). This co-localization was not unique to MPA but was also

observed for P4 (Figure 5B), NET (Figure 5D) and DRSP

(Figure 5E). Notably, 1 nM E2 did not lead to significant co-

recruitment of the PR and ERa to the MYC promoter

(Supplementary Figure 3).
Discussion

Considering that breast cancer is the leading cause of

mortality in women in developed countries (54–56),

establishing the mechanism underlying the increased breast
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cancer risk associated with estrogen-progestin MHT is a global

priority. Since estrogen-progestin MHT is associated with higher

breast cancer risk than estrogen-only MHT (8, 12), it is clear that

the progestin component is the bigger culprit. Molecular studies

are thus urgently required to directly compare the effects of

progestins relative to each other and P4 in breast cancer. In this

study, the frequently used MTT assay was employed as a

measure of proliferation of the MCF-7 BUS breast cancer cell

line. Although MCF-7 cells are widely used as a model to

evaluate hormonal effects on breast cancer cell growth, we

used the MCF-7 BUS sub-clone as it has been shown to be the

most proliferative in response to E2 when compared to other

MCF-7 cells (50). We showed that the older first-generation

progestins MPA and NET, the newer fourth-generation

progestin DRSP, and natural P4 all increase proliferation of the

estrogen-responsive MCF-7 BUS breast cancer cell line with

similar efficacies, but not potencies (Figures 1A–C). DRSP was

875-fold less potent than P4, 37 630-fold less potent than MPA

and 448-fold less potent than NET. Not only was MPA the most

potent progestogen in terms of proliferation, but it was also 20-

fold more potent than E2. Given that E2 is a known mitogen in

promoting cellular proliferation in the breast, our results may

explain, at least in part, the increased breast cancer incidence

observed with the combination of E2 and MPA in MHT. An

important validation of our results would be to correlate the

absorbance determined by MTT to the cell number in future

studies, as it is plausible that the true proliferation may be

obscured by the progestogens influencing the metabolic activity

of the cells. In agreement with our findings, however, previous

studies have shown increased proliferation with both MPA (24,

57) and NET (57, 58). However, at least one study has shown
BA

FIGURE 2

The progestogens differentially regulate CTSD mRNA expression which is modulated by E2. The MCF-7 BUS cell line was treated with (A) 100
nM E2, P4, MPA, NET or DRSP or (B) equimolar concentrations of progestogen and E2 for 24 hours. Total RNA was isolated, reverse transcribed
and real-time qPCR conducted to determine the relative expression of CTSD mRNA levels relative to that of GAPDH (reference gene). The
vehicle control was set as one and the relative mRNA expression of CTSD in the treated samples set relative to this. One-way ANOVA with
Tukey’s multiple comparison or two-way ANOVA with Bonferroni’s multiple comparison post-tests were used for statistical analysis. Statistically
significant differences are indicated by the letters a, b or c, where the values that differ significantly from others are assigned a different letter, or
* or *** to indicate p<0.05 or p<0.001. One-way ANOVA with a Dunnett’s multiple comparison post-test was performed to compare responses
of estrogen-progestogen combinations relative to E2 alone, and no statistical differences were obtained between the E2 response and E2 in
combination with any progestogen.
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FIGURE 3

Both the PR and ERa are required for the upregulation of the ER-regulated gene CTSD by MPA and NET. The MCF-7 BUS cell line transfected
with (A-C) 10 nM NSC or PR-A/B siRNA or (A, B, D) 25 nM NSC or ERa siRNA were treated with 100 nM E2, MPA or NET for 24 hours. (A) For
verification of PR-A/B or ERa knockdown, total protein from the MCF-7 BUS cells transfected as described above was harvested, and western
blotting performed using antibodies specific for ERa, PR-A/B and GAPDH. A representative blot is shown and (B) PR-A, PR-B and ERa
expression levels were quantified relative to the GAPDH loading control using ImageJ software (Version 1.49). Western blots of three
independent experiments were quantified to determine the percentage protein knocked down. (E) MCF-7 BUS cells were treated with 100 nM
E2, MPA or NET in the absence and presence of 10 µM ICI for 24 hours. (C–E) Total RNA was isolated, reverse transcribed and real-time qPCR
was conducted to determine the relative expression of CTSD mRNA levels relative to GAPDH (reference gene). The vehicle control of each
condition was set as one and the relative mRNA expression in the treated samples set relative to this. Two-way ANOVA with Bonferroni’s
multiple comparison post-test was used for statistical analysis. Statistically significant differences are indicated by *, ** or *** to indicate p<0.05,
p<0.01 or p<0.001. No statistical significance (p>0.05) is indicated by ns.
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anti-proliferative effects for both MPA and NET (59). In contrast

to the older generation progestins, studies investigating the

effects of DRSP on breast cancer hallmarks are scarce. To our

knowledge, only one study has shown that DRSP increases the

growth of human breast epithelial xenografts (60). While some

clinical studies have reported that P4 is not associated with an

increased risk of breast cancer, others have indicated an increase

[reviewed in (45)]. In line with these contradictory findings,

results from some experimental studies have shown increased

proliferation with P4 (61–63), while others have shown anti-

proliferative effects (64, 65). The above-mentioned studies

reporting differential effects on proliferation by the

progestogens in different experimental cell models, highlight

the importance of comparing progestogen activities in parallel in

the same model system. While little is known about the effects of

P4 and these progestins on metastasis, we showed that 1 nM

MPA increased the anchorage-independent growth of the MCF-

7 BUS cell line to a greater extent than P4, NET and DRSP

(Figure 1E), suggesting that MPA has a greater metastatic

potential than the other progestogens. Consistent with this

result, a previous study has shown that MPA increased

migration and invasion of the T47D breast cancer cell line to a

greater extent than P4 and DRSP (66).

To further understand the mechanism of these progestogens

in breast cancer, we investigated whether P4, MPA, NET and

DRSP could regulate the expression of the ER-regulated CTSD

gene. CTSD has been linked to breast cancer metastasis,

invasion, relapse and short disease survival (67). Our results

show that the progestogens differentially regulated the mRNA
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expression of CTSD, with P4 and DRSP having no effect, whereas

MPA and NET upregulated its expression (Figure 2).

Preliminary studies in the T47D cell line showed similar

findings whereby MPA and NET upregulated CTSD mRNA

expression, but DRSP did not (Supplementary Figure 4). Further

studies in the T47D cell line or another ER/PR positive breast

cancer cell line such as ZR-75-1 would be valuable to strengthen

our findings. We subsequently showed that the effects of MPA

and NET were abrogated when the expression of PR and ERa
was silenced, suggesting that both the PR and ERa are required

for MPA- and NET-induced upregulation of CTSD gene

expression (Figures 3C, D). While it has been indicated that

the PR can decrease the expression of ER target genes involved in

cell cycle progression (28), our findings on the ER-regulated

CTSD gene suggest that the PR does not lead to a reduction in

the expression of all ER target genes. Considering that we have

previously shown that NET-A, but not MPA, can bind to ERa
(5), our results suggest that at least the MPA-induced mRNA

expression does not occur via a mechanism requiring binding to

the ER, but rather suggests an indirect role for the ER. Using

sequential ChIP assays, we are the first to show that MPA- and

NET-induced upregulation of the ER-regulated CTSD gene, via a

mechanism requiring the recruitment of both the PR and ERa to

the CTSD gene promoter (Figure 4). It is known that the CTSD

promoter contains different cis-elements (67, 68) to which

steroid receptors can bind (53, 69–71). For example, ERa can

increase transcription by binding to the estrogen response

element (ERE) (72, 73) or by tethering to activator protein

(AP)-1 bound to an AP-1 element in the CTSD promoter (69,
BA

FIGURE 4

ERa and the PR are co-recruited to the CTSD promoter in response to MPA and NET. The MCF-7 BUS cell line was incubated with 1 nM (A) MPA or
(B) NET for 2 hours followed by re-ChIP assays. Cell lysates were subjected to immunoprecipitation (IP) with an anti-IgG antibody (negative control)
or a PR-A/PR-B-specific antibody followed by an ERa-specific antibody, and vice versa, prior to real-time qPCR analysis of the resulting
immunoprecipitated DNA fragments and input controls. Data shown was normalized to input and IgG controls and expressed as the fold response
relative to the vehicle control set as one. One-way ANOVA with Tukey’s multiple comparison post-test was used for statistical analysis. Statistically
significant differences are indicated by the letters a or b, where the values that differ significantly from others are assigned a different letter.
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FIGURE 5

The progestogens upregulate MYC mRNA expression to the same extent as each other and E2 and induce co-localization of the PR and ERa on the
MYC promoter. (A) The MCF-7 BUS cell line was treated with 100 nM E2, P4, MPA, NET or DRSP for 24 hours. Total RNA was isolated, reverse
transcribed and real-time qPCR conducted to determine the relative expression of MYC mRNA levels relative to that of GAPDH (reference gene).
The vehicle control was set as one and the relative mRNA expression of MYC in the treated samples set relative to this. (B–E) The MCF-7 BUS cell
line was incubated with 1 nM P4, MPA, NET or DRSP for 2 hours followed by re-ChIP assays. Cell lysates were subjected to immunoprecipitation (IP)
with an anti-IgG antibody (negative control), or a PR-A/PR-B-specific antibody followed by an ERa-specific antibody, and vice versa, prior to real-
time qPCR analysis of the resulting immunoprecipitated DNA fragments and input controls. Data shown was normalized to input and IgG controls
and expressed as the fold response relative to the vehicle control set as one. One-way ANOVA with Tukey’s multiple comparison post-test was
used for statistical analysis. Statistically significant differences are indicated by the letters a or b, where the values that differ significantly from others
are assigned a different letter.
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70). Specific protein (Sp)-1 binding sites are also found in the

CTSD promoter, and it has previously been shown that the PR

increases the expression of the PR (53) and p21 (71) genes via an

indirect interaction with these sites. Furthermore, the PR has

previously been shown to interact with an ERE/Sp1 site in the PR

promoter (53). Although we did not delineate the precise

mechanism whereby the PR/ERa complex mediates the

regulation of the ER target gene by MPA and NET, it may be

that the PR/ERa complex occupies the ERE/Sp1 site in the CTSD

promoter. In contrast to our observations on the CTSD

promoter, we show that the PR and ERa are co-recruited to

the PR-regulated MYC gene promoter in response to all the

progestogens, resulting in the upregulation of MYC mRNA

expression (Figure 5). These results suggest that the previously

reported PR and ERa co-recruitment to the MYC promoter in

the T47D breast cancer cell line in response to MPA treatment

(24) is neither cell line- nor progestogen-specific. Considering

that the expression ofMYC is often upregulated in breast cancer,

and that it plays a role in promoting proliferation (74, 75), these

results suggest that the progestogens evaluated in this study all

promote breast cancer cell proliferation, albeit to different

extents, via a mechanism requiring an association of the PR

and ERa on the MYC promoter. Although activation of the PR

in the presence of an estrogen-activated ER complex has been

associated with a more favorable outcome (28, 31), one cannot

ignore the fact that the PR/ER complex is recruited to the PR-

regulated MYC oncogene, and that PR-regulated genes have

previously been linked to increased tumor progression (19). It is

therefore critical that the manner in which PR and ER pathways

cooperate to modulate the expression of ER and PR-regulated

genes in response to different progestins is understood. Future

studies should include investigations into similar mechanisms

on other ER and PR target genes such as Trefoil Factor 1 (TFF1),

cyclin D1, tissue factor (CD142), or Serum/Glucocorticoid

Regulated Kinase 1 (SGK).

We also investigated the effects of a combination of

progestogen and E2 on cell proliferation, anchorage-

independent growth and gene expression, as it has been

argued that the estrogenic status directly influences whether

progestogens are anti- or pro-proliferative (17). While it has

been reported that the progestogens P4 (76, 77), MPA (76–79),

NET (77–79) and DRSP (76) decrease E2-induced proliferation

of the ER/PR positive HCC1500, T47D or MCF-7 breast cancer

cell lines, others have shown that P4 (63, 80), MPA and NET (80)

increase E2-induced cell growth of BT474 or T47D xenograft

tumors in mice, and that P4 increases E2-induced anchorage-

independent growth of MCF-7 cells (62). In contrast, we showed

that none of the progestogens influenced E2-induced cell

proliferation or anchorage-independent growth of the MCF-7

BUS cells (Figure 1). Similarly, none of the progestogens

modulated the E2-induced upregulation of the MYC

(Supplementary Figure 2) gene. Although the progestin effects

on MYC gene expression was not modulated by E2, the
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combination of E2 and DRSP on proliferation, as well as E2
and P4, NET or DRSP on anchorage-independent growth,

resembled the response of E2 alone. Likewise, none of the

progestogens modulated E2-induced upregulation of the CTSD

gene (Figure 2B), whereas the effects of the combination of E2
with each progestogen resembled the E2 alone response. Another

key issue recently raised is the physiologically relevant

concentration of progestogens to use in experiments (51, 81).

Indeed, differential effects observed between studies

investigating progestogen effects may be ascribed not only to

different experimental models used, but also differences in

concentrat ions of l igand used. While i t has been

recommended that only concentrations between 1 and 10 nM

can be considered physiologically relevant (51), it cannot be

excluded that higher concentrations of progestin may be found

in breast tissue as circulating progestin levels do not necessarily

reflect intramammary tissue levels. To our knowledge, the levels

of MPA, NET and DRSP in breast tissue have not been

determined and should be urgently addressed to accurately

correlate these levels with biological responses in breast

cancer biology.

Several studies have investigated crosstalk between the PR

and ERa in breast cancer etiology (24, 25, 28, 29, 31, 32). Some

have shown that the interaction between liganded ERa and the

unliganded (25) or MPA-activated PR-B (24) results in the

upregulation of ER- or PR-regulated target genes, as well as

breast cancer cell proliferation. Genome-wide studies however

showed that when the PR is bound to the PR agonists, P4 or

R5020, the PR modulates the chromatin localization of the

estrogen activated ERa (28, 29), resulting in a gene expression

profile similar to that of PR alone, and one that is associated with

decreased proliferation and an improved clinical outcome (28).

These former studies resulted in a renewed interest in using PR

agonists (P4 or progestins) in ER-positive breast cancer therapy,

by combining these ligands with ER-targeted ligands (17).

Consistent with the idea that PR agonists are associated with a

good prognosis, it has also been shown that P4 or MPA-activated

PR inhibits E2-induced tumor growth and the expression of ER-

regulated genes in breast cancer patient-derived xenografts (31).

However, suitability of individual progestins would need to be

assessed considering that some progestins are associated with

increased breast cancer risk (14). The subsequent Singhal study

showed that the role of the PR in ER-positive breast cancer is not

straightforward, as modulation of estrogen signaling by the PR

resulted in either pro- or anti-tumorigenic effects depending on

the PR isoform involved, and whether the PR isoform was bound

to an agonist or antagonist (32). Gene expression analysis from

patient cohorts predicted that unlike the regulation of genes by

PR agonists, regulation by PR antagonists is associated with a

better survival outcome. The findings by Singhal and co-workers

emphasized the need for more mechanistic studies to aid in a

complete understanding of the complexity of PR and ERa
crosstalk in breast cancer, in the drive to develop PR/ER co-
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therapies for ER-positive breast cancer. Our findings that the PR

and ERa are co-recruited to the PR target gene in response to all

progestogens, while recruitment to the ER target gene is

progestin-specific, underscores the importance of investigating

the clinical relevance of the interaction between ERa and the PR

in response to multiple progestins in parallel in both normal and

malignant breast tissue. This is especially important considering

the reservations about using progestins in breast cancer therapy

given their association with increased breast cancer incidence. It

is important to note that these reservations are based on

observations of clinical studies linking only eight progestins to

increased incidence of breast cancer (14), whereas there are a

large number of clinically available progestins yet to be evaluated

in terms of breast cancer risk. Our results indicating differential

progestin effects highlight the importance of directly comparing

the effects of individual progestins, rather than grouping them as

a class. Finally, further ex vivo and in vivo experiments will be

critical to appreciate the physiological implications of our

findings, and to understand the role of individual progestins in

processes such metastasis.
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