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What this study adds:
Limited studies have looked at the association between airway 
inflammation and PM2.5 exposure in children, in a lagged man-
ner, particularly on the African continent. Our findings strongly 
suggest that PM2.5 exposure contributes to airway inflammation, 
abnormal lung function, and asthma symptoms. This study adds 
to the existing literature providing evidence that short-term 
exposure to PM2.5 has a lagged effect on airway inflammation 
and lung function and that this effect is stronger among those 
with compromised airways.
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Short-term, lagged association of airway 
inflammation, lung function, and asthma symptom 
score with PM2.5 exposure among schoolchildren 
within a high air pollution region in South Africa
Minenhle S. Buthelezi a,*, Graciela Mentzb, Caradee Y. Wrightc,d, Shumani Phaswanaa, Rebecca M. Garlandd,e, 
Rajen N. Naidoo a

Background:  Asthma affects millions of people globally, and high levels of air pollution aggravate asthma occurrence. This study 
aimed to determine the association between short-term lagged PM2.5 exposure and airway inflammation, lung function, and asthma 
symptom scores among schoolchildren in communities in the Highveld high-pollution region in South Africa.
Methods:  A cross-sectional study was conducted among schoolchildren aged 9–14 years in six communities in the Highveld 
region in South Africa, between October 2018 and February 2019. A NIOX 200 instrument was used to measure fractional exhaled 
nitric oxide (FeNO). Lung function indices (forced expiratory volume in one second [FEV1]; forced vital capacity [FVC] and FEV1/FVC) 
were collected using spirometry and the percent of predicted of these was based on the reference equations from the Global Lung 
Initiative, without ethnic correction. These values were further analyzed as binary outcomes following relevant thresholds (lower limits 
of normal for lung function and a cutoff of 35 ppb for FeNO). Asthma symptoms were used to create the asthma symptom score. 
Daily averages of PM2.5 data for the nearest monitoring station located in each community, were collected from the South African 
Air Quality Information System and created short-term 5-day lag PM2.5 concentrations. Additional reported environmental exposures 
were collected using standardized instruments.
Results:  Of the 706 participating schoolchildren, only 1.13% of the participants had doctor-diagnosed asthma, compared to a 
prevalence of 6.94% with an asthma symptom score suggestive of asthma. Lag 1 (odds ratio [OR]: 1.01; 95% confidence interval 
[CI]: 1.00, 1.02, P = 0.039) and 5-day average lagged PM2.5 (OR: 1.02; 95% CI: 0.99, 1.04, P = 0.050) showed increased odds of the 
FeNO > 35 ppb. Lung function parameters (FEV1 < lower limit of normal [LLN] [OR: 1.02, 95% CI: 1.00, 1.03, P = 0.018], and FEV1/
FVC < LLN [OR: 1.01; 95% CI: 1.00, 1.02, P < 0.001]) and asthma symptom score ≥ 2 (OR: 1.02; 95% CI: 1.00, 1.04, P = 0.039) 
also showed significant associations with lag 2, lag 4 and lag 1 of PM2.5, respectively.
Conclusion:  Lagged PM2.5 exposure was associated with an increased odds of airway inflammation and an increased odds of lung 
function parameters below the LLN particularly for the later lags, but a significant dose–response relationship across the entire sample 
was not consistent.
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Introduction
Globally, asthma is estimated to affect more than 300 million 
individuals, increasing to about 400 million in 2025.1–4 The 
prevalence in low- and middle-income countries is higher when 
compared with high-income countries.5 Characterized by a vari-
ety of phenotypes, with different biochemical pathways, under-
standing the relationship between asthma and associated risk 
factors remains a challenge.6,7

Ambient air pollution, including respirable particulate mat-
ter 2.5 microns in diameter (PM2.5), has been shown to have 
a significant association with a range of respiratory health 
effects particularly among those with asthma.8,9 PM2.5 has been 
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associated with acute and chronic respiratory symptoms, such 
as wheezing and shortness of breath, increased visits to emer-
gency rooms, lung function declines, and increased adverse 
outcomes among asthmatics.10,11 Studies describe these effects 
with either short-term (current or recent), longer-term, cumu-
lative, or period-averaged (annual, seasonal) exposures.11,12 
Inconsistencies in findings may result from the specific out-
come measure, the choice of the study sample (e.g., asthmatics 
vs. random sample), or the characterization of the metric of 
exposure.13

Measures of airway function are important indicators of 
pulmonary responses to external stimuli. Spirometry, as indi-
cated by changes to forced expiratory volume in one second 
(FEV1), forced vital capacity (FVC), and the ratio of these 
parameters (FEV1/FVC), has frequently been reported with 
abnormal outcomes in the presence of exposure to air pollu-
tion. Airway inflammation, which if severe enough, results in 
asthma symptoms through various mechanisms including the 
immunoglobulin E (IgE)-mediated inhibition of innate antiviral 
responses to rhinovirus and production of cytokines leading to 
narrowing and swelling of the bronchial muscles.14,15 The depo-
sition of PM2.5 in the airway and lung tissue through various 
biochemical pathways results in an inflammatory response.8,9,16 
A noninvasive quantitative biomarker of eosinophilic airway 
inflammation is fractional exhaled nitric oxide (FeNO).17,18 
FeNO, as a marker of airway inflammation, has been associ-
ated with increased PM2.5 concentrations across several studies 
in Malaysia,17 the United States,18 and China.19 Although using 
different estimates of exposure, per unit increase in pollutant 
exposures was associated with a same-day increase in FeNO in 
these studies. A systematic review identified only six studies that 
described the relationship between PM2.5 and FeNO among chil-
dren.19 Among the studies that selected asthmatic children, asso-
ciations varied, absent in some,20–22 but were seen in others.23–25 
Studies among community-based samples of children including 
asthmatics and nonasthmatics showed PM2.5-related increases 
in FeNO.26–28 The inconsistencies among these studies may be 
related to the assumption of the temporal relationship between 
exposure and outcome. A limited number of studies have inves-
tigated the lagged effects between FeNO and PM2.5 exposure 
among a random sample of children with and without asthma. 
Lagged effects have been reported among university students,19 
children,29 and asthmatic children21 including very short-term 
lags (<24 hours).30

Unlike the lagged PM effects of FeNO, the lagged effects of 
spirometry among children have been more regularly reported 
in the literature, affected by similar challenges of sample selec-
tion and exposure characterization. A recent meta-analysis of 
childhood studies with short-term exposure showed important 
PM2.5-induced effects in the various lung function parameters, 
stronger for the same day as compared to the previous day 
lags. Although the meta-analysis did not stratify studies with 
exclusive asthmatics and mixed samples, the pooled estimates 
of reduced FEV1 and peak expiratory flow were statistically 
significant across both lags.31 Two-panel studies of asthmatic 
children showed a much stronger decline in lung function than 
those seen in the pooled estimates, with a greater effect associ-
ated with a 1-day moving average.22,23

Few studies found an increased risk of lagged PM2.5 exposure 
in asthma exacerbation in children.32,33 Huang et al showed in a 
meta-analysis that both adults and children were at an increased 
risk of asthma exacerbations in lag day 0 (risk ratio [RR] = 1.007, 
95% confidence interval [CI]: 1.005, 1.010) and lag day 1 (1.005, 
95% CI: 1.002, 1.008) from PM2.5 exposure. There was a small 

increase in risk among children only (lag 0 [RR = 1.032, 95% CI: 
1.025, 1.039] and lag 1 [RR = 1.014, 95% CI: 1.007, 1.021]).34

We hypothesized that there is a lagged PM2.5 effect on air-
way inflammation in particular, as well as lung function and 
asthma symptom score generally in a sample of randomly 
selected schoolchildren. This study aimed to determine the asso-
ciation between lagged PM2.5 exposure measures with airway 
inflammation, lung function, and asthma symptom score among 
schoolchildren living in communities in the Highveld High 
Pollution Priority Area (HPPA), a region with high ambient pol-
lution concentrations in South Africa.35,36

Methods

Study setting and design

This study was conducted in the Highveld HPPA, a designated 
high air pollution region in inland South Africa (Figure 1).37 
This region is situated at an elevated altitude and is home to a 
range of high industrial emission sources, including coal mining 
and coal-fired power stations, among many other anthropogenic 
and natural emission sources. The Highveld HPPA has a climate 
with an average minimum temperature of 19 °C in summer and 
an average minimum temperature of 6 °C in winter.38

This was a cross-sectional study conducted among grade 4 
schoolchildren aged 9–14 years. One school was selected (see selec-
tion criteria) from the following communities: Witbank, Secunda, 
Hendrina, Ermelo, Grootvlei, and Phola (Figure 2). These are 
similar with regard to environmental exposures (industrial emis-
sions and burning of biomass fuels) and socioeconomic status. 
Two classes of grade four classes were randomly selected in the 
schools, except Grootvlei, Phola, and Hendrina, where all grade 4 
classes were recruited within the selected school because of limited 
classes. The schools were selected based on proximity to an air 
quality monitoring station (within a 1–2 km radius of the moni-
toring station), sufficient numbers of grade 4 pupils, and a limited 
amount of “bussing in” of children from distant communities. Of 
the 714 schoolchildren eligible to participate, eight declined par-
ticipation, resulting in a sample size of 706 participants.

Studies have reported that samples of at least 50 schools with 
an average of 10–30 children each will provide 90% power or 
more to describe outcome patterns and to fit models to test dif-
ferent hypotheses adjusting for appropriate covariates.39 Given 
the small number of participating schools, we considered the 
Kenward–Roger correction for small clusters.40,41 With this 
approach, an estimated sample size ranging from 500 to 1500 
children would allow us to test our research question using gen-
eralized estimating equations (GEE) models with the correction 
for small clusters.42 Thus, the available sample of approximately 
700 children clustered into six schools had adequate power to 
test our hypothesis.

Collection of data

Child and caregiver interviews

Fieldworkers were recruited from the studied communities 
with previous experience in conducting community-based sur-
veys. The questionnaire included demographic information; an 
assessment of the presence and severity of respiratory and other 
relevant symptoms and doctor-diagnosed disorders (Appendix 
I; http://links.lww.com/EE/A313). Questionnaires were avail-
able in English and Sotho, and interviews were conducted in the 
language of choice of the respondent. Data were collected elec-
tronically in the field and immediately uploaded onto remote 
servers using mobile technology.

An asthma symptom score was created from responses to spe-
cific respiratory symptoms questions from the caregiver’s ques-
tionnaire: doctor-diagnosed asthma, shortness of breath when 
hurrying on level ground, too breathless during dressing, ever 
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Figure 1.  A map illustrating Highveld High Pollution Priority Area (as defined in reference 37).

Figure 2.  An exploded map showing the studied communities.
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wheezing in the past 12 months, wheezy apart from cold, and 
wheezing leading to shortness of breath. These asthma symp-
toms questions were combined into an asthma symptom score 
consisting of a sum of positive answers to these questions as 
previously reported.43–45 The asthma symptom score was catego-
rized into “less likely” (score = 0 or 1) and “more likely” (score 
≥2) for the presence of asthma.

The child and child caregiver questionnaire provided indirect 
measures of environmental exposures. These included house-
hold cooking fuel type, use of a heater, heater fuel, and envi-
ronmental tobacco smoke (ETS) exposure. ETS exposure was 
determined from positive responses to either of the following 
questions “Are there any household smokers?” and “Do you 
(the child’s caregiver) smoke cigarettes, even occasionally?.”

Fractional exhaled nitric oxide

FeNO measurements were conducted before spirometry fol-
lowing procedures described by the American Thoracic Society 
and European Respiratory Society (2005). Briefly, FeNO was 
measured using the NIOX 200 (Circassia Inc, Uppsala, Sweden), 
where the learners were asked to empty their lungs by breathing 
away from the machine. Then, the new sensor was inserted into 
their mouth and the learner sealed their lips tightly around the 
opening. The learner then inhaled deeply until the lungs were 
filled up, and then exhaled at a normal rate through the sensor. 
The test was stored automatically in the machines. The learners 
completed a previous day’s 24-hour food and medication intake 
screening questionnaire. Moreover, learners were asked to not 
consume drinks or food an hour before the test.

Spirometry

A qualified spirometry technologist conducted a once-off base-
line spirometry assessment for 347 schoolchildren. Among the 
359 participants without a spirometry test, some were not avail-
able on the days on which the spirometry test was conducted, 
and some participants refused to participate.

The spirometer was calibrated daily. The lung function indices 
of interest were FEV1, FVC, and the ratio of FEV1/FVC. All tests 
were performed per the American Thoracic Society Guidelines,46 
but without nose clips. Our previous experience with school-
children has indicated discomfort with nose clips, and given the 
evidence in the literature of minimal effect, we elected to omit 
its use.47,48 No bronchodilator reversibility assessments were 
performed. A minimum of three consecutive maneuvers were 
performed, up to a maximum of eight at a particular trial. The 
prediction equations from the Global Lung Initiative (GLI) were 
used in our analysis,49 without race or ethnicity correction. Each 
maneuver performed by the learner for the lung function mea-
surements was assessed for meeting acceptability criteria. The 
dates of the spirometry data were used to align with the PM2.5 
exposure data.

Allergy testing (Phadiatop)

Allergy or atopy tests (Phadiatop) were conducted to screen 
allergic sensitization in individuals. The blood was drawn by 
a qualified medical doctor, stored in the cooler box with an ice 
pack, and then sent to the National Institute of Occupational 
Health in Johannesburg on the same day for analysis. Informed 
consent was obtained from both the caregiver and the child to 
have their blood drawn for the test.

Environmental exposure assessment

Data for PM2.5 were obtained from South African Weather 
Services air monitoring stations located in each of the five com-
munities: Witbank, Secunda, Hendrina, Ermelo, Phola, and 

Eskom air monitoring stations in Grootvlei. The monitoring sta-
tions used similar monitoring equipment, methods of sampling, 
and quality control. The communities were similar in terms  
of environmental exposures (industrial emissions and burning 
of biomass fuels) and socioeconomic status. The daily mean of 
PM2.5 concentrations from these monitoring stations was down-
loaded from the South African Air Quality Information System 
(SAAQIS, https://saaqis.environment.gov.za/) as Excel spread-
sheets to match the study period of October 2018–February 
2019. The spreadsheets were exported and merged in STATA/
IC version 18 (StataCorp., College Station, TX). Data from the 
SAAQIS network are validated according to the South African 
Weather Services’ Standard Operating Procedures during the 
quality control process. Outliers are identified if they are out-
side the range of three standard deviations (SDs) of the mean 
and removed from the validated dataset unless these are legit-
imate spikes in the concentration. In such instances, they were 
retained. The data were also checked for zero shift, which were 
corrected to correspond with the values from the recent calibra-
tion if identified.50

IVEware is a package used to perform multiple imputations, 
variance estimation, and draw inferences from missing data as 
described previously.51 The code “IMPUTE” uses a multivariate 
sequential regression approach called Chained Equations. This 
approach is used to impute missing data and can create multiple 
imputed datasets. Continuous and categorical variables can be 
handled using this approach. Furthermore, linear and logistic 
regression models can be fitted using data resulting from this 
multiple imputation analysis.

Statistical analysis

Initial exploratory data analysis techniques, such as means and 
SD, medians, and interquartile ranges (IQRs) and percentages, 
were used as appropriate to describe the data. Histograms and 
QQ plots were used to assess the distributions of primary and 
secondary outcomes. All outcomes were modeled as continuous 
and binary following relevant thresholds. Our models included 
lag effects for the preceding days (lags 1–5, as well as 5-day 
average lag) of PM2.5 exposure.

Tukey fences method was used to identify outliers and their 
removal from the analysis was determined. Data analysis was 
performed in STATA/IC version 18 and SAS (SAS Institute Inc., 
Cary, NC). Multiple imputation using the Chain equation (MICE) 
method provided in the IVEware software was used since more 
than 5% of the data was missing for all the variables used in 
the analysis. Five imputed datasets were used. “Missingness” was 
assessed for exposure and outcome for bias due to confounding 
and missing mechanisms, respectively. We compared variables 
across the strata of missing PM2.5, and it was determined that 
some confounders were unbalanced for those with exposure 
compared to those without exposure. When comparing groups 
by presence or absence of the outcome, it was determined that 
the data were missing at random. Based on these preliminary 
analyses, we anticipated that the analysis of the original data-
set without imputation would be biased and less precise. Several 
imputation methods were considered, and because of the nature 
of this dataset, including a modest set of variables and missing-
ness and the fewer set of assumptions required with this method, 
the MICE approach was seen as the most appropriate. Individual 
distributions of each relevant variable were assessed to deter-
mine bounds for continuous variables. We performed sensitivity 
analyses of both datasets (complete and imputed) and present 
the findings of the imputed data here.

Dependent variables

The continuous outcomes were FeNO and the lung function 
parameters (FEV1 percent predicted [pp], FVCpp, and FEV1/

https://saaqis.environment.gov.za/
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FVCpp) that were calculated from the GLI equations, without 
race or ethnicity correction.49 To determine whether effects were 
greater among those with abnormal parameters, FeNO > 35 ppb 
was used as the definition of airway inflammation17,52 and FEV1 
< lower limit of normal (LLN), FEV1/FVC < LLN,53 and asthma 
symptom score ≥ 2 were used as dichotomized variables in the 
analysis based on internationally standardized definitions.45,54,55

Independent variables

The PM2.5 and its 5-day lag estimates were used as the key expo-
sure variable. Missing PM2.5 concentrations were also imputed 
using the IVEware multiple imputation method and the result-
ing dataset was used for further analysis.

To address the objectives of this study, we used the GEE 
approach with exchangeable correlation matrix. The exchange-
able correlation matrix structure was selected because it has a 
reduced number of parameters to be estimated. We used the 
identity link for continuous outcomes, such as FeNO, FEV1pp, 
FVCpp, and FEV1/FVCpp, and the logit link for binary out-
comes. These models were adjusted for relevant covariates, 
such as sex, age, ETS exposure, and household energy fuels. The 
GEE approach was considered to be appropriate because of the 
clustering of our data by school, and the need for fixed effects 
methods.

Ethics approval

The study protocol was approved by the Research Ethics 
Committee of Council for Scientific and Industrial Research 
(reference number: 177/2016). Informed consent was obtained 
from all the primary caregivers of the participants, while the 
latter assented to participation.

Results
The ambient PM2.5 concentrations monitored in the Highveld 
communities during the study period are shown in Table 1. The 
median concentrations of PM2.5 in Witbank, Secunda, Hendrina, 
Ermelo, Grootvlei, and Phola were 41.0 µg/m3 (range: 11.4– 
60.4), 38.7 µg/m3 (range: 9.92–66.5), 10.7 µg/m3 (range:  
9.32–55.9), 39.9 µg/m3 (range: 11.6–70.0), 26.7 µg/m3 (range: 
11.9–60.8), and 31.2 µg/m3 (range: 10.5–72.2), respectively 
(Table 1).

Figure S1; http://links.lww.com/EE/A313 shows the monthly 
variation of PM2.5 across a calendar year. While a distinct peak 
concentration is seen in the coldest months (June–August) for 
Witbank and Secunda, a variable pattern is seen in the other 
communities. Hendrina experienced a peak in May, and 
Grootvlei in September, while a fairly narrow range was noted 
for Phola.

The descriptive statistics of participating child characteristics 
are shown in Table 2. The mean age of the participants of this 

study was 10.3 (SD: 0.92) years ranging from 9 to 14 years. 
Most of the participants were males (53.4%) (Table 2). In their 
households, participants used clean (electricity or gas, n = 486 
[69%]) and dirty cooking fuels (paraffin, wood, and/or coal, n = 
220 [31%]). About 28.8% of the households used wood stoves, 
while 12.8% of the households had a fireplace. More than 50% 
of the participants were exposed to ETS.

A small number of the participants reported that they were 
diagnosed with asthma (1.13%), chronic bronchitis (0.85%), 
and allergy (3.82%) by a medical doctor (Table 3). The prev-
alence of participants with an asthma symptoms score ≥ 2 was 
6.94%, a measure suggestive of more likely to have asthma. An 
obstructive pattern (FEV1/FVC < LLN) of lung function was 
observed in 2.41% of the participants. Airway inflammation as 
indicated by FeNO >35ppb was 17.3% (Table 3).

The characteristics of schoolchildren were similarly distrib-
uted across schools (Table S1; http://links.lww.com/EE/A313).

Although no significant differences in the mean PM2.5 concen-
trations were observed among the various dichotomized respi-
ratory outcomes, there were consistently higher concentrations 
among those with abnormal outcomes (FeNO > 35 ppb; lung 
function < LLN and asthma symptom score ≥ 2) and among 
those who reported wheeze-related symptoms (Table S2; http://
links.lww.com/EE/A313).

Lags 4 and 5, as well as the preceding 5-day averaged PM2.5 
exposure, were associated with a statistically significant odds 
ratio for FeNO>35ppb, FEV1 <LLN, and FEV1/FVC < LLN. 
Additionally, lags 1 (FeNO>35ppb) and lag 2 (FEV1 and FEV1/
FVC < LLN) showed increased odds with exposure (Figure 3; 
Table S3; http://links.lww.com/EE/A313). Furthermore, lag 1, 
lag 4, and 5-day average lagged PM2.5 were significantly asso-
ciated with increased odds of an asthma symptom score greater 
than 2 (Figure 3; Table S3; http://links.lww.com/EE/A313).

After adjusting for relevant covariates, the GEE linear regres-
sion models showed no significant associations between lagged 
PM2.5 and FeNO levels. Increased estimates of FeNO levels 
were noted for lags 0–4 and the 5-day average lags of PM2.5. 
Similarly, the 5-day lag effect and the 5-day average for all the 
lung function parameters were in the direction suggesting an 

Table 1.

Descriptive statistics of ambient PM2.5 (µg/m3) from the 
monitored communities (n = 706)

PM2.5 concentration (µg/m3)

Community n Mean (SD) Min p25 Median p75 Max

Witbank 118 38.8 (13.5) 11.4 31.0 41.0 54.8 60.4
Secunda 101 37.7 (14.6) 9.92 25.7 38.7 49.5 66.5
Hendrina 135 21.6 (20.0) 9.32 9.32 10.7 55.9 55.9
Ermelo 99 39.8 (13.0) 11.6 30.4 39.9 49.6 70.0
Grootvlei 95 27.9 (8.91) 11.9 23.3 26.7 29.4 60.8
Phola 158 38.5 (19.0) 10.5 27.4 31.2 44.6 72.2
Total 706 34.0 (17.3) 9.32 19.4 31.2 46.1 72.2

Table 2.

Demographics and household characteristics of participating 
school children (n = 706)

Variables n (%)

Age (years) (mean ± SD) 10.3 ± 0.92
Sex
  Male
  Female

377 (53.4)
329 (46.6)

School
  Witbank
  Secunda
  Hendrina
  Ermelo
  Grootvlei
  Phola

118 (16.7)
101 (14.3)
135 (19.1)
99 (14.0)
95 (13.5)

158 (22.4)
Cooking fuel
  Clean fuel (electricity + gas)
  Dirty fuel (paraffin + wood + coal)

486 (68.8)
220 (31.2)

Use of an electric heater 102 (14.5)
Heater fuel
  None
  Clean fuel (electricity)
  Dirty fuel (paraffin + coal)

604 (85.6)
88 (12.5)
14 (1.98)

Wood stove 203 (28.8)
Heating with electric stove 391 (55.4)
Cooking with an electric stove 570 (80.7)
Fireplace 90 (12.8)
ETS exposure 379 (53.7)

http://links.lww.com/EE/A313
http://links.lww.com/EE/A313
http://links.lww.com/EE/A313
http://links.lww.com/EE/A313
http://links.lww.com/EE/A313
http://links.lww.com/EE/A313
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exposure-related risk (Figure 4; Table S4; http://links.lww.com/
EE/A313).

Discussion
In this study among primary schoolchildren living in commu-
nities within a known high-pollution region in South Africa, 
we found lagged PM2.5 exposure-related effects with FeNO, a 
marker of airway inflammation, as well as lung function and 
asthma symptoms score. Although we found dose–response 
relationships between exposure and continuous outcomes, these 
did not reach statistical significance.

Airway inflammation is a critical pathological response in 
asthma, resulting from the immunological reactions that char-
acterize the disease, and in turn, influence airway obstruction.14 
FeNO has been used as a marker of airway eosinophilic inflam-
mation in asthmatic patients.56,57 Chemokines involved in air-
way inflammation increase with increasing ambient PM2.5 in the 
airways of asthmatic patients.58,59

The association between PM2.5 and airway inflammation has 
been shown to be dose-related, although inconsistent across 
studies. A one SD (2.0 µg/m3) increase in the annual average 
of PM2.5 was shown to be associated with a 4.55% (95% CI: 
2.33%, 6.82%) increase in FeNO levels in US schoolchildren.18 
Dose–response effects are seen among asthmatic samples, with 
shorter-term, same-day IQR increases in PM2.5 resulting in an 
increase of FeNO from 1% to 3% increase23 through to 18.7%.25 
The effects reported among randomly selected community- 
based samples tend to be smaller, ranging from 1.1 ppb28 
through to 5 ppb.26 Our findings are within the range reported 
by these latter studies but did not reach statistical significance.

The inconsistencies seen across studies for a PM2.5-related 
airway inflammation effect may be related to the lack of under-
standing between the exposure-biochemical reaction-biological 
effect and outcome pathway. These may occur within a few 

hours, as have been reported in some studies where effects of 
6.9 and 6.3 ppb increase in FeNO were shown within 1 and 4 
hours of exposure,30 or 24–48 hour lags21,29 or even longer lags, 
as found in our study. A meta-analysis reported a pooled esti-
mate of 2.25% (95% CI: 1.51%, 2.99%) change in FeNO per 
10 μg/m3 increase in short-term PM2.5, exposure across a 0–24-
hour lag.20 However, this analysis did not discriminate between 
studies of exclusive asthmatic children and random samples, 
suggesting a possible smaller effect in the general population, 
and a larger effect among asthmatics is likely. The lag analysis 
is important when assessing the effects of PM2.5 on the airways, 
especially for short-term exposure.60

A significant association between PM2.5 and FeNO was 
observed for lag 6 in a panel study that investigated associations 
between ambient air pollution and FeNO in university students 
in an urban area of China.61 This provided evidence that FeNO 
can be influenced by short-term variation of PM2.5 and was sup-
ported by our findings of significant association for lag 1- and 
5-day average lags of PM2.5.

We saw similar dose–response effects with lung function, as was 
seen with FeNO. This was in keeping with the reports in the liter-
ature. A meta-analysis indicated that a 10 µg/m3 increase in PM2.5 
was associated with a 25.7 ml decrease (95% CI: 14.9, 36.5) in 
FEV1. This was also observed at lag 1, where FEV1 decreased by 
14.8 ml (95% CI: 2.24, 27.4).21 Similarly, a 10 µg/m3 increase in 
PM2.5 concentrations was shown to be associated with a decrease 
in FEV1 on the current day (−22.0 ml, 95% CI: −32.5, −11.6) and 
lag 1 (−32.6 ml, 95% CI: −43.7, −21.4) among schoolchildren in 
China.62 This delayed effect was also observed for FEV1 on lag 
day 0–2, where a 10 µg/m3 increase in PM2.5 was associated with a 
1.67% decrease in FEV1 (95% CI: −3.05, −0.26).63,64

Our data seemed to suggest that the effect of PM2.5 on the 
various measures of lung health is likely to be strongest among 
those with existing evidence of poor lung health. This may 
explain why our findings were statistically significant when 
dichotomized between normal and abnormal (FeNO > 35 ppb; 
lung function parameters < LLN). Those with normal lungs are 
resilient to these exposure-related effects. The linear models 
incorporating the full sample may then tend to dilute out sig-
nificant effects.

There is strong evidence that an asthma symptom score can 
be used in characterizing and quantifying asthma symptoms in 
individuals who have never been labeled as asthmatics.43,55,65 
Asthma symptom score ≥ 2 (more likely to have asthma) was 
positively associated with long-term exposures to PM2.5 concen-
trations, but this lacked significant association.55,65 In this study, 
asthma symptom score ≥ 2 was also positively associated sig-
nificantly with lag 1, in addition to lag day 4 and 5-day average 
lags of PM2.5.

Our findings for lagged effects have important health systems 
implications. The delayed response to PM2.5 exposure could 
result in health surveillance systems failing to associate health 
outcomes with exposures or providing exposed communities 
with adequate warnings to those at particular risk for adverse 
respiratory health outcomes. Health services and schools should 
take necessary precautions for asthmatic children or those with 
features of poor lung health in the days after such elevation or 
exceedances. Development of these early warning systems will 
assist in reducing mortality and morbidity from PM2.5-related 
asthma.66,67

We reported a prevalence of doctor-diagnosed asthma of 
1.1% in this sample, which is much lower than that described 
in other South African studies, ranging from 5% to 34%.68,69 
This may suggest poor access to health care services in these 
communities. This is contrasted with the asthma symptoms 
score, with approximately 7% more likely to have asthma. The 
asthma symptoms score combines several asthma-associated 
symptoms.45,55 The asthma symptoms score also has a good pre-
dictive ability for asthma-related outcomes and can also assist in 
detecting environmental risk factors.44,65

Table 3.

Respiratory health outcomes among the participating children 
(n = 706)

Health outcome

Doctor-diagnosed asthma, n (%) 8 (1.13)
Doctor-diagnosed chronic bronchitis, n (%) 6 (0.85)
Doctor-diagnosed allergy, n (%) 27 (3.82)
Doctor-diagnosed bronchitis, n (%) 2 (0.28)
Chronic cough, n (%) 52 (7.37)
Phlegm, n (%) 88 (12.5)
Chronic phlegm, n (%) 21 (2.97)
Shortness of breath when hurrying on level ground, n (%) 30 (4.25)
Shortness of breath when dressing or undressing, n (%) 9 (1.27)
Ever wheezing, n (%) 30 (4.25)
Wheeze apart from colds, n (%) 17 (2.41)
Wheeze leading to shortness of breath, n (%) 366 (51.8)
Asthma symptom score,a n (%)
  Less likely (0–1)
  More likely (≥2)

657 (93.1)
49 (6.94)

FEV
1
 (L), mean ± SD 1.73 ± 0.66

FVC (L), mean ± SD 1.84 ± 0.78
FEV

1
/FVC, mean ± SD 0.96 ± 0.09

FEV
1
 percent predicted (%), mean ± SD 105.6 ± 40.7

FVC percent predicted (%), mean ± SD 99.2 ± 43.2
FEV

1
/FVC percent predicted, mean ± SD 108.8 ± 12.9

FEV
1
/FVC < LLN, n (%) 17 (2.41)

FEV
1
 < LLN, n (%) 189 (26.8)

FeNO (ppb), median (IQR) 15.8 (10–27)
Airway inflammation (FeNO > 35 ppb), n (%) 122 (17.3)
Atopy (PAU/l), median (IQR) 1.13 (0.07–13.1)
Atopy > 0.35 PAU/l, n (%) 399 (56.5)

aAsthma symptom score was created from specific respiratory symptoms questions from the 
caregiver’s questionnaire.

http://links.lww.com/EE/A313
http://links.lww.com/EE/A313
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The daily mean ambient PM2.5 over the course of the study 
ranged from 21.6 to 39.8 µg/m3 in the communities included 
in the present study, which were all above the World Health 
Organization (WHO) 24-hour guideline of 15 µg/m3.70 
Nevertheless, these concentrations were below the South African 
National Ambient Air Quality Standards 24-hour guidelines 
of 40 µg/m3.36 While there is extensive evidence that elevated 
levels of PM2.5 are associated with adverse lung function out-
comes,71,72 levels of PM2.5 below the WHO guidelines are still 
associated with respiratory illness.73,74 This provides support 
for the case that lower levels of air pollution still present with 
adverse outcomes among those children with compromised lung 
health. Thus the WHO and South African National Ambient Air 
Quality Standards strategy for a continued reduction in these 
standards is necessary.

The Highveld region was declared an Air Pollution Priority 
Area in terms of Section 19(1) of the National Environmental 
Management: Air Quality Act (Act 39 of 2004).75 This is one of 
the three HPPAs in South Africa, all of which experience high 
levels of pollution mostly from a range of sources including 
industrial sources, community-based sources (such as burning 
of domestic fuels), vehicles, etc. As designated areas, they have 
their own Priority Area networks of air monitoring.

Our study presented with several limitations. For logisti-
cal reasons, our study was conducted between October and 
February months. Typically, these are the months overlapping 
the spring months of the year October–November, and the 
summer months (December–January) in the Highveld region. 
Air pollution is affected by seasons, and PM generally peaks in 
the cold months in the Highveld region.38,76 Pollutant levels in 
some communities may have been generally lower than the peak 

annual levels, during this period. This may have resulted in an 
underestimation of the effect estimates. However, for several of 
the communities, the annual variability was not substantial nor 
consistent.38 For example, the Phola community has fairly con-
sistent seasonal pollutant levels,77 (https://saaqis.environment.
gov.za/) while reports of other Highveld communities describe 
geographical differences across seasons.38,76,78 Thus, while it is 
likely that if our study was conducted in the coldest months 
with higher PM2.5 levels, the changes in effects would have been 
modest, and at worst, our findings are biased toward the null. 
Nevertheless, the presence of effects despite these lower levels of 
pollution provides grounds for stronger intervention.

We were dependent on the air quality monitoring network 
for our exposure data. SAAQIS provided data of 24-hour PM2.5 
averages. Despite the rigor of quality control, this network is 
subject to challenges. Missing data are common due to electrical 
shutdown or breakdown of monitoring equipment.50 This is not 
uncommon among monitoring networks. To overcome the miss-
ing data for the specific periods, we performed data imputation 
using well-established techniques.51 This approach was used 
to impute missing data to create five multiple imputed data-
sets. Through various sensitivity analyses, we believe that the 
imputed estimates were robust for the analysis we conducted.

An important shortcoming in our study design was the 
cross-sectional approach we adopted. Both our respiratory 
health outcomes and our exposure measures were taken at sin-
gle points in time, driven by the dates of the objective respi-
ratory assessments (FeNO and spirometry). While among 
schoolchildren with normal respiratory health, this is likely 
to have a limited impact on our findings, schoolchildren with 
asthma are likely to have variable lung function. Thus, once-off 

Figure 3.  Adjusted logistic regression GEE models estimates for respiratory health outcomes including (A) FeNO > 35 ppb, (B) FEV1 < LLN, (C) FEV1/FVC < 
LLN, and (D) asthma symptom score ≥ 2 in association with PM2.5 for current day exposure, lag 1–5 days, and 5-day average. Adjusted for age, sex, heating 
fuel, ETS exposure, and atopy (positive Phadiatop). Odds ratios are depicted by green dots, 95% CI is represented by tails, and the dashed line indicates the 
level of null effect.

https://saaqis.environment.gov.za/
https://saaqis.environment.gov.za/
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measurements are probably inadequate to describe their true 
respiratory health status, resulting in a nonrandom misclassi-
fication, with more children classified as normal than is truly 
the case.79 Our findings of approximately 27% having abnormal 
FEV1 (using the GLI equations and the LLN cut point) suggest 
that the prediction equations may not be appropriate for this 
sample, and the associations using this index must be interpreted 
with caution. It is likely that the ratio is a more robust measure.

Despite these shortcomings, our study has numerous 
strengths. This is one of the few such studies to describe a lagged 
effect of PM2.5 with FeNO, lung function, and asthma on the 
African continent. We had well-collected health outcome mea-
sures, with both objective assessments of lung health, as well 
as reporting of outcomes using standardized instruments. Our 
ability to access quality air pollution data within an established 
network in six communities located in a designated high air pol-
lution area is an important opportunity to describe the exposure 
effects on health in these vulnerable communities.

In conclusion, our findings strongly suggest that air pollu-
tion, in a lagged manner, results in airway inflammation and 
decreased lung function. These findings are likely to be more 
substantial among schoolchildren with asthma or asthma-like 
symptoms associated with increased PM2.5 levels.
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