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Abstract
In response to infection or vaccination, the immune system initially responds non-specifically to the foreign insult (innate) 
and then develops a specific response to the foreign antigen (adaptive). The programming of the immune response is shaped 
by the dispersal and delivery of antigens. The antigen size, innate immune activation and location of the insult all determine 
how antigens are handled. In this review we outline which specific cell types are required for antigen trafficking, which 
processes require active compared to passive transport, the ability of specific cell types to retain antigens and the viruses 
(human immunodeficiency virus, influenza and Sendai virus, vesicular stomatitis virus, vaccinia virus) and pattern recog-
nition receptor activation that can initiate antigen retention. Both where the protein antigen is localized and how long it 
remains are critically important in shaping protective immune responses. Therefore, understanding antigen trafficking and 
retention is necessary to understand the type and magnitude of the immune response and essential for the development of 
novel vaccine and therapeutic targets.
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Introduction

Protein antigen trafficking involves the transport of self or 
foreign proteins (antigens) through the tissue via lymphatics 
to the lymph node (LN) or through the blood to the spleen, 
where immune surveillance occurs. Antigen trafficking usu-
ally occurs within 1–3 days (Fig. 1a). While there are other 
types of antigens (e.g., lipids, polysaccharides, nucleic acids) 
this review will focus primarily on protein antigens. Cur-
rent understanding of protein antigen trafficking has relied 
largely on the fluorescent conjugation of soluble protein 
antigens [1–5], labeled nanoparticles [6] or infrared dye 
(IR) conjugation of virus-like particles (VLP) [7] in mice. 

Antigen location can be determined by immunofluorescence 
using highly sensitive detection methods or genetically engi-
neering expression of fluorophores within the viral or bacte-
rial genome, e.g., vaccinia virus labeled with mCherry or 
GFP [4, 8–11]. These tools have facilitated a greater under-
standing of how antigens are handled in different locations 
throughout the body and the cell types involved.

Protein transport through organ systems

In this section, we will discuss what is known about where 
protein antigens traffic upon entering the body, how protein 
antigens get to the LN and spleen, the mucosa, and new 
insights into how proteins traffic through the brain. We will 
also discuss tissue specific cell types involved in acquiring 
or trafficking protein antigens to shape the immune response.

Antigen trafficking within the LN and spleen

The function of the LN is to survey antigens, pathogens and 
debris from lymphatic fluid that drains from the other tis-
sues of the body (e.g., skin, liver, gut, lung, brain, etc.). The 
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organization and structure of the lymphatic vasculature in 
the tissues and the LN selectively allow entry to different 
locations within the LN based on antigen size [6]. The LN 
is surrounded by the lymphatic sinus which allows for entry 
of lymph through the afferent lymphatics and is home to 
large numbers of lymphocytes, macrophages, and antigen-
presenting cells like dendritic cells (DCs) (Fig. 1). Most pro-
tein antigens that are encountered in the tissue (e.g., skin, 
lung, gut, brain) traffic via the lymph to the draining LN.

The LN is arranged with B cell follicles on the outer edge 
near the lymphatic sinus [12]. The cortical lymphatics reside 
in the space between the B cell follicles and branch into the 
cortex near the T cell zone [12]. The structural support of 
the LN is provided by several different types of fibroblasts 
that lymphocytes crawl along [13, 14]. The conduit system 
within the LN, comprised of fibroblastic reticular cells, 
begins at small holes in the subcapsular sinus and acts as 
a sieve where antigens and particulates smaller than 70kD 
or 4 nm can passively enter the system and the cortex of 
the LN (Fig. 1) [15–17]. Soluble protein antigens adminis-
tered via immunization (30–50 kD) and viruses (20–100 nm) 
are small enough to passively flow through the lymphat-
ics directly to the LN conduit system, while most bacteria 

(400–2000 nm) are too large to pass through the lymphatic 
capillaries in the LN and require active transport via migra-
tory cells [6, 18, 19]. The ensuing immune response is 
largely affected by which type of antigen-presenting cells 
have access to the antigen. In the case of small antigens, both 
LN resident (passive transport) and migratory DCs (active 
transport) can acquire and present antigens (see DC subtypes 
in DC section). Follicular B cells, located in the B cell fol-
licles, can also acquire small, soluble antigens that passively 
diffuse through the subcapsular sinus of the LN. Follicular 
B cells also encounter larger antigens which are actively 
transported by DCs and subcapsular sinus macrophages (dis-
cussed further in the B cells section).

High endothelial venules (HEV) are vascular structures 
within the lymph node important for the transport of lym-
phocytes from the blood. This function and maturation of 
the HEVs is highly regulated by CD11c + DCs [20]. Dur-
ing fever, the upregulation of ICAM-1 and CCL21 causes 
increased lymphocyte transport across HEVs [21]. Neutro-
phils [22] and plasmacytoid DCs (pDCs) [23] actively transit 
through HEVs during infection or inflammation. As neutro-
phils (97, 98) and pDCs (56) are capable of trafficking anti-
gen to the LN it is possible for these cells to traffic protein 
antigens from the blood through the HEVs (see Neutrophil 
and Dendritic cells sections).

In contrast to the LN, the spleen acquires protein antigens 
and pathogens that arise in the blood. The spleen consists 
of the red pulp and the white pulp. The red pulp filters and 
surveys the blood for antigens, pathogens and dead or dying 
cells (particularly red blood cells). The white pulp largely 
acts like a LN within the spleen and is organized in a similar 
manner with specific B cell zones, T cell zones and a sinus 
(Fig. 1) [24]. Many different myeloid cell types reside in 
the red pulp, and can traffic to the white pulp in a similar 
manner as DCs, monocytes, neutrophils and T cells traffic 
from the tissue through the lymph and to the LN. As such, 
many of the cell types involved in trafficking of antigens are 
similar between the spleen and LN. Therefore, the immune 
system has two major immune cell “hubs” where antigens 
traffic to initiate an immune response. One, the LN, that 
surveys the lymph from the tissue and two, the spleen, that 
surveys the blood.

Antigen transport through the respiratory 
and gastrointestinal mucosa

While the major sites of immune cell priming are the LN and 
spleen, several other tissue sites have specialized systems 
for antigen detection and trafficking based on their location. 
Detection of antigens, particularly vaccine antigens, given 
orally or nasally, has identified unique mechanisms of anti-
gen acquisition and transfer within intestinal or respiratory 
mucosa. Oral or nasal mucosal protein antigen vaccines 

Fig. 1  Trafficking of antigens to the lymph node and spleen. a Tim-
ing of antigen trafficking is approximately 1–3  days. b Migratory 
DCs, both cDC1 and cDC2, traffic different antigens from the periph-
ery to the draining LN via the lymphatics. LN-resident cDCs can 
capture antigens that are passively transported through the lymphat-
ics to the LN and present the antigens to naïve T cells [3, 62–64]. 
c Lymphatic sinus DC (cDC2) extend dendrites into the subcapsular 
sinus to acquire lymph-borne antigens [73]. d In the spleen, cDC1s 
can traffic bacteria, such as Listeria monocytogenes, from the red 
pulp to the white pulp [76]. e Langerhan cells (located in the epi-
dermis) and dermal dendritic cells (DDC) (located in the dermis) 
traffic different antigens from the skin to draining LN via the lym-
phatics [82]. XCR1 + DDC (cDC1s) can acquire and traffic viral anti-
gens, such as Herpes simplex virus 1 and vaccinia virus [19, 96–99]. 
f CD169 + metallophilic macrophages (also known as subcapsular 
sinus macrophages) capture incoming small antigens by extending 
their processes to sample the lymphatic fluids [11, 114, 115]. They 
can also capture larger, viral antigens, such as vesicular stomatitis 
virus [116]. g In the spleen, CD169 + metallophilic macrophage can 
sample the blood and capture large antigen in a similar manner as 
in the LN [11, 114–116]. h Ly6C + MHCII + monocytes can acquire 
soluble antigens, such as ovalbumin, and migrate to the LN [124]. i In 
the spleen, CD169+ metallophilic macrophages capture blood-borne 
pathogens and hold the antigens within non-degradative endosomal 
compartments. These macrophages exchange intact antigens to mar-
ginal zone (MZ) B cells [129, 130]. j Small, soluble antigens diffuse 
from the conduit pores and traffic to the B cells follicles or other parts 
of the LN cortex [17, 132]. k CD169 + metallophilic macrophages 
sequester antigens near the sub-capsular sinus to exchange unpro-
cessed antigen to follicular B cells [11, 134]. l DCs concentrated 
near the high endothelial venule (HEV) mediates presentation of 
unprocessed antigens to migratory B cells [135]. m Neutrophils can 
transport bacteria (Staphylococcus aureus) and fluorescent ova from 
the site of infection to the lymph nodes via the afferent lymphatics 
[140–142]

◂
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must be formulated to activate innate signaling pathways 
for antigen to bypass an environment that is permissive or 
tolerant to normal flora. Within the mucosa, protein antigens 
passively enter through the epithelium [25] or are captured 
by microfold (M) cells and then transported across the epi-
thelium for uptake/transfer to epithelial DCs [26]. M cells 
express clusterin, Siglec-F, Annexin V, and UEA1 in mice 
[27–30], and so far human M cells are known to express 
clusterin [29]. M cells are a specialized epithelial cell type 
found within the epithelial barrier that allow antigen entry 
into the mucosal lymphoid follicles (Table 1). Antigens 
entering the airway mucosa are captured by nasopharynx-
associated lymphoid tissue (NALT) M cells or respiratory 
M cells [31]. When proteins or pathogens enter through the 
epithelium they can encounter the lymphatic structures [32]. 
Within the small intestinal villi is the lacteal which is a spe-
cialized lymphatic capillary with highly permeable “button 
like” junctions whose main function is to take up chylomi-
crons for fat absorption as demonstrated in mice [33]. Anti-
gens (vaccine or pathogen derived) can be actively captured 
by DCs reaching through the epithelium or passively trans-
ported through the epithelium [34, 35]. In either case, once 
through the epithelium, the antigens are carried by intestinal 
DCs [34] or respiratory DCs through the lymphatic vascu-
lature. Both the lacteals and submucosal lymphatics at the 
Peyer’s patches drain into the mesenteric lymphatics [36]. 
Passive antigen transport through the mucosal lymphatics 
has not been directly measured, though active cellular trans-
port is well described [34, 35, 37–39]. In either case the 
antigens, passively or actively, would be transported into 
the mesenteric LNs [36]. Within the respiratory tract the 
antigens, either actively or passively, enter the lymphatics 
that drain to the mediastinal LNs in mice.

Antigens that pass through the M cells at intestinal or 
lung mucosal sites are carried by DCs to the lymphoid tissue 
where T and B cells can be activated for robust production of 
mucosal IgA. Mucosal vaccination is attractive because the 
vaccine initiated immune response is at the site where mucosal 
infections occur, and obviates the need for intramuscular injec-
tion. Mucosal vaccines licensed for clinical use in humans 
and animals are live attenuated or inactivated [40]. These vac-
cines include nasal (FluMist-Influenza A/B) and oral (Rotarix-
rotavirus) delivery routes. Preclinical studies have attempted 
to target vaccine antigens to M cells to improve the efficiency 
of the immune response within the mucosal tissues in mice 
[41]. For example, vaccine antigens conjugated to an agonist 
(TLR2, 4, 9) [42] or a specific receptor expressed by M cells, 
such as a (1,2) fucose-containing carbohydrate [43], a Co1 
ligand or a C5aR ligand, could target antigens to M cells. Tar-
geting of antigens to M cells would optimize DCs recruitment 
to the follicle-associated epithelium where the DCs would 
become activated and promote an adaptive immune response 
[44, 45]. Other options for enhancing the immunogenicity of 

mucosal vaccines are virus-like particles and bacterial strains 
that overexpress antigens on their surface (reviewed in detail 
elsewhere [46]).

Protein transport through the brain to the LN

The brain is a highly specialized organ where inflammatory 
responses must be minimized. New studies have determined 
that removal of proteins and protein aggregates requires a 
drainage system within the brain that is somewhat unique to 
other systems. The glymphatic system, primarily studied in 
rodents, acts to remove interstitial fluid and protein, protein 
aggregates and other solutes that mix with cerebral spinal fluid 
(CSF) in the paravascular space. This transport of solutes is 
acellular, but does require Aquaporin 4 water channels in the 
astrocytes that line the brain vasculature to passively direct 
fluid flow toward the perivenous space [47]. The interstitial 
fluid collects in the perivenous space and drains out of the 
brain toward the cervical lymphatic system in rodents and 
non-human primates [48]. While there is still some debate 
about how the glymphatic and traditional lymphatic system 
cooperate it is thought that dural sinuses and meningeal arter-
ies are lined with lymphatics which drain from the glymphatic 
system to the cervical lymph nodes [49, 50]. Several recent and 
interesting studies evaluated lymphatic drainage in the brain 
using fluorescently tagged protein antigen or diffusible sol-
utes (Evan’s Blue) in mice. Following injection into the brain 
parenchyma of mice, these proteins were found to passively 
drain through the meningeal lymphatics to the deep cervical 
LNs and later the superficial cervical LNs [49–51]. While 
vaccination with protein antigens in the brain is not an attrac-
tive route of immunization, this mechanism of antigen traf-
ficking is critical for removal of proteins and pathogens from 
the brain. Other studies have demonstrated the importance of 
sleep in the removal of protein via the brain glymphatics and 
lymphatics in mice [52, 53]. Further studies have linked the 
removal of proteins and protein aggregates to improved out-
comes including decreased neural degeneration and dementia 
in mice and humans [54]. While this field is still relatively new 
and exciting, understanding how proteins traffic from the brain 
and through the deep cervical LN for clearance will improve 
our understanding of brain function, protein trafficking and 
immune activity. These studies clearly demonstrate how under-
standing protein and antigen trafficking can reveal novel dis-
coveries that may improve overall health and well-being.

Cell types involved in protein antigen 
trafficking

Antigen trafficking within the LN, spleen, tissue, mucosa, 
and brain can occur passively, but ultimately leads to 
encounters with different immune cell types. Below we 



Trafficking and retention of protein antigens across systems and immune cell types  

1 3

Page 5 of 21 275

Table 1  Overview of cell types that traffic or retain antigens

Yellow colored boxes indicate cells that traffic antigens. Purple colored boxes indicate cells that retain antigens.The location of each cell type 
and the timing of antigen trafficking or retention are shown. For the cell types that have known endocytosis receptors, we have listed them in the 
function column. For example, cDC1s use mannose receptor and DEC-205, cDC2s use dectin, DCIR2 and DC-SIGN [213], and M cells can 
transport proteins via dectin-1 and Siglec-5 [214]. Respective mouse and human markers for each cell type are also listed
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will outline different immune cell types that are involved 
in actively acquiring and transporting protein antigens to 
the LN or spleen where they initiate the adaptive immune 
response. We will outline differences between tissue types.

Dendritic cells

Dendritic cells (DCs) are professional antigen-presenting 
cells (APC) that are essential for the initiation and control 
of adaptive immune responses. DCs specialize in acquiring 
and processing antigens to present to naïve or memory T 
cells via major histocompatibility complex (MHC) mol-
ecules. DCs also express necessary co-stimulatory mol-
ecules that help in the activation of T cells. As sentinel 
APCs, DCs survey peripheral tissues, such as the skin, to 
acquire foreign antigens, migrate to the draining LN and 
present the antigens to T cells to initiate adaptive immune 
responses. There are several different classifications of 
DCs, both lymphoid and tissue specific, whose main func-
tions are to acquire, traffic, process, and present antigens. 
These different classes are outlined below with a focus on 
their role in antigen acquisition, recognition and transport.

Within each of the tissues are cDC1 and cDC2, often 
classified based on the tissue type, while pDCs are typi-
cally only found in the secondary lymphoid organs and 
blood. The development of each DC subset is controlled 
by specific transcription factors. In both mice and humans, 
the cDC1 development and survival requires interferon 
regulatory factor 8 (IRF8) and basic leucine zipper ATF-
like transcription factor 3 (BatF3) [55]. In mice, cDC1 
are further defined by their expression of XCR1, CD103, 
and CD8α, while in humans, cDC1 are defined by their 
expression of CD141 (BDAC3) (Table 1) [56]. Expres-
sion of CLEC9a (DNGR1) on cDC1 is common between 
the two species. In contrast, cDC2s exhibit more hetero-
geneity than cDC1s. They have variable expression of 
Esam and CD301b (Mgl2) [57]. The cDC2s require IRF4 
for their development in mice [58], while it is unclear if 
human cDC2 also required IRF4. Human cDC2s expressed 
CD1c (BDAC1) and SIRPα (Table 1). Brown et al. [59] 
demonstrated in mice that cDC2s can be further classified 
based on the presence or absence of T-bet. They described 
T-bet+ cDC2A to have anti-inflammatory properties and 
express Runx3 and SREBF2 while T-bet− CDC2B have 
pro-inflammatory properties and rather express the tran-
scription factor RORƴt and the cell surface molecules, 
CLEC12A and CLEC10A (Table 1). In humans, only the 
cDC2B subset was found in the blood [59], but the group 
suggested that the cDCA population may be found in 
human lymphoid tissues [59]. In mice and humans, pDCs 
require IRF7, IRF8 and TCF4 for their differentiation and 
maintenance [55, 60, 61].

Conventional DCs

Conventional dendritic cells (cDC)s can present both peptide 
and lipid antigens to T cells. cDC1s are important in cross-
presentation, which is the process by which exogenous anti-
gens are displayed on MHC class I to be presented to naïve 
 CD8+ T cells (Fig. 1b). In the mouse, lymphoid-resident 
cDC1s express toll-like receptor (TLR) 3, 4, 9, 11, 12, 13, 
and STING, while migratory cDC1s express TLR1, 3, 6, 
8, 11, 12, and STING [59]. In humans, lymphoid-resident 
cDC1s express TLR3, 8, 10, and STING. So far, it is only 
known that human migratory cDC1s express TLR3 [59]. In 
contrast, cDC2 generally uses the MHC class II pathway to 
present peptide antigens to  CD4+ T cells but can also cross-
present soluble vaccine antigens via MHC class I to  CD8+ T 
cells under certain conditions in mice (Fig. 1b) [3, 62–64]. 
Based on analysis of differential gene expression, Brown 
et al. demonstrated that cDC2A subset express TLR1, 5, and 
7 and cDC2B subset express TLR1, 2, 5, 6, 7, and 8 [59]. 
DCs can also present microbial lipid antigens via CD1 iso-
forms (CD1a, CD1b, CD1c). Interestingly, the presentation 
of lipid antigens via CD1b is not limited to the state of DC 
maturation. CD1b can present lipid and glycolipid antigens 
on immature DC and mature DC, while MHC class II is 
limited to presentation of peptide antigens only on mature 
DC [65, 66]. CD1b expressing DCs can present to αβ T cells 
[67, 68] and a recent study demonstrated that CD1b can be 
recognized by human γδ T cells [69].

Within each cDC subset there are both migratory and 
spleen/LN-resident populations. cDC migration from the tis-
sue to dLNs requires transport via the lymphatic vasculature 
where the CCR7 expressing DCs are exposed to gradients of 
chemokines, specifically CCL19/21 [70–72]. For those anti-
gens that are small enough to passively traffic through the 
lymphatics from the tissue and enter the subcapsular sinus, 
specific LN sinus (LS)-DCs (a subset of cDC2s) acquire 
the lymph-borne antigen (Fig. 1c) [73]. The LS-DCs are 
proximal to the LN lymphatic vasculature providing the 
LS-DCs with a unique opportunity to shape the immune 
response [73]. In contrast, LN-resident DCs (cDC1) located 
deep within the cortex of the LN present antigens to naïve 
 CD8+ T cells. Thus, cDC1s located near  CD8+ T cells often 
acquire cell-associated antigens and those antigens that 
require cross-presentation [1]. To aid in the active transport 
of antigens to the LN from the tissue are migratory DCs, 
which can localize to specific zones within the LN to prime 
T cells and appropriately shape the response. Splenic migra-
tory DCs are also important for trafficking antigens acquired 
in the red pulp to the white pulp and require fibroblastic 
reticular cells [74, 75]. As an example, migratory cDC1s 
are thought to traffic Listeria monocytogenes from the red 
pulp to the white pulp in mice [76]. This process is thought 
to be co-opted by the bacteria to access the T cells within 
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the white pulp [76] (Fig. 1d). Thus, cDCs express different 
pattern recognition receptors, present different types of anti-
gens, and localize to specific regions within the tissue and 
lymphoid organs. Therefore, which cDCs encounter and traf-
fic protein antigens for presentation can dramatically affect 
the adaptive immune response.

Plasmacytoid DCs

Plasmacytoid DCs (pDCs) are highly inflammatory and have 
been described to produce nearly one thousand times more 
type 1 interferon than cDCs [77]. Like cDCs, pDCs express 
MHC class II molecules and costimulatory molecules. These 
pDCs can present endogenous antigens via MHC class I and 
II molecules [78, 79]. Although pDCs can phagocytose solu-
ble antigens, such as ovalbumin or hen egg lysozyme, it is 
still debatable whether pDCs present exogenous antigens as 
efficiently as cDCs do, particularly in the presence of cDCs 
[80, 81]. For example, ovalbumin taken up by pDCs, when 
inhaled, can be transported from the lungs into draining LNs 
in mice [80]. Thus, while pDCs are not a major contributor 
to DC antigen trafficking, they can traffic antigens either 
in the absence of cDC or under specific circumstances that 
require them to do so.

Skin DCs

In the skin, cDCs are found primarily in the dermal layer. 
Skin-derived DCs are important in trafficking antigens from 
the skin via afferent lymphatics to draining LNs (Fig. 1e) 
[82]. The DC subsets that reside within skin are Langer-
hans cells (LC) and dermal dendritic cells (DDCs) which 
have both unique and redundant functions. LCs share a com-
mon ontogeny with macrophages and are found within the 
epidermis, while DDCs are of the cDC ontogeny and are 
found within the dermis. Murine LCs are defined by CD11b, 
Epcam, Sirpα, and Langerin (CD207) [83, 84], while human 
LCs are characterized CD1a, Langerin (CD207), and 
Birbeck granules (Table 1) [85]. LCs can take up antigens 
and migrate to skin-draining LNs for presentation to naïve 
T cells with the peak of migration occurring after 72 h [86, 
87]. LCs are structurally linked to E-cadherin-expressing 
keratinocytes [88]. To egress the epidermis, E-cadherin 
expression is decreased and further migration is aided by 
CXCR4 and EpCAM [89, 90]. Similar to migratory DDCs, 
activated LCs upregulate CCR7 and follow the CCL19/
CCL21 chemokine gradient to the draining LNs. In addi-
tion to Langerhans cells, DDCs in the mouse express numer-
ous markers based on their location and function and can 
be classified as cDC1 or cDC2. The cDC1 DDCs express 
XCR1, Clec9A, and Langerin (CD207) and can be further 
delineated based on CD103 expression (+ or −), while the 
cDC2 DDCs express either CD11b and Sirpα or low levels 

of CD11b and CX3CR1 (Table 1) [83, 84]. Human DDCs 
are divided into human  CD1a+ DDCs and human  CD14+ 
DDCs [91]. These two subsets also express CD1c (BDAC1) 
and CD11c (Table 1). Following infection or intradermal 
vaccination, DDCs can phagocytose pathogenic material and 
antigens as well as upregulate CCR7 and MHC II to promote 
migration through the lymphatics and antigen presentation 
to naïve T cells within the draining LN [70, 92, 93]. The 
release of lipid mediators, cysteinyl leukotrienes, prostaglan-
din  E2 (PGE2) and expression of PD-L1 during inflamma-
tion aid in CCR7 recognition of CCL19/21, matrix metallo-
proteinase 9 (MMP9) expression and downstream signaling 
events [18, 94, 95]. When trafficking from the skin, dermal 
DCs are of critical importance. In bacterial skin infections, 
DDC migration to the LN is required for antigen presen-
tation in the LN as most bacteria (400–2000 nm) are too 
large to pass through the lymphatic capillaries [6]. Further, 
 XCR1+ dermal DCs, of the cDC1 lineage, were recently 
shown to be exceptionally important for cross-presentation 
of viral antigens from Herpes Simplex Virus-1 and Vac-
cinia Virus (VV) that infect skin cells, such as keratinocytes 
or dermal DCs [19, 96–99]. Thus, skin DCs are critically 
important for trafficking of antigens from the skin to the 
LN and mounting the appropriate immune response to each 
specific pathogen.

Pulmonary DCs

In the lungs, pulmonary cDCs traffic inhaled antigens to 
lung-draining LNs. Pathogen-derived or vaccine antigens are 
acquired by cDCs which then transport and present antigens 
in the lung- draining LNs. Within the lung tissue, migra-
tory cDC1 have high expression of CD103 and low expres-
sion of CD11b (termed  CD103+ DC). Conversely, migra-
tory cDC2 express low levels of CD103 and high levels of 
CD11b (termed  CD11b+ DC) [100]. Both cDC populations 
are represented at relatively similar frequency in the lungs. 
While  CD103+ DCs are better at trafficking apoptotic cells, 
both are capable of trafficking viral antigens to draining LNs 
[101]. Trafficking of antigens by cDCs occurs as a result 
of chemokine receptor expression where decreased CCR6 
expression and increased CCR7 promotes migration. The 
interaction of CCR7 with CCL19 and CCL21 ligands are 
similar in the lung and the skin [102]. Once the DCs arrive 
in the LNs,  CD103+ DC typically cross-present the antigenic 
peptide to  CD8+ T cells while the  CD11b+ DC presents the 
antigenic peptide to  CD4+ T cells. Surprisingly, in the case 
of soluble antigens, both cDC1 and cDC2 subsets can pre-
sent antigens via MHC class I or MHC class II [101]. There-
fore, pulmonary DCs have specific functions within the lung 
that aid in tailoring T cell responses to protect the host from 
respiratory infection.
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Intestinal DCs

DCs that occupy the gut mucosa are found within the 
mesentery, LNs [103], Peyer’s patches [104], the colon 
[103], and intestinal lamina propria [34]. Similar to other 
organs, DCs found within the gut tissue are comprised of 
cDC1  (CD103+CD11b−) and cDC2  (CD103−CD11b+). 
As foreign antigens pass through the intestinal epithelium 
they are captured within Peyer’s patches by microfold (M) 
cells. These M cells are uniquely suited to facilitate antigen 
transfer to mucosal DCs [25]. In addition to the transfer of 
antigens from M cells to cDCs, subepithelial dome resident 
DCs that express high levels of lysozyme extend dendrites 
across the M cell-specific transcellular pores to sample 
luminal antigens [105] in a similar manner as cDC2s at the 
lymphatic sinus (LS-DC) of the LN [73]. Small intestine 
goblet cells also can capture small antigens and IgA com-
plexes for transport to DCs [106, 107]. In addition to the 
commonly described DC subsets, gut cDC2s can differenti-
ate into  CD103+CD11b+ DCs in the presence of TGFβ to 
promote Th17 and T regulatory CD4 T cell subset genera-
tion within the gut [108]. Upon encounter with antigens, the 
 CD103+CD11b+ DC subset can induce Th17 development 
by contributing to IL-23 and IL-6 production [109, 110]. 
Additionally, migratory intestinal cDC1s found within the 
mesenteric lymph can acquire intestinal antigens and lead 
to cross-presentation to  CD8+ T cells [111]. These migra-
tory DCs can traffic either through the lacteal or directly 
through the Peyer’s patches. The intestinal DCs therefore 
have unique features that are important for programming 
the immune response within the specific environment of the 
intestine.

Macrophages

Macrophages are derived from the same myeloid progeni-
tors as DCs [112]. Macrophages express MHC class I and 
II, co-stimulatory molecules and can promote pro- or anti-
inflammatory immune responses [113] (Table 1). Unlike 
DCs, macrophages are essential for removing apoptotic and 
necrotic cell debris at the site of inflammation. Of particu-
lar interest in antigen trafficking is the subcapsular sinus 
macrophage or  CD169+ metallophilic macrophage (Table 1). 
These macrophages are strategically located near the sub-
capsular sinus of the LN or near the blood vasculature to 
capture incoming protein antigens and viruses (Fig. 1f, g). 
These  CD169+ macrophages extend cellular processes to 
sample the afferent lymphatic fluids and blood for protein 
and viral antigens (Fig. 1f, g) [11, 114, 115]. The  CD169+ 
macrophages can also capture large antigens, including 
vesicular stomatitis virus (VSV) antigens (Fig. 1f, g) [116]. 
These subcapsular macrophages have limited degradative 
properties, which allows them to hold antigens for up to 

three days [117]. The duration of antigen allows for migrat-
ing B cells to arrive at the subcapsular sinus, where mac-
rophages present the antigen to cognate B cells and initiate 
the humoral response [11]. The duration of antigen requires 
the expression of CD169, a sulfated glycoprotein [117] 
(Table 1). Furthermore,  CD169+ macrophages in the LN 
can capture and present lipid antigens to iNKT cells, which 
is critical in the activation and rapid secretion of IL-4 and 
IFNγ by iNKT cells [118]. The expression of CD1d on the 
 CD169+ macrophages allows iNKT to come into close prox-
imity with these macrophages for antigen presentation.

Additional studies have illustrated how macrophages 
can both present antigens and exchange antigens with 
other cell types, such as DCs [119], to shape the immune 
response in the spleen. For example, like in the LN, splenic 
CD169+ macrophages can capture blood-borne pathogens 
and interact with CD8α+ DC to cross-prime  CD8+ T cells 
(79). CD169 on the macrophages was critical for antigen 
transfer to the CD8α+ DC (79). In addition, red pulp mac-
rophages, expressing  CD11cint and F4/80hi, acquired antigen 
via the mannose receptor to cross-present AdLGO adenovi-
rus-expressing ovalbumin which led to control of early viral 
infection [120] (Table 1). In this study, SpiC−/− mice (SpiC 
is required for the development of red pulp macrophages) 
had a higher viral burden at an earlier timepoint compared 
to Batf3−/− mice (which lack cross-presenting cDC1s) and 
viral clearance was achieved at 10 days [120]. These findings 
demonstrate that red pulp macrophages are important during 
early viral infection by presenting viral antigens to  CD8+ 
effector T cells, while cDC1s help in later viral clearance. 
These studies demonstrate the importance of macrophages 
in both antigen exchange and antigen presentation which can 
shape the immune response.

Monocytes

Monocytes can participate in antigen surveillance and 
acquire antigens prior to migrating to the LNs during steady 
state [121]. Monocytes in mice are  Ly6C+MHCII+ and sug-
gested to be the  CD14+/CD16− subset in humans (Table 1) 
[122–124]. Immature monocytes, in addition to differenti-
ated monocytes (monocyte-derived DCs or macrophages), 
can transport fluorescent ovalbumin at steady state or in an 
inflammatory state [124] (Fig. 1h). While  Ly6C+MHCII+ 
monocyte populations are abundant at steady state, and 
increase dramatically during inflammation, other monocyte 
populations do differentiate into macrophages. Presentation 
of antigens by monocytes typically occurs via differentiation 
into monocyte-derived DCs [121]. The monocyte-derived 
DCs are thought to originate from monocytes, be similar to 
cDC2s in function, and expand during inflammation [121]. 
Thus, while monocytes participate in antigen trafficking 
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many of their presentation capabilities require maturation 
into a type of inflammatory DC.

B cells

B cells are of particular importance as they encounter anti-
gens within specific regions of the LN and spleen. There are 
three types of B cells, transitional B cells, marginal zone 
(MZ) B cells, and follicular B cells found in the lymphoid 
organs. Transitional B cells are those B cells that have come 
from the bone marrow and have yet to fully differentiate. 
As such they will not be described in detail within this sec-
tion. An additional B cell subset, B1 B cells, can also be 
found within the lymphoid tissue but largely comprise the B 
cell populations of the pleural and peritoneal cavities [125]. 
These B1 cells can be delineated into B1a and B1b and can 
produce antibodies, primarily IgM, to different types of anti-
gens (reviewed in [125]) and have a minor role in antigen 
trafficking. Each of these B cell types has unique features 
that contribute to antigen handling, recognition and antibody 
responses via class-switch recombination. Below we will 
further discuss the major B cell types involved in protein 
antigen handling and responses in the lymphoid organs.

Marginal zone (MZ) B cells

MZ B cells, along with DCs, macrophages, and granu-
locytes, are positioned within the marginal zone of the 
spleen where they readily encounter blood-borne patho-
gens. The marginal zone is located where large amounts of 
blood enter the MZ from the circulation (Fig. 1). Interest-
ingly, MZ B cells in humans are freely circulating and can 
be found in other tissues besides the spleen. In humans, 
MZ B cells have high expression of CD1c (BDCA1) and 
CD19 while in mouse, MZ B cells express B220, CD21 
and CD1d (Table 1) [126, 127]. The MZ B cells in humans 
and mice express higher levels of IgM and lower levels 
of IgD (Table 1) [127, 128]. Blood-borne pathogens or 
small soluble antigens that enter the marginal zone are 
captured by  CD169+ metallophilic macrophages or MZ 
macrophages and endocytosed via FcγRIIB, allowing the 
antigens to be held within non-degradative endosomal 
compartments [129]. Upon encounter with MZ B cells the 
 CD169+ macrophages can recycle the intact antigens to 
the surface for recognition by the B cell receptor (Fig. 1i) 
[129, 130]. MZ B cells can quickly produce IgM anti-
bodies in response to particulate bacterial antigens par-
ticipating in very early defense against these pathogens 
[130]. Like other B cells, the MZ B cells can perform 
class-switch recombination to produce IgA or IgG, MZ 
B cells, however, require assistance from neutrophils and 
splenic sinusoidal endothelial cells [131]. MZ B cells are 

therefore critical in the initial recognition of antigens and 
at later times can be presented with antigens by  CD169+ 
metallophilic and MZ macrophages to manipulate the 
immune response.

Follicular B cells

In the LN, small soluble antigens in the lymph diffuse 
in the subcapsular sinus into B cell follicles, where fol-
licular B cells can encounter them (Fig. 1). These B cells 
express B220, CD19, MHC class II, CD23 in the mouse, 
and express CD19 and HLA-DR in human (Table 1) [126, 
127]. Both also express high levels of IgD and low levels 
of IgM (Table 1) [127]. Analysis of antigen diffusion by 
electron microscopy or immunofluorescence suggests that 
antigens diffuse through pores or conduits in the subcapsu-
lar sinus to reach the follicular B cells and other areas of 
the LN cortex in mice (Fig. 1j) [17, 132]. Upon encounter 
with these antigens, follicular B cells internalize the B cell 
receptor bound soluble antigens and eventually (~ 24 h) 
display the antigenic peptide in the context of MHC class 
II for presentation to T cells which they encounter follow-
ing CCR7 dependent T cell migration to the paracortex 
[133].

While small, soluble antigens can easily pass through 
the lymphatics and into the LN, larger antigens (e.g., VSV 
antigens) are captured by subcapsular sinus macrophages 
and DCs for recognition by follicular B cells.The subcap-
sular sinus macrophages act to sequester antigen near the 
sinus and B cell follicle where they can transfer unpro-
cessed particulate antigens to follicular B cells (Fig. 1k) 
[11, 134]. The antigens are then internalized by follicular 
B cells which migrate to the edge of the follicle and inter-
act with T cells and present the antigen [134].

During DC-mediated presentation to B cells, DCs 
endocytose antigens via FcγRIIB. Endocytosis via the 
FcγRIIB prevents degradation of the protein antigen via 
non-degradative endocytic compartments and promotes 
recycling of the antigen to the surface for recognition by 
the B cell receptor [129]. Indeed, a DC population in the 
paracortex presents intact and unprocessed antigens to B 
cells [135, 136]. DC populations concentrated in the para-
cortex around the HEV interact with migrating B cells as 
a mechanism for antigen recognition by the B cell and to 
promote T cell dependent antibody production (Fig. 1l) 
[135]. Upon encounter, the B cells slow down and interact 
with the DC for activation of the B cells, which can give 
rise to extrafollicular plasma cells [135]. Like MZ B cells, 
follicular B cells are important for shaping the immune 
response and thus trafficking antigen to the follicular B 
cells is critical for optimal antigen presentation, antibody 
production, and coordination of immunity.
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Neutrophils

Neutrophils  (Lin−,  CD45+,  CD11bhi in mouse and human, 
 Ly6C+ in mouse,  MPO+,  Elastase+ in human) [137–139] 
are the first responders to sites of inflammation and aid in 
the recruitment of other leukocytes through the release of 
mediators (Table 1). While many of the recruited neutrophils 
contract via cell death at the site of inflammation, emerging 
evidence has demonstrated that neutrophils have the capacity 
to traffic antigens to LNs (Fig. 1m) [140, 141]. In beautiful 
imaging studies, higher numbers of photoconvertible neu-
trophils were detected within the draining LNs only when 
Staphylococcus aureus was administered to the mouse ear 
compared to scarification without the bacteria [141]. These 
findings implicate neutrophil migration as an additional 
mechanism of antigen transport, at least during bacterial 
infection. Further evidence indicated neutrophils migrate to 
the LN via the lymphatic vasculature and can traffic fluores-
cent ovalbumin administered in Complete Freund’s Adjuvant 
[142]. Neutrophil migration was dependent on TNFα pro-
duced from tissues, as well as CD11b and CXCR4, but not 
CCR7 (though CCR7 was important at homeostasis) [140]. 
Thus, neutrophils are another mechanism of antigen trans-
port from the site of infection or injury that is important for 
modulating the immune response.

Conclusions for protein transport

Antigen can traffic both passively and actively. Active anti-
gen trafficking requires several different cell types and the 
movement of these cells from the tissue, through the blood, 
lymph and into the spleen and LNs. Passive antigen traffick-
ing to the LN or spleen does not require cellular transport 
and instead results in antigen acquisition by LN or spleen 
resident cells (DCs, macrophages, B cells, etc.). The timing 
of these trafficking events occurs within the first week after 
activation (Fig. 1a). This is a coordinated process that is 
required for detection of the antigen and/or pathogen and for 
forming the immune response. As discussed above, the cell 
types that encounter the antigen shape the type of immune 
response and work together with other cell types to amplify 
the response and clear the infection.

Protein antigen retention

In addition to antigen trafficking several studies have also 
highlighted the importance of antigen retention after vac-
cination [3–5] or after infection [143–148]. This type of 
antigen retention (also called antigen persistence, residual 
antigen, or antigen archiving) has been described as antigen 
remaining within the lymphoid tissue in mice in the absence 
of infection and beyond the peak of the immune response 

(Fig. 2a). This antigen persistence is different from chronic 
antigen or antigen depots. Chronic antigen is defined as anti-
gen that remains due to chronic infection and antigen depots. 
In chronic depots, antigen is maintained for long periods of 
time at an injection site [149] ultimately trapping cells in 
the site where they become tolerized or die. In the case of 
chronic infection, antigen is present as a result of unchecked 
viral replication which causes clonal exhaustion [150–152]. 
As stated above, antigen archiving, persistence, or residual 
antigen is described as antigen that remains beyond the pri-
mary immune response and that is beneficial to immunity.

Cell types involved in antigen retention

As discussed above there are various documented cases 
in which vaccine antigens or viral antigens remain in the 
host for beyond detection of virus in humans, or beyond the 
primary immune response in mice. In most cases there is 
no longer detectable virus at the late time points in which 
either antigen-specific responses are detected or viral or 
vaccine proteins are detected (Fig. 2a). These factors led to 
remaining questions about which cell types are involved in 
the retention of non-replicating virus or protein antigens. 
Interestingly, all detection of antigens post-infection or vac-
cination is within lymph node stromal cells (LNSC) which 
require minimal turnover. Below are the LNSCs that have 
been described to be capable of antigen retention.

Follicular dendritic cells

Follicular dendritic cells (FDCs) are a radio-resistant stro-
mal fibroblast subset that can capture and harbor antigen 
over extended periods of time (Fig. 2b) [144, 153–156]. The 
mechanism by which FDCs hold antigen is largely through 
antigen/antibody complexes and their interaction with CR1 
(CD35) and CR2 (CD21) (Table 1) [153, 157–161]. CR1 and 
CR2 are also expressed by human FDCs, along with CR3 
[162, 163] (Table 1). FDCs can acquire very small antigens 
directly via the LN conduit system or larger antigens from 
B cells (Fig. 2b) [16, 164, 165]. More specifically, immune 
complexes (antigen, IgM or IgG, and C3d/C3b opsonins) 
are captured by subcapsular sinus macrophages before being 
transferred to follicular B cells. The FDCs are then thought 
to acquire the antigen from B cells as a result of high expres-
sion of CR2 which could potentially strip the follicular B 
cell of its antigen–antibody complex (Fig. 2b) [165]. It was 
shown in mice that the duration of antigen persistence of 
antigen–antibody complexes within FDCs is quite long and 
involves the recycling of the unprocessed antigen stored in 
endosomes to the FDC surface for presentation to B cells 
[153]. It is predicted that FDCs acquisition and storage of 
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Fig. 2  Retention of foreign antigen within the lymph node. a Antigen 
retention occurs approximately 5–30 + days after the initial onset of 
vaccination [3–5] or infection [143–148] with a foreign antigen. b 
Follicular dendritic cells retain HIV and protein antigens via immune 
complexes bound to the CR2 receptor (CD21) [148–151]. c Soluble 
vaccine and viral antigen are retained by lymphatic endothelial cells 
for up to 5  weeks post vaccination [3, 5]. The LECs exchange the 
antigen to migratory DCs for the antigen to be presented in the lymph 
node to memory T cells to promote effector memory function [4]. 
Although the location within the lymph node is unknown, both influ-

enza (nuclear protein) and VSV have suggestive evidence of long-
term antigen retention within the lymph node [4, 202]. d Respiratory 
viral antigen within the lung draining lymph node has been shown to 
result in antigen-specific effector memory T cells for over one month 
after infection [147, 148, 198]. These effector memory T cells patrol 
the lumen of the respiratory tract and can protect against secondary 
infection from influenza [144, 197]. e  CD34+ fibroblasts within the 
subcapsular sinus and  Nr4a1+ fibroblasts within the medullary cord 
retain soluble vaccine antigen for up to 2 weeks [5]
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antigen is a mechanism by which memory B cells can react 
to FDC held antigens to maintain memory B cell function. 
The purpose behind FDC antigen–antibody complex reten-
tion is in germinal center development, B cell activation, 
affinity maturation, and B cell memory.

Lymphatic endothelial cells

Lymphatic endothelial cells (LECs) line the lymphatic vas-
culature and are important for draining interstitial fluid, anti-
gens, and immune cells from the periphery to the draining 
LN. They express VEGFR3, LYVE1, Prox1, and Podoplanin 
in mice and human [5, 166–173] (Table 1). Within the LN, 
LECs are comprised of subcapsular, cortical and medullary 
LECs [171] that are defined by specific markers that distin-
guish function as well as location [172, 173]. We described 
an additional role for LECs in the retention or archiving 
of viral and vaccine antigens for more than 5 weeks which 
was dependent on innate immune activation in mice (e.g., 
polyI:C and other TLR agonists) (Fig. 2c) [4]. Notably, anti-
gens associated with vaccinia infection (VV-ova) but not 
Listeria monocytogenes infection (LM-ova) were archived 
[4]. Whether it is the type of innate immune activation that 
is required for LEC antigen archiving (e.g., viral versus bac-
terial) or the size of the pathogen (e.g., 20–100 nm versus 
400–1000 nm) is still unclear.

LECs also have an important role in maintaining periph-
eral tolerance [2, 174–177]. However, in the case of antigen 
archiving, LECs exchange antigens with DCs to promote 
productive immune responses (Fig. 2c) [3]. Importantly, 
LEC antigen archiving was important for enhancing the 
 CD8+ T cell response during a secondary challenge in the 
mouse [4]. Future studies are required to understand what 
defines whether an LEC archives or presents a foreign anti-
gen [2, 178]. One potential clue is that antigen archiving is 
dependent upon addition of an innate stimulus [4]. While the 
process by which metallophilic macrophages, DCs, or FDCs 
endocytose and maintain unprocessed antigens involves 
FcγRIIB, it is unclear how LECs maintain unprocessed anti-
gens. However, based on transcriptional data of antigen high 
LEC populations, we identified caveolin-mediated endocy-
tosis as a potential candidate by which LECs endocytose 
antigens [5]. Future studies of LEC antigen archiving are 
required to fully understand if antigens are held within cave-
osomes and if they are recycled back to the surface.

Antigen that resides in the host for long periods of time 
within the LN, is important for immune memory, and resides 
within LECs of the LN, is termed antigen archiving. Anti-
gen that is held within other cell types or undescribed cell 
types with less information about the impact of the antigen 
duration has been termed antigen persistence. The differ-
ence between archiving and persistence is largely semantic, 

however we will use the terminology interchangeably refer-
ring to the process as persistence or archiving as described 
by the authors in the publications reviewed.

Other LN fibroblasts

The uniquely described ability of FDCs to retain anti-
gen–antibody complexes suggests that other fibroblasts [179] 
may be able to perform this type of function. However, there 
are limited data describing other fibroblastic reticular cells 
as a cell type that acquires or retains foreign antigens, in 
fact, the majority of the data suggest otherwise [3, 4]. How-
ever, in our recent report we discovered fibroblast subsets, 
based on their transcriptional signature, within the drain-
ing LN of mice [179], retained low but detectable levels of 
barcoded antigen within the  Nr4a1+ and  CD34+ fibroblasts 
for 2 weeks (Table 1 and Fig. 2e) [5]. Interestingly, these 
subsets are in close proximity to the lymphatics that drain 
the vaccine antigens and could be an alternative source by 
which LECs acquire antigens over time for transfer to DCs 
[3]. Thus, previously unrecognized participation of antigen 
retention by LN fibroblasts may also have an important part 
in manipulating the immune response, though how this may 
occur can only be speculated.

Vaccines and infections that cause antigen 
retention

As mentioned above, all antigen retention occurs within the 
lymph node stromal cell (LNSC) populations. As the studies 
on LNSCs and their capacity to acquire and hold antigens is 
limited, additional studies are required to fully understand 
this process during different types of infections/vaccinations. 
In the section below, we will highlight what is known about 
the types of vaccinations and infections that have been dem-
onstrated or predicted to result in prolonged vaccine or viral 
antigen within the host LNSCs.

Vaccination

Vaccine antigens can remain in the host due to vaccine anti-
gen depots or vaccine antigen persistence. Antigen depots 
arise from substances within vaccinations, such as alum, 
and release vaccine antigens over time as the depot is bro-
ken down. Antigen depots are minimally beneficial to the 
cellular immune response [149]. Vaccine antigen persis-
tence arises due to small soluble antigens being acquired 
by stromal cells within the LN. Studies of vaccine antigen 
persistence in mouse models have detected small soluble 
protein antigens, including viral proteins, within the drain-
ing LNs for up to 5 weeks post vaccination (Fig. 2c) [3–5]. 
Similarly, intradermal injection of virus-like particles (VLP)
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s, was detected for as long as 6 days within the four drain-
ing LNs as measured in vivo using an IR dye to image the 
mouse daily [7]. In this study it was not determined if the 
duration of the VLP was longer than 6 days or if 6 days was 
the limit of detection with the IR dye or by which cell type 
the antigen was held.

In another report, the length of antigen persistence was 
directly associated with the amount of antigen administered 
as well as the signals received [4]. As such, the induction of 
an active immune response acted to facilitate an increased 
duration of antigen within the LN [4]. This report demon-
strated that the persistent antigen was held by LECs [4]. The 
process was termed antigen archiving. Antigen persistence/
archiving was independent of the type of protein or the type 
of TLR agonist, though antigen size was a determinant and 
some TLR agonists were better than others [4]. As an exam-
ple, conjugation of the antigen to a TLR agonist resulted in a 
robust CD8 antigen-specific response and increased antigen 
persistence/archiving by LECs in mice [5]. It is notewor-
thy that antigen-TLR conjugation increased the duration 
of DC antigen presentation [180] similar to other antigen-
TLR conjugate vaccine platforms [181, 182] and potentially 
increased the duration of antigen within the DC and possibly 
LEC or fibroblasts [5]. Whether the DC retained the antigen 
or received the antigen from another cell type (e.g., LEC, 
FDC or other fibroblast) was not demonstrated. However, 
in another report we documented the process of LEC–DC 
antigen exchange which occurred with archived antigen [3]. 
These findings suggest that detection of antigen within DCs 
using this methodology may be due to antigen exchange 
rather than DC antigen retention. Thus, vaccination with 
a spectrum of vaccine adjuvants and antigens can initiate 
antigen archiving and benefit long-term protective immunity.

In addition to LEC antigen archiving following vaccina-
tion, other reports have demonstrated the long-term retention 
of antigen–antibody complexes by FDCs following immu-
nization [153, 183]. In these studies, immune complexes 
were detected following immunization with phycoerythrin 
(PE) and were taken up by B cells which were handed off 
to FDCs [153]. The unprocessed injected antigen–antibody 
complexes were detected for up to 16 days after immuni-
zation and predicted to be much longer based on in silico 
modeling [153, 183]. These findings also demonstrated that 
antigen amount and antigen half-life (depending on the pro-
tein antigen administered) would affect the duration within 
the FDC [183]. Indeed, the recycling of antigen by the 
FDCs was important in both mouse and human for promot-
ing memory B cell responses. However, new transcriptional 
data also suggest FDC-retained antigens may have a regula-
tory function via PD-L1-PD-1 interactions between FDCs 
and T cells [184].

Together these data demonstrate a significant role 
for LNSCs in regulating antigen persistence/archiving 

following vaccination. Whether current vaccines, such as 
mRNA-based vaccines, induce antigen retention by either 
LECs or FDCs is yet to be determined. Based on the prem-
ise of these types of vaccines, translation of mRNA into 
protein, it is possible that mRNA vaccine encoded proteins 
are retained by LNSCs. That said, the location of the vac-
cine encoded protein and whether LNSCs have access to 
the protein, would likely influence whether or not this is 
possible. Additionally, while the exact mechanisms of how 
antigens are retained are still not well understood there are 
several key pathways that could initially be targeted (eg. 
Caveolin mediated endocytosis, CR2 or FcγRII) to pro-
mote antigen retention. As we begin to better understand 
how antigens become archived or persist, testing if those 
pathways will be valuable to target in new vaccines will 
be necessary.

HIV

HIV is a chronic infection that results in the depletion of 
 CD4+ T cells, leading to acquired immunodeficiency syn-
drome (AIDS). The virus’s ability to integrate into the 
genome of host cells that survive infection can lead to re-
infections. Latent infection in  CD4+ memory T cells is the 
cause of most of the virus' persistence phenotype [185]. 
Another form of long-term viral reservoir is in myeloid 
cell types [185]. Even following antiretroviral therapy, HIV 
antigens can be detected within viral reservoirs. These viral 
reservoirs are known to contribute to the continual relapse 
of HIV infection [186]. It has been suggested that infectious 
HIV is kept in FDC reservoirs via complement receptor 2 
(CD21/CD35) binding to complement C3d [187] (Fig. 2b 
and Table 1). Heesters et al. demonstrated that FDCs isolated 
from HIV-infected individuals could transmit the virus when 
co-cultured with uninfected human  CD4+ T cells [187]. 
Furthermore, when  HIV+ FDCs were pre-treated with solu-
ble CD21-Ig and then co-cultured with uninfected human 
 CD4+ T cells there was a significant reduction in HIV RNA 
copy number compared to the isotype control [187]. These 
findings suggest that C3d binding to CD21 promotes the 
release of infectious HIV. Intriguingly, HIV antigens have 
been detected in FDCs for years after an infection [188, 
189]. Most notably, the HIV antigen p24, a capsid protein, 
was detected in FDCs in mice for nine months after initial 
infection [190]. Additionally, macrophages and microglia 
can harbor p24 antigen in vitro making the cells that survive 
viral infection an additional viral reservoir [191]. However, 
it remains unclear whether these cells are harboring viral 
antigen from a primary infection, or if the infected cells are 
continuing to make new viral particles. Thus, while HIV 
is considered a chronic infection with viral reservoirs, the 
question still remains whether FDCs can retain viral antigens 
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in antigen–antibody complexes or if the virus hijacks the 
ability of the FDC to retain antigen–antibody complexes 
within non-degradative FcγRII positive endosomal compart-
ments to protect the HIV from degradation [153].

Vaccinia virus

Vaccinia is an enveloped virus belonging to the poxvirus 
family. Vaccinia virus is largely tropic to livestock and was 
initially discovered by Edward Jenner in milk maids [192]. 
Since this discovery, vaccination with vaccinia largely eradi-
cated the smallpox virus. The use of this virus in laboratory 
animals to understand viral pathogenesis and host–pathogen 
interactions has increased our understanding of how viruses 
in general affect the host. Since vaccinia virus is small it 
can directly traffic to the lymphatics, particularly when the 
virus is administered subcutaneously in mice and is not 
given ample time to infect skin cells [4, 19]. Recent studies 
with mice have demonstrated that virus administered via 
scarification, which results in infection of the keratinocytes 
and DDCs, caused the lymphatic vasculature to “close” to 
impede viral dissemination to the draining LN [19]. While 
virus is unable to enter the lymphatics, clearance of the virus 
does require DC migration. The DCs required for traffick-
ing and promoting clearance of the skin infection are lan-
gerin + DDCs which promote robust  CD8+ T cell responses 
[96–98]. Vaccinia viral proteins, but not pathogenic virus, 
can also be retained within the skin-draining LN for at least 
five weeks post footpad injection (Fig. 2c) [3, 4, 193]. The 
cell type required for harboring the vaccinia viral antigens is 
the LECs [3, 4]. The archival of these viral antigens appears 
to be important for modulating T cell responses, similar to 
vaccination [4], rather than FDC retention of antigens which 
is important for B cell responses [3, 4, 153, 165]. Therefore, 
vaccinia viral infection is the only virus that has been dem-
onstrated to result in LEC antigen archiving.

Respiratory viruses: influenza and sendai

Each year the influenza virus (flu) infects, on average, one 
in five people around the world and causes five-hundred 
thousand deaths [194]. Despite high vaccination rates the 
flu virus remains highly prevalent in the population due to 
high antigenic drift and results in a flu vaccine efficacy of 
lower than 50% in some years [195]. Even in populations 
with high vaccination rates, the amount of antigenic drift 
can increase due to evolutionary pressure [196]. Thus, devel-
oping new vaccination strategies that mimic the protective 
immune response to flu are increasingly important.

Several reports have now demonstrated that influenza 
antigen is retained in mice for weeks after the peak of the 
immune response and beyond the detection of replicating 
virus [143, 148]. Specifically, viral influenza antigen can be 

detected for as late as 30 days in draining mediastinal LNs 
in mice (Fig. 2d) [148]. The residual flu antigens found in 
the LNs are thought to periodically stimulate T cell pro-
liferation and maintain an effector-like phenotype for the 
duration of antigen retention [144, 197] this is similar for 
other respiratory viruses such as Sendai virus [147, 198] 
(Fig. 2d). Thus, persistence of respiratory viral antigens 
promotes highly active viral antigen-specific T cells for a 
duration that is in line with seasonal respiratory infections. 
Perhaps, the increased number and effector phenotype of the 
flu specific  CD8+ T cells may be important for minimizing 
re-infection during the flu season. Based on the duration of 
flu antigens within the lung draining LNs and the substantial 
benefit to protective immunity, it is tempting to speculate 
that flu antigens are also “archived” by LECs in a similar to 
vaccinia virus.

Vesicular stomatitis virus

Vesicular stomatitis virus (VSV) is a member of the Rhab-
dovirus family. VSV is transferred horizontally from insects 
to mammals [199] and host survival is linked to a strong 
type-I-interferon response [200]. VSV infection in humans 
is rare, but outbreaks in cattle can have significant economic 
impact estimated at a loss of $100–200 per infected cow 
[201]. As with both influenza and vaccinia viral infection, 
VSV antigen was measurable in mice more than 6 weeks 
after infection in draining LNs, well beyond detection of 
the infectious virus (Fig. 2c) [202]. The location of antigen 
retention within the LNs was not explored, however, based 
on our understanding of antigen persistence/archiving and 
the turnover of hematopoietic cells within the LN, it is likely 
the antigen is within a LNSC.

COVID‑19

Some individuals infected with SARS-CoV-2 have long-term 
symptoms for as long as 110 days, dubbed as “long-haulers” 
[203]. It is unclear the cause of these long-hauler symp-
toms, however, one study has shown SARS-CoV-2 antigen 
in biopsies of human enterocytes from a patient 92 days after 
the onset of symptoms [204]. It is unclear if the virus is 
infecting and replicating within these cells or if the viral 
antigen is being retained to protect from future infections. 
Growing evidence suggests that in patients who no longer 
have detectable respiratory swab viral loads, these patients 
can have fecal samples with detectable viral loads for nearly 
five weeks after negative respiratory swabs [205]. This sug-
gests that SARS-CoV-2 infection may become chronic in 
these individuals. However, whether SARS-CoV-2 antigens, 
like other viral antigens [144–146, 148, 206], persists or is 
archived as a mechanism to stimulate either B or T cells 
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for longer periods of time is unknown. It seems most likely 
that symptoms in “long-haulers” is due to chronic infection 
rather than persistence or archiving. However, it is possi-
ble that a reservoir of SARS-CoV-2 persists within a LNSC 
using a mechanism of persistence similar to HIV.

Conclusions

Here we have outlined cell types, tissues, and types of pro-
tein antigens and infections required for antigen dispersal, 
persistence and archiving. While numerous factors are 
responsible for where protein antigens traffic, which cell 
types are important for protection against pathogens and 
the antigens they release, and how antigens are retained for 
future stimulation, we still have much to understand. Of 
particular interest is how the location of the protein antigen 
can determine the type of cell-mediated response required, 
i.e., the type of antibody response, the type of Th response, 
and cytotoxic response. Indeed, these responses are much 
more well described than antigen persistence or archiving, 
but there are still gaps in our understanding due to lack of 
visibility of antigens upon entry into the host. As single 
cell technology and high-resolution imaging improves our 
detection of antigens, it will be important to utilize the tech-
nology to enhance our understanding of antigen trafficking. 
There is still much to learn about the retention, persistence, 
and archiving of protein antigen. Key areas of investigation 
should include which viruses and/or other pathogens can 
initiate antigen archiving. We highlighted several types of 
infections here and only one has been demonstrated to initi-
ate LEC antigen archiving (Vaccinia Virus). Interestingly, 
LECs have also been shown to take up Chikungunya viral 
RNA, however, the duration of the virus within LECs is 
unknown [207]. Others, like flu and VSV, that have similar 
effects on memory T cell responses are potential candidates 
for viruses that induce LEC antigen archiving. Additionally, 
based on the positive impact of LEC antigen archiving on 
memory responses and the possibility of achieving antigen 
archiving through vaccination, future vaccine platforms 
should attempt to leverage this process. Finally, as very lit-
tle has been described regarding how viral or protein anti-
gens are acquired by non-hematopoietic cells or how they 
are released or exchanged, future studies should focus on 
these mechanisms. Manipulation of the processes required 
for antigen archiving may ultimately lead to improved vac-
cines that provide robust memory to novel pathogens that 
we encounter. As mentioned above, determining if known 
mechanisms of antigen acquisition, such as caveolin-medi-
ated endocytosis or FcγRII/CR2, can be targeted to enhance 
different cell types involved and the processes required for 
antigen retention will be important for improving vaccines. 
Furthermore, determining the best route of vaccination 

(intradermal, subcutaneous, intramuscular, intranasal, oral, 
systemic, etc.) for inducing antigen retention will be required 
to optimize the long-term protective capabilities of different 
vaccines.

Thus far, antigen retention by lymph node stromal cells 
(LNSC) following vaccination or infection has only been 
shown to benefit protective immunity. Whether there are 
circumstances in which vaccine or viral antigens, in the 
presence of an adjuvant, are retained by LNSCs to result 
in immune tolerance has yet to be described. However, 
many studies have demonstrated that LNSCs are major 
contributors to maintaining peripheral tolerance through 
their expression of peripheral tissue antigens in mice and 
humans [174, 175, 208–212]. Further, LECs that acquire 
whole ovalbumin protein after injection participate in T 
cell tolerance in the absence of an adjuvant in mice [2] in 
a similar manner to how LECs present peripheral tissue 
antigens (via expression of PD-L1) [175]. Whether this 
antigen acquisition and retention by LNSCs could be a 
protective mechanism in which LNSCs retain antigens to 
mute allergic responses in the absence of inflammation 
is unknown. Similar to DCs, LNSCs seem to require an 
activation signal (infection, adjuvant, inflammation), to 
proceed down the path of antigen retention rather than 
antigen presentation and immune tolerance. Only when 
a vaccine adjuvant was added to ovalbumin did LECs 
archive the ovalbumin for longer than 1 week [4] which 
was later exchanged at 2 weeks post-vaccine with a pro-
fessional APC rather than being presented by the LEC 
[12]. The possibility still remains that viruses, as with 
HIV, can co-opt the process in which LNSCs retain anti-
gens to maintain latent infection [187]. Indeed, a recent 
study demonstrated that Chikungunya virus is acquired 
by MARCO + LECs [207]. Whether these LECs act as a 
reservoir for the virus or are participating in immunity 
against the virus is still unknown. Much work still needs 
to be done to understand the mechanisms of antigen reten-
tion by LNSCs and the implications for immunity, allergy, 
and viral evasion.
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