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Abstract: Bone material strength is determined by several factors, such as bone mass, matrix composi-
tion, mineralization, architecture and shape. From a clinical perspective, bone fragility is classified as
primary (i.e., genetic and rare) or secondary (i.e., acquired and common) osteoporosis. Understanding
the mechanism of rare genetic bone fragility disorders not only advances medical knowledge on rare
diseases, it may open doors for drug development for more common disorders (i.e., postmenopausal
osteoporosis). In this review, we highlight the main disease mechanisms underlying the development
of human bone fragility associated with low bone mass known to date. The pathways we focus on
are type I collagen processing, WNT-signaling, TGF-ß signaling, the RANKL-RANK system and the
osteocyte mechanosensing pathway. We demonstrate how the discovery of most of these pathways
has led to targeted, pathway-specific treatments.

Keywords: bone fragility; type I collagen; post-translational modifications; extracellular matrix;
osteogenesis imperfecta; Juvenile Paget disease; osteomalacia; osteopetrosis

1. Introduction

Developing bones consist of cartilaginous joints, the epiphysis, the growth plate carti-
lage with adjacent osteogenesis and the cortical and cancellous bone mineralized structure.
Bone tissue contains three distinct cell types: (i) the osteoblasts, derived from mesenchy-
mal cells, which deposit new bone tissue; (ii) osteoclasts, derived from bone marrow
hematopoietic precursor cells, which break down bone matrix; and (iii) osteocytes (former
osteoblasts) which orchestrate the activity of osteoblasts and osteoclasts as a response to
mechanical strain [1]. The extracellular matrix of bone tissue is composed of inorganic
minerals, collagen, water, non-collagenous proteins and lipids. Bone fragility can originate
from alterations in all these components, be it the genetic blueprint, mechanical loading, in-
sufficient remodeling at old age, estrogen deficiency or chronic medical conditions affecting
bone accrual, structure or composition.

Traditionally, bone fragility is understood as resulting from reduced bone mass, or
from defects in bone matrix composition or mineralization. Medical research has unveiled
many monogenic bone fragility conditions, yet their mechanisms of disease remain incom-
pletely understood. In fact, they continue holding secrets which may open doors for drug
developments in rare and common osteoporosis. In this review, we highlight the main and
some exemplary mechanisms underlying human bone fragility associated with reduced
bone mass.

Due to word limitations, we are not including groups of conditions associated with
bone fragility, such as high bone mass disorders (osteopetrosis) and conditions of bone
demineralization (rickets and osteomalacia). In osteopetrosis, fragility is caused by high
mineralization density with lack of bone repair [2], and in the demineralization group,
fragility is caused by insufficient bone mineral supply or deposition [3].
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2. Genetic Causes of Bone Fragility
2.1. Primary Osteoporosis Affecting Collagen (Osteogenesis Imperfecta)
2.1.1. Clinical Symptoms and Classification

Recurrent limb and vertebral fractures are typical for patients with osteogenesis
imperfecta (OI). OI, also known as brittle bone disease, is an inherited disorder of connective
tissue that has a wide clinical and genetic heterogeneity. OI is a rare disorder, with an
incidence of one in 10,000–20,000 births [4]. From a bone material perspective, OI is
characterized by low bone mass and increased bone mineralization density, which causes
brittleness (Figure 1), recurrent fractures and skeletal deformities, but also extra-skeletal
manifestations. The latter include blue sclerae, dentinogenesis imperfecta, joint laxity,
hearing loss as well as cranial malformations (i.e., basilar invagination) and pulmonary
hypoplasia with reduced lung capacity in severe cases. Depending on clinical severity,
mobility is mildly to severely impaired. Fractures are particularly common in childhood
but increased fracture risk persists throughout life.
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Approximately ~85–90% of OI patients harbor heterozygous mutations in genes
encoding type I collagen COL1A1 [MIM: 120150] or COL1A2 [MIM: 120160], which are
the genes that encode the α1(I) and α2(I) chain of type I collagen, respectively. The
remaining ~10–15% harbor mostly recessive mutations in various genes, which were all
identified after 2006. While these discoveries have contributed to our understanding
of the genetic basis of OI, many molecular disease mechanisms caused by these gene
mutations are incompletely understood. Thus far, 24+ genes have been identified to cause
OI (Table 1). These include IFITM5 [5,6] [MIM: 614757], SERPINF1 [7] [MIM: 172860],
CRTAP [8] [MIM: 605497], LEPRE1 [9] [MIM: 610339], P3H1 [10] [MIM: 610339], PPIB [11]
[MIM: 123841], SERPINH1 [12] [MIM: 600943], FKBP10 [13] [MIM: 607063], SP7 [14] [MIM:
606633], BMP1 [15] [MIM: 112264], TMEM38B [16] [MIM: 611236], WNT1 [17,18] [MIM:
164820], CREB3L1 [19] [MIM: 616215], SPARC [20] [MIM: 182120], FAM46A [21] [MIM:
611357], MBTPS2 [22] [MIM: 300294], MESD [23] [MIM: 607783], SEC24D [24] [MIM:
607186], CCDC134 [25] [MIM: 618788], P4HB [26] [MIM: 176790], PLOD2 [27] [MIM: 601865],
PLS3 [28] [MIM: 300131] and KDELR2 [MIM: 609024] [29]. These genes play a critical role
in the processing and post-translational modification of type I collagen, the control of
osteoblast differentiation or function or the formation of F-actin bundles. Proteins encoded
by these genes have their main point of action in the nucleus, the endoplasmic reticulum
(ER), the Golgi apparatus, the cytoskeleton or the extracellular matrix. In 1979, prior to any
advanced genetic information, David Sillence classified OI into four subtypes according to
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clinical severity ranging from mild to lethal [30]. This clinical classification is still being
used in daily practice, independent of the genetic cause, but a fifth clinical type (OI type 5)
has been added which stands out from the other clinical types as it causes hypertrophic
callus formation and calcification of interosseous membranes [31]. Classifications remain
under debate, and a new classification system has been proposed which groups OI not by
simple numbering but by gene cellular function [4,32].

2.1.2. Genetic Classification and Protein Function in OI

Table 1 contains a list of genes along with their encoded proteins that cause OI or
primary osteoporosis, their mode of inheritance and group classification. One recent
classification [4] proposes five groups of subtypes for OI (Group A–E). Group A subtypes
of OI (Type I–IV, XIII), which are caused by defects in collagen synthesis, structure or
processing of COL1A1 and COL1A2, including their C-terminal propeptide cleavage by
BMP1. Group B (type VII, VIII, IX and XIV) contains the genes that play a key role in
post-translational modification of type I collagen, which are CRTAP, LEPRE1, PPIB and
TMEM38B. Group C (type X, XI) includes the genes that are responsible for collagen folding
or cross linking, which are SERPINH1, FKBP10, PLOD2 and P4HB. Group D (type V and
VI) encompasses the genes IFITM5 and SERPINF1 that modify mineralization. Group E
(type XII, XV, XVI) involves genes that cause defects in osteoblast differentiation, which are
SP7, WNT1 and CREB3L1. Figure 2 illustrates the molecular target of all known OI types,
their locations in or out of the cells, and which protein products interact with collagen.
The figure also depicts the affected cellular and extracellular process, including collagen
synthesis, structure and assembly, collagen post-translational modification and processing.
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Figure 2. Osteogenesis imperfecta is caused by gene mutations encoding proteins involved in collagen biosynthesis, bone
homeostasis and maintenance.

All 24 OI-causing genetic entities have in common that they, by various mechanisms,
affect the quality or quantity of type I collagen [4]. Since type I collagen is the main structure
protein (94%) of pre-mineralized bone matrix (osteoid), abnormal type I collagen synthesis
decreases bone mass and increases susceptibility to fracture. Type I collagen consists of
three modified chains that form a triple helical fibril with two identical α1 (I) chains and
one structurally similar but genetically different α2 (I) chain. The α chain is characterized
by a strict pattern which contains a multiple triple sequence of a Gly (glycine)-X (normally
proline)-Y (usually hydroxyproline). Notably, about a third of the residues are prolines that
get hydroxylated. Each chain is characterized by amino- and carboxy-propeptides, which
are critical in preventing self-assembly of collagen fibrils within the cells.
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Table 1. Bone fragility conditions with low bone mass: inheritance, gene defects, protein function and clinical characteristics, grouped by genes causing osteogenesis imperfecta, other
primary osteoporosis and osteolysis.

Condition OMIM Inheritance Gene Mutation Protein Bone Pathway Symptoms

Osteogenesis
imperfecta

and primary
osteoporosis

166200

AD COL1A1
COL1A2 Loss of function

Collagen α1(I) chain
Collagen α2(I) chain

Collagen synthesis

OI 1 (clinical type I, mild)

166210 OI 2 (clinical type II, perinatal lethal)

259420 OI 3 (clinical type III, severe)

166220 OI 4 (clinical type IV, moderate)

610967 AD IFITM5 Gain of function Interferon-induced
Transmembrane protein 5 (BRIL) Mineralization OI 5 (clinical types V; and III in

atypical OI 6)

613982 AR SERPINF 1 Loss of function Pigment epithelium-derived factor
(PEDF) Mineralization OI 6 (clinical type III)

610854 AR CRTAP Loss of function Cartilage-associated protein (CRTAP) Collagen modification OI 7 (clinical types II, III, IV)

610915 AR LEPRE1
(P3H1) Loss of function

Leucine proline enriched
proteoglycan1/Prolyl 3-hydroxylase 1

(P3H1)
Collagen modification OI 8 (clinical types II, III)

259440 AR PPIB Loss of function Cyclophilin B (CyPB) Collagen modification OI 9 (clinical types II, III)

613848 AR SERPINH1 Loss of function Serpin peptidase inhibitor, clade H,
member 1/heat shock protein 47

Collagen folding and
cross-linking OI 10 (clinical type III)

610968 AR
FKBP10 Loss of function Peptidyl-prolyl

cis-transisomerase FKBP10
Collagen folding and

cross-linking
OI 11 (clinical types III, IV)

259450 AR Bruck Syndrome Type 1 (BS1)

613849 AR SP7 Loss of function Zinc-finger transcription
factor, Osterix

Osteoblast differentiation
and maturation OI 12 (clinical type IV)

112264 AR BMP1 Loss of function Bone morphogenic
protein1/procollagen C proteinase Collagen processing OI 13 (clinical Type III)

615066 AR TMEM38B Loss of function Trimeric intracellular cation channel B
(TRIC-B) ER calcium flux OI 14 (clinical type I, III, IV)

615220
AR

WNT1 Loss of function
Wingless-type MMTV integration site

family, member 1
WNT signaling

OI 15 (clinical type III, IV)

AD Primary osteoporosis
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Table 1. Cont.

Condition OMIM Inheritance Gene Mutation Protein Bone Pathway Symptoms

616229
AR

CREB3L1 Loss of function
Old astrocyte specifically

induced substance (OASIS)
ER UPR response,

ER-Golgi trafficking

OI 16 (clinical type III)

AD OI 16 (clinical type I)

616507 AR SPARC Loss of function Secreted protein, acidic, cysteine-rich
(SPARC, or osteonectin)

Procollagen processing
and extracellular assembly OI 17 (clinical type III, IV)

617952
AR

TENT5A
(FAM46A) Loss of function

Terminal nucleotidyltransferase 46,
Member A (FAM46A)

BMP signaling OI 18 (clinical type III), overlap with
Stuve-Wiedemann syndrome601559

301014 XR MBTPS2 Loss of function Site 2 protease (S2P) Golgi Regulated
intramembrane proteolysis OI 19 (clinical type III, IV)

607782 AR MESD Loss of function Mesoderm development LRP
chaperon WNT signaling OI 20 (clinical type III)

607186 AR SEC24D Loss of function SEC24D
ER COPII Transport of

procollagen
OI (clinical type III), overlap with

Cole-Carpenter Syndrome 2

618788 AR CCDC134 Loss of function Coiled-coil domain containing 134 MAPK pathway OI (clinical type III)

609024 AR KDELR2 Loss of function KDEL endoplasmic reticulum protein
retention receptor 2

Regulate the trafficking of
proteins between the Golgi

apparatus and the ER
OI (clinical type IIB/III)

Other
Primary

Osteoporosis

259770 AR
LRP5 Loss of function

Low density lipoprotein receptor 5
(LRP5)

WNT signaling
Osteoporosis pseudoglioma

syndrome

166710 AD Primary osteoporosis

300910 XL PLS3 Loss of function Plastin 3 Formation of F-actin
bundles Primary osteoporosis

609220 AR PLOD2 Loss of function Telopeptide lysyl hydroxylase Collagen crosslinking Bruck Syndrome 2 (BS2)

126550 AD SGMS2 Loss of function Phosphatidylcholine:ceramide
cholinephosphotransferase 2 Mineralization

Calvarial doughnut lesions with
bone fragility without (CDL) or

with spondylometaphyseal
dysplasia (CDLSMD)

112240 AD P4HB Loss of function Protein disulfide-isomerase Catalyzes rearrangement
of disulfid bonds Cole-Carpenter syndrome 1
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Table 1. Cont.

Condition OMIM Inheritance Gene Mutation Protein Bone Pathway Symptoms

605822 AR XYLT2 Loss of function Xylosyltransferase 2 Proteoglycan biosynthesis Spondylo-ocular dysplasia

166260 AD ANO5 Loss of function Anoctamin-5 Unclear (chloride channel) Gnathodiaphyseal dysplasia

231070 AR GORAB Loss of function RAB6-interacting golgin Unclear Geroderma osteodysplasticum

612940 AR PYCR1 Loss of function Pyrroline-5-carboxylate reductase 1,
mitochondrial

Unclear (Prolin
biosynthesis) Cutis laxa (ARCL2B)

182250 AD IFIH1 Gain of function Interferon-induced helicase C
domain-containing protein 1

Unclear (Antiviral innate
immunity) Singleton-Mertin dysplasia Type 1

616298 AD DDX58 Gain of function Antiviral innate immune response
receptor RIG-I

Unclear (antiviral innate
immunity) Singleton-Mertin dysplasia Type 2

616866 AR TRIP4 Loss of function Activating signal cointegrator 1 Unclear (transcription
coactivator)

Spinal muscular atrophy with
congenital bone fractures-1

(SMABF1)

616867 AR ASCC1 Loss of function Activating signal cointegrator 1
complex subunit 1

Unclear (DNA damage
repair)

Spinal muscular atrophy with
congenital bone fractures-2

(SMABF2)

603109 AD SMAD3 Loss of function Smad family member 3 TGF-ß pathway Loeys-Dietz syndrome

Osteolysis
Group

174810
602080 AD TNFRSF11A Gain of function Tumor necrosis factor receptor

superfamily member 11A RANK overactivation Familial expansile osteolysis (FEO)
Juvenile Paget’s Disease (PDB2)

239000 AR TNFRSF11B Loss of function Tumor necrosis factor receptor
superfamily member 11B

OPG deficiency with
Increased

RANKL-mediated
osteoclastogenesis

Juvenile Paget’s Disease (PDB5)

259600
AR

MMP2
Loss of function

Matrix metalloproteinase 2
Unclear (collagenolysis) Multicentric osteolysis, nodulosis

and arthropathy (MANO)
277950 MMP14 Matrix metalloproteinase 14

102500 AD NOTCH2 Gain of function Neurogenic locus notch homolog
protein 2

Regulate cell fate;
osteoblast and osteoclast

function
Hajdu-Cheney Syndrome
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In the cells, type I collagen is synthesized as a soluble precursor molecule, procollagen
with N-terminal and C-terminal propeptides that flank the helical domain. The biosynthesis
of type I procollagen is a multistep process that involves an ensemble of proteins for
post-translational modifications, folding, transport, secretion and quality control [33].
Procollagen synthesis is started up in the nucleus of collagen producing cells, such as
osteoblasts and fibroblasts. The DNA segment is transcribed to precursor RNA that is
spliced to mRNA and then transported to the endoplasmic reticulum (rER), via the N-
terminal signal peptide, where it is translated to propolypeptide chains termed pro-α
chains. In the rER, these propolypeptide chains undergo a series of post-translational
modifications described in great detail elsewhere [33–35]. The C-terminal propeptide of
each chain is attached to the rER membrane and folds into a structure that is stabilized by
intra-chain disulfide bonds, which enables the selection and assembly of the correct chains
into a triple helix.

Most genes involved in the causation of OI act inside of the ER. However, altered func-
tion of ER membrane proteins, such as the TRIC-B calcium channel, encoded by TMEM38B,
increase ER stress, which affects collagen post-translational modification indirectly, with a
variable phenotype [36].

The three modified chains assemble and form procollagen, which is transferred to
the Golgi apparatus through larger coat protein II complex (COPII)-vesicles. The COPII
machinery is assembled at the ER exit site, under the influence of heat shock protein 47
(HSP47) anchorage to the Src homology 3 (SH3) domain of transport and golgi organization
1 (Tango1) [37]. Following modifications in the Golgi apparatus, procollagen is packed into
secretory vesicles which transport it to the extracellular matrix (ECM). Following secretion,
specific enzymes, including metalloenzyme ADAMTS2 and bone morphogenetic protein 1
(BMP1), clip off the C-terminal and N-terminal propeptides from the procollagen, which
is then termed tropocollagen [38]. Tropocollagens, individual collagen triple helix and
the basic structural unit of collagen [39] assemble together to form collagen fibers. In the
ECM, secreted acidic cysteine-rich proteins (SPARC) bind to type I collagen in order to
form collagen fibrils [20,40].

2.1.3. Pathway-Specific Therapy

To date, there is no pathway-specific therapy that can effectively restore defective
collagen processing. However, a number of therapeutic agents can increase overall bone
strength and prevent fractures. A combination of anti-resorptive therapy, intensive physio-
therapy and muscle training remains the common medical treatment approach in children
and adults with OI. Most fractures in OI can be managed by casts or surgery but some leave
behind limb deformities, of which many can be corrected by orthopedic rodding surgery.

Currently, bisphosphonates remain the standard anti-resorptive therapy for patients
with moderate or severe OI. Bisphosphonates suppress the resorbing activity of osteoclasts
and subsequently the typically high bone turnover in OI. Bisphosphonates increase bone
mass and mobility in OI and decrease fracture rate in some but not all studies [41]. Notably,
RANKL promotes osteoclast differentiation (see Section 2.4). At present, denosumab, a
monoclonal antibody against RANKL, which inhibits osteoclastic activity, is being tested
in clinical trials in OI patients [42].

Neutralizing antibody against sclerostin (Scl-AB), a molecule produced by osteocytes
to inhibit osteoblasts-mediated bone formation via the WNT signaling cascade, increased
bone formation rate and bone mass in an OI preclinical mouse model [43].

Recently, preclinical studies demonstrated the potential of MSC transplantation before
and after birth for severe types of OI (types II/III, severe type IV); this treatment approach
is currently tested in the ongoing multicenter clinical trial boost brittle bones before birth
(BOOSTB4) [44]. However, one major hurdle to such a cellular therapy is low engraftment
of cells in all skeletal elements.
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2.2. Primary Osteoporosis Caused by WNT-Signaling Pathway Defects

The Wingless-type mouse mammary tumor virus (MMTV) integration site family 1
(WNT1) protein belongs to a family of 19 secreted signaling glycoproteins. WNTs bind with
the frizzled receptor and the co-receptors’ low-density lipoprotein receptor-related protein
(LRP)-5 and -6 and activate the β catenin signal transduction pathway in various tissues,
including bone [45,46]. This in turn leads to the translocation of β catenin into the nucleus,
where it induces the expression of genes that regulate osteoblast differentiation [47]. Thus,
the WNT signaling pathway controls mature osteoblast differentiation [48], bone develop-
ment and bone maintenance [49]. Several groups have shown in patients from different
countries that bi-allelic WNT1 mutations are associated with moderate to severe cases of
recessive OI type XV [17,18]. In addition, heterozygous pathogenic mutations in WNT1
can cause the clinical picture of primary osteoporosis.

Patients that harbor WNT1 bi-allelic nonsense, missense, splice site substitutions, dele-
tion and frameshift mutations display severe bone fragility, reduced bone mass, multiple
fractures and growth delay [18,50]. The structural bone phenotype includes low bone
turnover with an imbalance between formation and resorption. This imbalance may be
mediated through WNT1 function in osteocytes [51]. Similar to the human nonsense WNT1
mutation in exon 3 (c.565G > T, p.Glu189*), mice harbor a single nucleotide deletion wnt1
mutation in exon 3 (c.565delG, p.Glu189Argfs*10) [17,52]. This mouse model shows typical
OI features including severe osteopenia, spontaneous fractures, reduced bone strength and
impaired matrix mineralization, mimicking the human disease. Notably, bone forming
osteoblast function is impaired, while bone resorbing osteoclast function is not changed in
this mouse model [53].

WNT1 mutations arrest the downstream intracellular signaling cascade and nuclear
translocation of β catenin and the expression of the regulated genes [17,47]. Loss of function
of β catenin results in osteochondroprogenitor cells differentiating into chondrocytes
instead of osteoblasts. On the other hand, gain of function of WNT signaling result in
enhancement of osteoblast differentiation in vitro [54]. In addition, the WNT signaling
cascade in osteocytes plays a critical role in regulating bone cell homeostasis [55]. Mice
deficient with β catenin in osteocytes show bone loss [55].

Similar to WNT1, biallelic loss of function mutations in its co-receptor LRP5 cause
osteoporosis-pseudoglioma syndrome, which is characterized by severe bone fragility
and ocular manifestations [56], and monoallelic LRP5 mutations, which cause primary,
autosomal dominant osteoporosis [57]. Hence, there appears to be a gene dosing effect in
defective WNT signaling. Moreover, patients with gain of function and loss of function
mutations in the LRP5 have high or low bone mass disorders resulting from constitutive
activation or decreased osteoblast activity, respectively [18,58]. This fact further supports
the notion of a gene dosing effect and makes elements of the WNT signaling pathway
attractive drug targets. Trials have been conducted in adult osteoporosis, which led to the
market approval of antibody therapy against sclerostin, an inhibitor of the WNT signaling
pathway [59]. Trials in children are awaited.

Pathway-Specific Treatment

Sclerostin is a molecule mainly produced by osteocytes and acts as a potent WNT
inhibitor. Osteocyte-derived sclerostin controls osteogenic differentiation of precursor cells
and bone formation [60]. Lack of osteocyte-derived sclerostin secretion is pathognomonic
for the high bone mass disorders sclerosteosis and van Buchem disease and cause excessive
bone formation [61,62]. Lessons learned from these forms of osteopetrosis have led to the
development of the anti-sclerostin monoclonal antibodies to treat osteoporosis [63,64]. No-
tably, the sclerostin antibody romosozumab has been approved for osteoporosis treatment
in 2019 [63] and has promising potential to treat OI [65]. However, its cardiovascular safety
profile will need to be carefully monitored, given the possible role of the Wnt/β-catenin
signaling pathway in the progression of atherosclerosis and in vascular calcification [66].
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2.3. Primary Osteoporosis Caused by Defects in the TGF-β Pathway

Polypeptides in the transforming growth factor β (TGF-β) family are involved in
controlling cell activity and metabolism in bone and cartilage tissues. After TGF-β release
from the ECM, it interacts with a receptor complex containing type I (TβRI, TGFBR1) and
type II (TβRII, TGFBR2) subunits. The highly complex pathway involves intracellular
signal transduction through cytoplasmic proteins, belonging to transcription factors from
the SMAD family. A variety of heritable skeletal conditions is associated with dysregulated
TGF-β signaling, including Camurati-Engelmann disease [MIM: 131300] [67], Marfan
syndrome [MIM: 154700] [68] and Loeys-Dietz syndrome [MIM: 613795] [69] but also
OI [70]. Bone fragility is a distinct phenotypic feature of Loeys-Dietz syndrome, caused by
mutations in SMAD3 (Table 1).

Pathway-Specific Treatment

Thus far, murine studies have produced conflicting results, depending on the mouse
model used, on whether anti-TGF-β antibodies increase bone mass in OI [70,71]. Apart
from antibody-based treatment approaches, TGF-β signaling can also be inhibited using
losartan, an angiotensin II type 1 receptor blocker that reduces the expression of TGF-β
ligands, receptors, and activators [72]. Treatment with Losartan reduced bone pain and
total body BMD in a girl with Camurati-Engelmann syndrome [73]. The TGF-β neutralizing
antibody Fresolimumab is currently in clinical trials in children with OI.

2.4. Primary Osteoporosis Caused by RANKL/RANK/OPG Defects: TNFRSF11B (Juvenile Paget
Disease) and TNFRSF11A (Familial Expansile Osteolysis)

The Receptor Activator of Nuclear Factor Kappa B (RANK, TNFRSF11A) and its
ligand RANKL play a key role in osteoclast activation and differentiation [74]. RANKL
is a cytokine expressed by osteoblast lineage cells, including osteoblasts and osteocytes.
RANKL binds with its cognate receptor RANK on the surface of osteoclast precursors,
which activates cell differentiation. Hence, RANKL is essential for formation and activation
of osteoclasts. Mice and humans lacking RANKL display complete abrogation of osteoclas-
togenesis. Osteoblast also express a decoy receptor osteoprotegerin (OPG, TNFRSF11B)
that competitively binds with the RANK receptor and inhibits the interaction with RANKL.
Hence, osteoblasts and osteocytes regulate activation and differentiation of osteoclasts by
the RANKL-RANK axis signaling pathway [74,75].

A recessive deletion mutation in TNFRSF11B encoding the decoy receptor OPG results
in unopposed RANK activation and permanently elevated bone turnover, a condition
called Juvenile Paget’s disease (JPD; [MIM: 602080]) [76]. JPD is a rare autosomal recessive
disease which develops during infancy and early childhood, and worsens in adolescence
with pain from debilitating fractures and deformities caused by highly accelerated bone
turnover of the entire skeleton [77]. JPD also has extra-skeletal manifestations, including
bowing deformities and fractures, contractures as well as short stature [78]. Patients
demonstrate histopathological evidence of high bone turnover and weak, disorganized
woven bone [79,80].

Dominant gain of function mutations in TNFRSF11A cause familial expansile osteoly-
sis [FEO; MIM: 174810], leading to permanent activation of RANK. The ensuing progressive
osteoclastic resorption is associated with medullar expansion and severe pain, disabling
deformities and pathological fractures. Characteristically, FEO is accompanied by deafness
and loss of dentition as a result of middle ear and jaw bone abnormalities, and variably
raised serum alkaline phosphatase levels. FEO cases present with osteolytic lesions in long
bones, whereas JPD patients tend to present with trunk and skull lesions [81].

Pathway-Specific Treatment

Denosumab (Denosumab), a monoclonal antibody that binds human RANKL has
shown therapeutic efficacy in patients with JPD. Adult JPD patients with a milder phe-
notype treated with Denosumab demonstrated clinical and biochemical remission of the
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skeletal disease [82]. In a child with JPD with a severe phenotype, Denosumab reduced
bone pain and bone turnover, better than bisphosphonate treatment, and was accompanied
by improved audiological tests in a short-term study [83]. Notably, severe hypocalcemia
from oversuppression of bone resorption has been observed after Denosumab adminis-
tration in this patient. High-dose Denosumab has received a license for the treatment of
Giant-cell tumors of bone (GCTB), which have osteoclast-like giant cells [84]. However,
following cessation of treatment, the release of bone (over)suppression can cause severe
hypercalcemia, particularly in young patients [85]. More clinical trials are required to test
the safety and efficacy of Denosumab in children with bone fragility.

The imbalance in the RANKL-RANK signaling pathway is a feature in many rare
metabolic bone diseases, including JPD, fibrous dysplasia, Hajdu Cheney syndrome and
Langerhans cell histiocytosis [86,87].

2.5. Bone Fragility in Hajdu Cheney Syndrome

In bone, NOTCH signaling is involved in the regulation of bone formation and bone
resorption [88]. In vitro studies have suggest that the NOTCH signaling cascade modu-
lates signaling downstream of RANK, hence activating NOTCH2 enhances osteoclasts
maturation [89]. NOTCH2 plays a key role in skeletal development [90]. Homozygous
deletion of mouse Notch2 results in early embryonic lethality [91]. Heterozygous gain of
function mutations in NOTCH2 lead to Hajdu-Cheney syndrome (HCS) [92]. HCS [MIM:
102500] is a rare autosomal dominant disease characterized by severe osteoporosis associ-
ated with craniofacial dysmorphism, acroosteolysis and Wormian bones [93]. Nonsense or
short deletion mutations in NOTCH2 exon 34 (the last exon) result in an early termination
upstream of the Proline-Glutamic acid-Serine-Threonine (PEST) domain, at the end of the
protein, which is required for the NOTCH2 receptor ubiquitination and degradation [94].
Hence, these mutations produce a truncated protein lacking the proteolytic degradation
domain of NOTCH2 receptors, leading to sustained NOTCH2 activation with increased
osteoclastogenesis [95]. Histomorphometric analysis in affected individuals demonstrate
increased bone resorption, increased heterogeneity of mineralization and woven bone.
Typical features are reduced cortical thickness and low bone mass. Given the increased
osteoclast numbers and turnover, affected individuals respond well to bisphosphonate
therapy [96].

3. Acquired Causes of Bone Fragility
3.1. Immobility-Induced Osteoporosis Caused by the Osteocyte Biomechanic Sensing Mechanism

Muscle force drives bone strength. During immobilization, lack of muscle tension
results in reduced bone loading, particularly in bones in the trunk and lower extremity,
which leads to loss of bone mass, or inadequate bone accrual with typically slender long
bones [97]. In humans with partial or complete immobility, the functional muscle-bone unit
adapts to a lower steady state, so osteoporosis may show little or no sign of progression
and pathological limb fractures usually occur due to external forces [98], and vertebral
fractures are rare. Given the large number of disabled and immobilized people, this form
of osteoporosis is probably the most common worldwide.

The mechanism of disuse osteoporosis relates to the ability of bones for mechanosens-
ing. Osteocytes make up >90% of all bone cells and the healthy human skeleton contains
around 42 billion osteocytes which live for decades [99], whereas the bone-forming os-
teoblasts and bone-resorbing osteoclasts make up around 4–6% and 1–2%, respectively,
and live only for a few days to weeks [100].

Osteocytes form an extensive cellular network of sensory cells mediating the effects
of mechanical loading of bone, which triggers interstitial fluid flow through the lacuna-
canalicular system [101]. Osteocytes interact with the ECM through their cell membrane
proteins integrin and vinculin and through transverse tethering elements that anchor and
center osteocytes to the canalicular wall [102]. Mechanical forces alter canalicular fluid
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flow and activate the ERK signaling cascade with attenuation of osteocyte apoptosis [103].
Conversely, disuse induces osteocyte apoptosis [104,105].

The cellular and molecular mechanisms by which reduced mechanical forces induced
osteocyte apoptosis have not been fully elucidated. Osteocytes produce various signaling
proteins, including sclerostin, WNT1, RANKL and vascular endothelial growth factor
(VEGF) [106]. Osteocyte is the main source of sclerostin, a potent Wnt inhibitor, which
controls osteogenic differentiation of precursor cells and bone formation [60]. Genetic
defects in the production of these osteocytic proteins causes rare bone diseases [45,61].
Acquired disruption may have similar consequences. Long-term unloading, for example
in astronauts during space travel or long-term bed rest, increases SOST (sclerostin gene)
expression in osteocytes, hence increasing sclerostin [107,108]. Mechanical loading reduces
osteocyte-mediated sclerostin secretion, whereas proinflammatory cytokines also promote
its production [109].

Pathway-Specific Treatment

To date, studies using sclerostin antibodies in disuse osteoporosis have not been
conducted. The obvious treatment of disuse osteoporosis would of course be physical
activity, but in many cases, this is not possible. Whole body vibration therapy is an
alternative which uses mechanical stimuli to target osteocyte mechanosensing [110]. Such
mechanical stimuli prompt osteocytes to release nitric oxide (NO), prostaglandins (PGs) and
ATP, which regulate various signaling cascade including interleukin-6 (IL-6), RANKL/OPG,
Wnt/β-catenin and calcium signaling pathways [111]. Mechanical loading-mediated
calcium oscillation results in the release of extracellular vesicles from osteocytes and directs
bone regeneration [112]. Furthermore, mechanical loading promotes calcium oscillation
in osteocytes and activates the release of NO [113], prostaglandin E2 (PGE2) [114], matrix
extracellular phosphoglycoprotein (MEPE), insulin-like growth factor-1 (IGF-1) [115] and β-
catenin [116]. In addition, mechanical stimulation of chicken and canine bone also increased
PGE2 [117,118], which is considered an apoptosis inhibitor [119]. Thus, the decrease of NO
and PGE2 may be involved in the mechanism by which reduced mechanical forces mediate
osteocyte apoptosis. Further studies are needed in this area.

3.2. Cytokine-Induced Osteoporosis in Leukemia/Cancer or Chronic Inflammatory Conditions via
RANKL Activation

The imbalance between bone resorption and formation occurs not just in osteopetrosis
or osteoporosis, but particularly in malignant and inflammatory bone diseases such as acute
leukemia of rheumatoid arthritis [120]. In these conditions, a large number of cytokines
are produced by tumor or inflammatory cells. Cytokines activate the RANKL-RANK
system [121]. Factors that can activate bone resorption, including PTHrP, IL-1, IL-11, IL-17
and TNF-α [122], and induce RANKL expression on osteoblasts, which in turn binds
RANK on osteoclasts progenitors, promoting preosteoclast differentiation into osteoclasts.
Furthermore, RANKL plays a key role in the survival and function of osteoclasts. RANKL
is produced as a membrane-bound protein and also as a soluble trimeric protein [123].
The decoy receptor OPG which competes with RANKL for binding the RANK receptor, is
induced by estrogen and transforming growth factor β (TGF-β) [124]. In healthy people,
the relative levels of OPG and RANKL are tightly controlled. In a pathological condition,
such as postmenopausal osteoporosis, reduced estrogen levels cause decreased OPG, and
consequently, increased RANKL, leading to increased osteoclastic bone resorption and
bone loss [125]. Recently, a new receptor for RANKL known as leucine-rich repeat G
protein coupled receptor 4 (LGR4) has been identified [126]. LGR4 is also expressed on
osteoclasts and acts as negative regulator for osteoclast differentiation. Hence, LGR4 and
OPG inhibit the RANKL-RANK signaling cascade. Moreover, tumor cells can enhance
osteoclasts-mediated osteolysis by several mechanisms, including expression of RANKL.
Tumor cells can also express growth factors such as PTHrP that can induce expression of
RANKL on osteoblasts, which in turn result in differentiation of multinucleated osteoclasts
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from myeloid precursors [127]. Consequently, mature osteoclasts resorb bone matrix,
permitting tumor cells to grow and migrate within the tissues.

Taken together, agents inhibiting the RANKL-RANK system overcome the decreased
remodeling efficiency (more resorption than formation). The monoclonal RANKL antibody
Denosumab inhibits osteoclasts and has been approved for the therapy of various bone-
associated diseases including postmenopausal osteoporosis [74].

3.3. Steroid-Induced Osteoporosis (Osteotoxic Glucocorticoid Medication)

Steroid-induced, or glucocorticoid-induced, osteoporosis (GIOP) is a frequent cause
of secondary osteoporosis. The frequency of GIOP in the population ranges from 0.5–
1% [128,129]. Glucocorticoids are prescribed widely for inflammatory and immune dis-
eases [130] which themselves, via cytokines, increase osteoclastogenesis.

Glucocorticoids increase the risk of vertebral and non-vertebral fractures [131] via
direct and indirect cellular effects. Direct effects of glucocorticoids include (i) impaired func-
tion and decreased number of bone forming osteoblasts as well as osteocytes. Stimulation
of caspase 3-mediated apoptosis of osteoblasts and osteocytes results in reduced bone mass
and impaired bone microstructure. Additionally, reduction of Wnt signaling by Dickkopf-1
(Dkk-1) and sclerostin suppresses the stabilization of β-catenin, and in turn, leads to the
inhibition of osteoblastogenesis. Furthermore, increased expression of the peroxisome
proliferation activated receptor γ2 (PPAR-γ2) signaling cascade, leads to the activation
of adipogenesis in bone tissue [132]. (ii) Moreover, glucocorticoids promote osteoclasto-
genesis by increasing expression of RANKL and macrophage colony-stimulating factor
(M-CSF) and decreasing expression of OPG in osteoblasts and osteocytes. Indirect effects
include lack of synthesis of sex steroids; mediating muscle mass loss; inhibiting IGF-1 and
its binding protein; and decreasing calcium absorption by renal and intestinal tissue [132].
Treatment of GIOP is not specifically inhibiting the osteotoxicity of glucocorticoids; instead,
a number of drugs used for common osteoporosis have been trialed [133].

4. Conclusions

The genetic spectrum of primary osteoporosis has expanded massively in recent years.
Thus far, at least 24 genes have been identified to cause OI. Mechanistic studies in vitro
and preclinical mouse models have demonstrated defects in type I collagen processing and
crosslinking, post-translational modifications, folding, procollagen transport from rough
ER to the Golgi or collagen secretion and structure. Notably, some forms of OI such as
IFITM5 or SERPINF1, are associated with impaired mineralization, and SP7 or WNT1 are
associated with impaired osteoblast differentiation. Rare fragility conditions, outside the
collagen processing pathway, have received less attention, such as those affecting the WNT-
LRP5 signaling pathway, the RANKL-RANK system and the NOTCH2 signaling pathway.
The understanding of these pathways through the study of rare bone diseases has led to
the development of specific therapeutics agents such as denosumab and anti-sclerostin
antibodies for the treatment of common osteoporosis. To date, many rare fragility disorders
remain incompletely understood and hence drug targets still remain undiscovered for
similar future drug development. To date, acquired bone fragility conditions (immobility-,
cytokine and glucocorticoid-induced as well as postmenopausal osteoporosis) are far more
common and new, pathway-specific treatments are still needed.
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