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Abstract: Owing to the instability of Epigallocatechin Gallate (EGCG), it may undergo auto-oxidation
and form oxidised products or dimers. In the present study, we aimed to evaluate the therapeutic
effects, including antioxidation and immunomodulatory action, of the Oxidised Epigallocatechin
Gallate (O-EGCG) as compared to native EGCG and the action of these compounds on main protease
(Mpro) docking against SARS-CoV-2. HCT-116 (Human Colon Cancer) cell lines were used to estimate
the total antioxidant capacity and lipid peroxidation levels and pro-inflammatory markers (human
IL-6, IL-1β, TNF-α). Further, molecular docking analysis was performed by AutoDock and visualised
in Discovery studio. Improved antioxidant capacity of O-EGCG was observed, and there was a
significant decrease in the inflammatory markers (IL-1β, IL-6, and TNF-α) when O-EGCG was
applied as compared to EGCG. The O-EGCG was shown to be strongly associated with the highest
docking score and active site residues of IL-1, IL-6, and TNF- α, as well as the Mpro of SARS-CoV-2,
according to in silico approach. The in vitro and in silico analyses indicate an improved therapeutic
action of the oxidised form of EGCG. The effective inhibitory action of O-EGCG against SARS-CoV-2
suggests further exploration of the compound against COVID-19 and its efficacy. However, in vivo
studies and understanding of the mechanism of action of O-EGCG may yield a better opinion on the
use of O-EGCG and future human clinical trials.

Keywords: EGCG; oxidised EGCG; antioxidant; inflammatory; molecular docking; SARS-CoV-2

1. Introduction

Polyphenols are bioactive chemicals that contribute to the colour, flavour, and phar-
macological actions of fruits and vegetables [1]. In addition to their ability to scavenge
free radicals, polyphenols also have anti-inflammatory properties because they prevent the
activation of important cell signalling pathways that lead to systemic inflammation [2]. The
polyphenols present in green tea, made from the leaves of the Camellia sinensis plant, have
a wide range of therapeutic properties. Green tea polyphenols (GTPs), particularly (−)-
epigallocatechin-3-gallate (EGCG) and (−)-epicatechin gallate (ECG), can boost immune
function and reduce the risk of inflammation and immunological disorders [3].

Among the GTPs, the catechin EGCG is found to be the most abundant compound
and exhibits the highest biological activities. The antioxidant activity of EGCG has been
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well documented in the literature due to its ability to scavenge free radical ions and
increase antioxidant enzyme activity [4]. In an animal model study, EGCG increased
antioxidant enzyme levels such as superoxide dismutase and catalase and decreased
protein carbonyl levels [5]. Additionally, EGCG administration has been shown to protect
patients with contrast-induced nephropathy by reducing apoptosis and oxidative stress,
as well as inflammation [6]. Further, the immunomodulatory role of EGCG has also been
well documented as an inhibitor of cyclooxygenase-2 (COX-2) and inducible nitric oxide
synthase (iNOS), and EGCG may suppress macrophage production of tumor necrosis factor
(TNF-α), interleukin-1-beta (IL-1-β), and interleukine-6 (IL-6) by repressing the expression
of these cytokines [1]. TNF-α and IL-6 play a significant role in the human pathophysiology
of inflammation. Inflammation is a condition that causes swelling, redness, heat, soreness,
and pain in the body as a result of damaged tissue or organ [7]. Furthermore, it has been
linked to diseases such as allergies, atherosclerosis, arthritis, and auto-immune diseases [8].

However, EGCG may undergo various transformations, including oxidation, affecting
its stability and forming dimers [9]. The chemical structure of EGCG contributes to its
highly reactive properties. Since the B-ring trihydroxy group is highly active and is the
primary site for antioxidant reactions, EGCG is vulnerable to oxidation in air at neutral or,
especially, alkaline pH. In the process of auto-oxidation, EGCG yields a large number of
EGCG auto-oxidation products (EAOPs), including reactive oxygen species [10]. The ex-
perimental study by Tanaka et al. (2003) [11] demonstrated that, upon auto-oxidation,
EGCG may undergo dimerization and form theasinensins A. Further, the review by
Weerawatanakorn et al. (2015) [12] discussed the possible mechanism of dimerization of
EGCG molecule and formation of theasinensins A (Figure 1).

Figure 1. Structure of EGCG and theasinensin A.

Research has suggested that it is possible for EGCG to undergo auto-oxidation, re-
sulting in a variety of different EAOPs. To minimize cancer cell invasion and resistance
to chemotherapeutic therapies, substances with the ability to deplete extracellular cys-
tine may be useful. EGCG has the ability to covalently couple cystine residues. EGCG
auto-oxidation is required for the covalent attachment of cystine residues to EGCG. This
leads to the creation of ortho-quinones at the B or D ring of EGCG through auto-oxidation.
Sulfhydryl groups can be conjugated with EGCG using ortho-quinones [10] as a result
of its oxidative products. The antioxidant activity of theasinensins A was reported by
Hashimoto et al. (2003) [13]. In the evaluation of a five-day lipid peroxidation as a trial, it
was discovered that the antioxidant activity was greater than that of alpha-tocopherol (na-
ture’s most potent fat-soluble antioxidant). Anti-inflammatory effects may be achieved by
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modulating the relevant expression networks for interleukins, chemokines, and interferon
in the dimer form of EGCG, known as theasinensin A [14]. Hisanga et al. (2014) [15] found
that theasinensin A significantly reduced the levels of pro-inflammatory mediators such
as inducible nitric oxide synthase (iNOS), nitric oxide (NO), interleukin-12 (IL-12) (p70),
tumour necrosis factor alpha (TNF-α), and MCP-1. These studies show that the oxidized
products of EGCG have a greater therapeutic effect.

EGCG, a polyphenol found in green tea, has been shown to inhibit the 3CL protease
of SARS-CoV-2, although its effect on coronavirus replication is unknown. Researchers
employed HcoV-OC43 (beta) and HcoV-229E (alpha) coronavirus to study the effects of
EGCG on the coronaviruses through this study. The 3CL protease activity of HcoV-OC43
and HcoV-229E is reduced by EGCG treatment. Furthermore, EGCG therapy reduced cyto-
toxicity caused by HcoV-OC43. The results of our study show that EGCG therapy reduces
the amounts of coronavirus RNA and protein in infected cell cultures. Their research shows
that EGCG reduces the replication of coronavirus [16]. Researchers found that hesperidin,
nabiximols, pectolinarin, EGCG, Rhoifolin, and epigallocatechin gallate (EGCG) showed
higher binding free energies with the Mpro and S protein of SARS-CoV-2. Although the
findings of molecular docking of kaempferol, herbacetin, eugenol, and 6-shogaol are not
quite as good as those chemical compounds, oral availability and Ro5 criteria are met by
these substances, which have good molecular docking results. Antiviral phytochemicals,
such as those found in these compounds, may be able to halt the spread of the virus [17].
Hence, EGCG and its oxidised compound could be a novel compound in acting against
the replication of the virus and aid in the treatment of COVID-19. Interestingly, the most
prominent immunity change occurring in COVID-19 patients indicates the elevation of
these pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, causing the prevalent
cytokine shift, also called the cytokine storm, in patients with severe or terminal disease
condition [18]. Therefore, this calls for an evaluation of the antioxidant and immunomod-
ulatory effects of the oxidised product of EGCG and comparison with the native EGCG.
Hence, in the present study, we attempted to oxidise the EGCG in a laboratory setup and
analyse the antioxidant activity and the levels of pro-inflammatory cytokines on human
colon cancer cell lines and their activity on M-Protease of SARS-CoV-2. However, since han-
dling SARS-COV-2 cells requires high-level facilities and safety settings, we have conducted
in vitro experiments on uninfected SARS-COV-2 cells. Therefore, to assess the oxidative
stress and inflammation, we performed in vitro study on cancer cell lines (HCT-116), which
also induces strong oxidative stress, and in silico analysis was performed on SARS-CoV-2
main protease.

2. Materials and Methods
2.1. Cell Culture and Cell Lines

HCT-116 (human colon cancer cell lines) were obtained from The National Centre
for Cell Science (NCCS), Pune, India. Cells were maintained in Dulbecco’s Modified
Eagle Medium (DMEM), +10% Fetal bovine serum (FBS), and antibiotics (pen-strep) until
confluence at 37 ◦C, 5% CO2, and 95% relative humidity in a CO2 incubator.

2.2. Chemicals and Kits

Dulbecco’s Modified Eagle Medium (DMEM) (D6171) was purchased from M/s
Sigma–Aldrich, St. Louis, MO, USA. FBS (16000-044) and Pen-strep (15140122) were
obtained from Gibco Chemicals, Secunderabad, India. MTT reagent (33,611) was procured
from Sisco Research Laboratorie, Mumbai, India. An antioxidant assay kit (709,001) was
purchased from Cayman Chemicals, Ann Arbor, MI, USA. Human IL-6 (KB1068), IL-1β
(KB1063), and TNF-α (KLU0003) ELISA kits were procured from Krishngen Biosystems,
Mumbai, India.
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2.3. Oxidation of EGCG

One gram of EGCG was dissolved in 25 mL of water and 5 mL of H2O2 (30%) was
added to the solution and left at room temperature for four days, until complete oxidation
was achieved and confirmed by monitoring it on HPLC [19].

2.4. Cell Viability Assay

The synthesized and standard compound cell viability was performed against the
cancer cell line; HCT-116 was determined by using MTT assay. In 96 well microplate
culture, 2.5 × 105 cells were seeded and incubated at 37 ◦C for 24 h. After incubation,
the cells were treated with different concentrations of compound (10–100 µM) in each
well for 24 h incubation. At the end of exposure, the 20 µL MTT reagent (Sisco Research
Laboratorie, Mumbai, India, 33,611) was added to each well, and plates were incubated for
2 h. Carefully, the supernatant was removed, formazan crystals were dissolved in 70 µL
DMSO, and absorbance was recorded at 570 nm with a Spectramax microplate reader.

2.5. Antioxidant Activity
2.5.1. Total Antioxidant Assay

HCT-116 cells were cultured in T25 flasks and treated with both the compounds upon
reaching 95% confluence for 24 h, and then the cells were collected by scrapping with
a rubber scrapper. At a temperature of 4 ◦C, the cells were centrifuged for 10 min at
1000–2000× g. A 1–2 mL, cold buffer was used to homogenise the cell pellet (i.e., 5 mM
potassium phosphate, pH 7.4, containing 0.9 percent sodium chloride and 0.1 percent
glucose). For 15 min at 4 ◦C, we centrifuged at 10,000× g. For testing, the supernatant
was removed. The procedure given in the assay protocol was followed for estimation
of Trolox to indicate the antioxidant activity of both EGCG and O-EGCG. In each of the
Trolox Standard wells, 10 µL of Trolox standard (tubes A–G), 10 µL of Metmyoglobin, and
150 µL of Chromogen were added to the designated wells on the plate. Metmyoglobin
and chromogen were added to two sample wells, each containing 10 microliters of sample
and 10 microliters of metmyoglobin. To initiate the reactions, 40 µL of hydrogen peroxide
working solution was added to each of the wells. It was incubated on a shaker at room
temperature by sealing the plate for 5 min, and absorbance was measured at 750 nm
or 405 nm. In order to determine the antioxidant concentration, we used the equation
shown below.

Antioxidant (mM) =

[
(sample average absorbance)− (Y− intercept)

Slope

]
× Dilution (1)

2.5.2. TBARS Assay

Thiobarbituric acid reactive species (TBARS) have been measured as an estimate of
global oxidative stress levels (lipid peroxidation) in cell lysate of untreated and treated
cells with EGCG and O-EGCG. Levels of malondialdehyde (MDA)—a by-product of lipid
peroxidation of thiobarbituric acid (TBA)—were estimated by colorimetric measurement
using 1,1,3,3-Tetramethoxypropane (TMP) standard. Briefly, 100 µL of cell lysate was mixed
thoroughly with 10% trichloroacetic acid (TCA) and freshly prepared 0.67% TBA and
heated at 90 ◦C for 30 min in a water bath, cooled to RT, and centrifuged. Upon addition
to n-butanol and vigorous shaking, MDA formed (pink-coloured product) in the organic
layer was measured at 532 nm (cell lysate), and concentrations were computed from the
standard curve, with values represented as mean± SE from three independent experiments
performed in duplicates.

2.6. Cell Supernatant Collection

Cells were cultured in T-25 flasks and, upon reaching 95% confluence, the flasks were
divided into Untreated, EGCG Treated, and O-EGCG Treated with IC-10, IC-25, and IC-50
concentration and left for 24 h. Cell culture supernatant containing secrete components,
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i.e., media was collected into sterile tubes and centrifuged at 2000–3000 RPM for 20 min
and the supernatants were collected.

2.7. Inflammatory Markers
2.7.1. Human IL-6

Human IL-6 GENLISA ELISA KIT was procured from Krishngen Biosystems, Mumbai,
India, and the procedure mentioned in the kit protocol was followed for the assay. Approx-
imately 100 µL of standards and samples were added to the plate. The assay diluent (1×)
acts as a zero standard (0 pg/mL). At room temperature (18–25 ◦C), the plate was sealed
and incubated for 2 h. Each well was aspirated and washed four times with wash buffer
(1×), followed by the addition of 100 µL diluted detection antibody solution. At room
temperature (18–25 ◦C), the plate was sealed and incubated for 1 h. After four washes with
wash buffer (1×), each well was filled with 100 µL diluted streptavidin–HRP solution. For
30 min at room temperature (18–25 ◦C), the plate was sealed and incubated. Additionally,
the plate was washed four times with wash buffer (1×) and 100 µL TMB substrate solution
was added and incubated at room temperature for 15–30 min in the dark. The colour of the
positive wells changed to a bluish hue. Each well received 100 µL of stop solution. Within
30 min of stopping the reaction, positive wells turned yellow and the absorbance at 450 nm
was determined.

2.7.2. Human IL-1β

Human IL-1β GENLISA ELISA KIT was procured from Krishngen Biosystems, Mum-
bai, India, and the procedure mentioned in the kit protocol was followed for the assay. A
100 µL dose of standards and samples was added to the plate. The assay diluent (1×) was
used as the reference standard (0 pg/mL). The plate was sealed and incubated at 37 ◦C for
two hours. The plate was aspirated and washed four times with wash buffer (1×), and
100 µL diluted detection antibody solution was added to each well. The plate was then
sealed and incubated at 37 ◦C for 1 h. The plate was washed four times with wash buffer
(1×), and each well was filled with 100 µL diluted streptavidin–HRP solution. The plate
was then sealed and incubated at 37 ◦C for 30 min. Additionally, the plate was washed
four times with wash buffer (1×), and 100 µL TMB substrate solution was added and
incubated in the dark at 37 ◦C for 15–30 min. Positive wells developed a bluish hue. Each
well received 100 µL of stop solution. Within 30 min of stopping the reaction, the positive
wells turned yellow and the absorbance at 450 nm was measured.

2.7.3. TNF-α

Human TNF-α GENLISA ELISA KIT was procured from Krishngen Biosystems, Mum-
bai, India, and the procedure mentioned in the kit protocol was followed for the assay.
A total of approximately 100 µL of standards and samples was added to the plate. The
assay diluent (1×) was used as the reference standard (0 pg/mL). The plate was sealed and
incubated at 37 ◦C for two hours. The plate was aspirated and washed four times with
wash buffer (1×), and 100 µL diluted detection antibody solution was added to each well.
The plate was then sealed and incubated at 37 ◦C for 1 h. The plate was washed four times
with wash buffer (1×), and 100 µL diluted streptavidin–HRP solution was added to each
well. The plate was then sealed and incubated at 37 ◦C for 30 min. Additionally, the plate
was washed four times with wash buffer (1×), and 100 µL TMB substrate solution was
added and incubated in the dark at 37 ◦C for 15–30 min. Positive wells developed a bluish
hue. Each well received 100 µL of stop solution. Within 30 min of stopping the reaction,
the positive wells turned yellow and the absorbance at 450 nm was measured.

2.8. In Silico Molecular Docking

We retrieved co-crystal structures of human IL-1 in association with its receptor 1L-1R
(PDB ID:1ITB) [20,21], human interleukin-6 with L(+)-tartaric acid (PDB ID:1ALU) [22], hu-
man tumour necrosis factor-alpha (2az5) [23], and main protease of SARS-CoV-2 with N-[(5-
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Methylisoxazol-3-Yl)Carbonyl]Alanyl-L-Valyl-N~1~-((1r,2z)-4-(Benzyloxy)-4-Oxo-1-{[(3r)-
2-Oxopyrrolidin-3-Yl] Methyl}But-2-Enyl)-L-Leucinamide (N3 peptide) (PDB ID:6LU7) [24]
from Protein Data Bank (PDB: https://www.rcsb.org/, accessed on 20 November 2021). By
exploring the Auto Dock Vina 1.5.6 software (The Scripps Research Institute, La Jolla, San
Diego, CA, USA), the retrieved co-crystal structure was optimised for molecular docking
analysis. To initiate the molecular docking process, all water molecules and heteroatoms
were removed, and polar hydrogen atoms and charges were added to the structures. The
co-crystal native compounds were separated by releasing atomic coordinates of the PDB
file [25]. After removing all water molecules, in order to generate the necessary files for
AutoDock Vina, hydrogen polarities were assigned, Gasteiger charges were calculated for
protein structures, and protein structures were converted from the PDB file format to the
PDBQT format using the auto dock tool (ADT) software.

The 3D structures of EGCG (PubChem ID: 65064) and Theasinensin A (PubChem
ID: 442543) were obtained from the PubChem Compound Database (National Center for
Biotechnology Information; https://pubchem.ncbi.nlm.nih.gov/, accessed on 20 November
2021) in the file format of structure data file (SDF). The SDF format’s chemical structures
were converted to PDB files using Discovery Studio Biovia 2020, and ADT was then used to
analyse ligand structures in terms of non-polar hydrogen combinations, Gasteiger change
additions, and rotatable bonds. The ligand was then translated to PDB format for molecular
docking experiments, with the PDBQT format used with ADT (Version 1.5.6).

The grid spacing was set to 1.0, with a grid box size of 10× 10× 10 (x, y, and z) coordinates,
and the grid centre was designed at x, y, and z dimensions (Supplementary Table S1) [26–28].
Other docking settings were left at their default parameters. For the structures, a PDBQT
file was generated, which was then submitted to the molecular docking approach [29].
When the compounds interacted with macromolecules under rigid circumstances, they
were in a flexible condition. To execute AutoDock Vina, Notepad was launched in order to
navigate to the settings file [30,31]. Each structure contained Kollman charges and polar
hydrogen atoms [32,33].

The AutoDock Vina scoring technique was used to determine negative Gibbs free
energy (∆G) scores (kcal/mol) to estimate compound binding affinities. The distances be-
tween docked compounds and their interaction radii of 6 were calculated using Discovery
Studio Biovia v2020 to determine the sizes of binding sites and the hydrogen bond and
hydrophobic interactions they form [26–29]. For each compound’s interactions with the pro-
tein, binding poses were evaluated, and their most energetically favourable conformations
were chosen [34].

2.9. Statistical Analysis

All results are expressed as the mean standard deviation (SD) of three independent
experiments. SPSS software was used to conduct statistical analyses, which included a
one-way ANOVA comparison of treated and untreated cells. A null hypothesis probability
of <5% (p < 0.05) was considered statistically significant.

3. Results
3.1. Oxidation of EGCG

Standard EGCG was oxidized using a mild oxidizing agent, H2O2. About 200 mg of
standard EGCG was dissolved in 5 mL of water. To this, a standard solution of 30% H2O2
(1 mL) was added and left at room temperature. This reaction mixture was monitored
using an HPLC system to observe the reaction and check the total oxidation of EGCG.
The total conversion was observed after four days of the initiation of reaction, i.e., after
approximately 96 h, and we could also observe a colour change of the sample form pink to
dark orange. The oxidised compound was used for further study.

https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
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3.2. Cell Viability Assay

A cell viability assay as a preliminary study showed that more than 90% of HCT-
116 cells were viable at 8.4 and 8.5 µM of EGCG and O-EGCG, respectively (Table 1).
EGCG and O-EGCG showed cell viability at IC50 values of 44.44 µM and 46.49 µM,
respectively (Figure 2).

Table 1. MTT assay of EGCG and O-EGCG on HCT-116 cells.

Sample (µM)
EGCG O-EGCG

% Viability

10 85.55 ± 0.01 77.37 ± 0.10
20 67.97 ± 0.05 74.03 ± 0.17
30 65.36 ± 0.08 71.82 ± 0.15
40 51.52 ± 0.08 48.80 ± 0.11
50 46.74 ± 0.05 44.23 ± 0.22
60 34.51 ± 0.12 38.73 ± 0.13
70 33.25 ± 0.10 30.68 ± 0.09
80 10.42 ± 0.04 23.07 ± 0.11
90 4.99 ± 0.04 6.09 ± 0.03

100 0.91 ± 0.04 −1.15 ± 0.05

Figure 2. Cell viability of EGCG and O-EGCG on HCT-116 cells.

3.3. Antioxidant Assay

The antioxidant levels in EGCG- and O-EGCG-treated HCT-116 cells were compared
with the levels of control (untreated cells) observed from the assay reaction. Metmyoglobin
oxidises ABTS® (2,2′-Azino-di-[3-ethylbenzthiazoline sulphonate]) to ABTS®•+, so the
assay relies on antioxidants in the sample to prevent this oxidation. The Trolox standard
curve showed a linear regression of 0.935 (Figure 3a). There was a significant increase in
the total antioxidant levels in both the compounds EGCG and O-EGCG of the IC-10, IC-25,
and IC-50 concentrations, as compared with the control group (Table 2, Figure 3b). The
oxidised compound has shown a small increase in the total antioxidant levels, as compared
with EGCG.
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Figure 3. (a) Calibration curve of Trolox standard. (b) Levels of antioxidant in EGCG and O-EGCG.

Table 2. Total antioxidant assay of EGCG and O-EGCG.

Trolox (µM) Absorbance Sample Absorbance Sample Antioxidant (µM)

1.32 0.7418 Control 0.6526 Control 19.91033

0.66 0.6737 EGCG 10 0.6971 S 10 19.95483

0.33 0.6309 EGCG 25 0.7184 S 25 19.97613

0.18 0.5727 EGCG 50 0.7505 S 50 20.00823

0.09 0.5835 O-EGCG 10 0.6895 P 10 19.94723

0.045 0.5709 O-EGCG25 0.7003 P 25 19.95803

Blank 0.596 O-EGCG 50 0.782 P 50 20.03973

3.4. Thiobarbituric Acid Reactive Species Assay (TBARS)

In order to assess the antioxidant activity of EGCG and it oxidised compound, TBARS
assay was performed by estimating the levels of MDA formed by lipid peroxidation during
the assay reaction process. The standard 1,1,3,3-Tetramethoxypropane (TMP) calibration
curve has shown a linear regression of 0.9998 (Table 3, Figure 4a). We chose to use a range
of concentrations (i.e., IC-10, IC-25, and IC-50) for EGCG and O-EGCG to observe the
change in levels of MDA formed by the compounds. As shown in the Figure 4b, EGCG
and O-EGCG showed a significant increase in the IC10–IC50 levels of MDA formed, as
compared with the control group.
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Table 3. Effect of EGCG on lipid peroxidation (TBARS formation).

Standard
Concentration Absorbance Sample Average

Absorbance
Standard
Deviation

0 0 Control 0.249 0.018

0.5 0.017 EGCG 10 0.256 0.023

1 0.032 EGCG 25 0.355 0.016

2 0.071 EGCG 50 0.355 0.015

4 0.141 O-EGCG 10 0.277 0.019

6 0.212 O-EGCG25 0.299 0.024

O-EGCG 50 0.425 0.040

Figure 4. (a) Calibration curve of 1,1,3,3-Tetramethoxypropane. (b) Levels of TBARS formed by
EGCG and O-EGCG. (* indicates significance at p < 0.05).

The results obtained by the TBARS assay are similar to the results of the total an-
tioxidant activity, and show a significant increase in all concentrations of both of the
compounds, as compared with the control group. A small increase in the antioxidant levels
were observed in the IC50 of the oxidation product as compared to EGCG, indicating better
antioxidant activity.

3.5. Effect of EGCG and O-EGCG on Inflammatory Markers

Given the antioxidant enzyme levels and their reduction, which is a key indicator for
inflammatory response, we measured the levels of cytokines as IL-6, IL-1β, and TNF-α
within HCT 116 cells using ELISA techniques. The cells were treated with IC-10, IC-25, and
IC-50 concentrations of EGCG and its oxidative product (O-EGCG), then compared with
an untreated control group.

3.6. Human IL-1β

IL-1beta is a pro-inflammatory cytokine and belongs to the IL-1 family. The cytokine
interleukin-1 beta (IL-1) is an important factor in the activation of inflammatory processes.
IL-1 beta and COVID-19:IL-1 beta are known to play a central role in cytokine release
syndrome (CRS). Excess IL-1 beta causes a cytokine storm, increasing fatality in patients.
Compared to the control group, all concentrations of EGCG and its oxidised form showed
a significant decrease in IL-1 beta protein levels (Table 4, Figure 5). It was found that the
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oxidised form of EGCG had a greater ability to reduce inflammation than the non-oxidized
form of EGCG.

Table 4. Effect of EGCG and O-EGCG on inflammatory cytokines (IL-6, IL-1β, TNF-α).

Sample
IL-1β IL-6 TNF-α

Absorbance ± SD

Control 0.053 ± 0.007 0.135 ± 0.010 0.025 ± 0.001

EGCG 10 0.022 ± 0.005 0.109 ± 0.003 0.009 ± 0.003

EGCG 25 0.017 ± 0.003 0.104 ± 0.004 0.007 ± 0.001

EGCG 50 0.005 ± 0.001 0.091 ± 0.006 0.004 ± 0.002

O-EGCG 10 0.012 ± 0.001 0.095 ± 0.006 0.009 ± 0.004

O-EGCG25 0.007 ± 0.003 0.087 ± 0.002 0.007 ± 0.001

O-EGCG 50 0.002 ± 0.001 0.079 ± 0.009 0.005 ± 0.001

Figure 5. The effect of EGCG and O-EGCG on IL-β production in HCT-116 cells. (* indicates
significance at p < 0.05).

3.7. Human IL-6

Interleukin-6 (IL-6) is a member of the IL-6 family. Acute-phase reactions are induced
by IL-6. These help to activate innate immunity, which helps to prevent tissue damage.
It also aids in the early differentiation of T-cells. A significant decrease in the levels of
IL-6 proteins was observed in all the concentrations of EGCG and its oxidised form, as
compared with the control group (Table 4, Figure 6). A further decrease was observed in
the IC-50 concentration of the oxidised form than in that of EGCG, indicating the greater
ability to reduce inflammation.
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Figure 6. The effect of EGCG and O-EGCG on IL-6 production in HCT-116 cells. (* indicates
significance at p < 0.05).

3.8. TNF-Alpha

Inflammation is a critical component of innate immunity, and it is regulated through
a number of different mechanisms. In the cytokine network, TNF-α is a key player in
regulating this process and is a potent paracrine and endocrine mediator of inflammatory
and immune functions. As compared to the control group, EGCG and its oxidised form
significantly reduced the levels of TNF-α proteins in all concentrations of EGCG and
O-EGCG (Table 4, Figure 7).

Figure 7. The effect of EGCG and O-EGCG on TNF-α production in HCT-116 cells. (* indicates
significance at p < 0.05).
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3.9. In Silico Analysis
3.9.1. Anti-Inflammatory and Pro-Inflammatory Analysis

According to Viger et al., 1997 and 2000, the IL-1R binding site is dissected into two
sub-sites, A (IL-1α) and B (IL-1β) [20,21]. Both the sites interacted with distinct domains
of the IL-1R receptor via site-A residues of Arg-11, Gln-14, Gln-15, Lys-27, Gln-32, Gly-
33, Gln-34, and Glu-128 and site-B of Ala-1, Agr-4, Glu-51, Lys-93, Lys-94, Glu-105, and
Asn-108 [20]. These interaction sites play a significant role in receptor binding and signal
induction. As a result, they might serve as targeted locations for compound binding, and
the residues were identified for the active site for molecular docking analysis [35].

In order to block the receptor binding, signal induction, and interaction of IL-1β with
IL-1R, the compounds of theasinensin A and EGCG were interacted with the cleft of site-A
and B sites (Figure 8). The theasinensin A had the lowest docking score of −8.9 kcal/mol
and formed seven hydrogen bonds with IL-1β and IL-1R complex (Table 5). The Ser13 (2) of
site-A residues produced two h-bonds; Asn107, Gln126, and Asp145 formed the remaining
five h-bonds, and Arg163 (2) of site-B residues formed two h-bonds within the range of 4 Å
of the theasinensin A. While epigallocatechin gallate has a docking score of −8.3 kcal/mol
and has established seven h-bonds with the site-A and site-B complexes, further EGCG
formed the first binding site-A residues of Glu105, Asn108, Met148, Gln149, and Phe150; in
addition, the binding site (B) formed two residues of Asn204.

Figure 8. Molecular docking and interactions of IL-1 with theasinensin A and epigallocatechin
gallate. (A) Chain-A (green) and chain-B (brown) of IL-1 bound with compounds of theasinensin
A (blue) and epigallocatechin (red). (B) higher magnification of theasinensin A (blue) and epigallo-
catechin gallate (red). (C) Molecular interactions of IL-1 and theasinensin A (blue). (D) Molecular
interactions of IL-1 and epigallocatechin (red).
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Table 5. Molecular docking score, interactions, and bond length of theasinensin A and epigallocate-
chin gallate compounds for anti-inflammatory markers and Mpro of SARS-COV2.

Compound
(PubChem ID)

Docking Score
(kcal/mol) H-Bonds Bond Length (Å)

Interleukin-1 (IL-1)

Theasinensin A −8.9

H80-A:SER13:O 4.27

A: SER13:HG-N:O25 2.91

H41-A:ASN107:OD1 4.88

H39-A:GLN126:OE1 5.57

H39-A:ASP145:OD1 4.78

B:ARG163:HH11-N:O36 4.93

B:ARG163:CD-N:O34 4.91

EGCG −8.3

H34-A:GLU105:OE2 2.37

H34-A:ASN108:O 2.45

H37-A:MET148:O 2.25

A:GLN149:HE21-N:O1 2.64

H-A:PHE150:O41 1.96

C2-B:ASN204:OD1 2.95

B:ASN204:HD21-π 2.56

Tumour necrosis factor-alpha (TNF-α)

Theasinensin A −8.4

A:TYR119-π 3.87

H77-A:LEU120:O 3.10

A:LEU120:CO-π 3.95

H45-A:GLY121:O 2.49

H46-A:GLY121:O 3.09

H45-B:TYR151:OH 2.59

EGCG −7.2

H20-A:ILE58:O 2.18

A:GLN61:OE1-NO38 2.89

A:TYR119-π 3.97

B:SER60:HN-O34 2.85

H37-B:TYR151:OH 2.12

Interleukin-6 (IL-6)

Theasinensin A −7.2

A:ARG30:HH11-O69 5.79

H39-A:ASP34:OD1 3.98

A:GLN175:HE21-O77 4.64

A:GLN175:HE22-O14 4.50

H45-A:GLN175:O 4.35

A:ARG179:HE-O46 5.42

A:ARG179:HH21-O44 3.28

A:ARG182:HH22-O75 5.89

A:ARG182:HH22-H33 2.51
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Table 5. Cont.

Compound
(PubChem ID)

Docking Score
(kcal/mol) H-Bonds Bond Length (Å)

EGCG −6.4

A:ARG30:HH11-π 3.92

H33-A:ARG30:O 4.68

H35-A:ASP34:OD1 4.96

H25-A:ASP34:OD1 4.36

H23-A:ASP34:OD1 3.05

A:SER37:CB-O22 3.14

Main protease (Mpro) of SARS-CoV-2

Theasinensin A −8.70

A:HIS41:HE2-O60 4.64

A:MET49:SD-π 7.51

H80-A:PHE140:O 4.90

H82-A:LEU141:O 6.12

A:ASN142:HD21-O36 5.25

A:CYS145:SG-O58 3.65

A:CYS145:SG-π 5.37

A:HIS163:HE2-O81 2.15

H76-A:MET165:SD 2.44

EGCG −7.77

H41-A:THR190:O 2.64

H34-A:LEU141:O 2.25

A:ASN142:HN-O22 2.84

H37-A:ASN142:OD1 2.50

A:MET165:SD-π 5.13

A:GLU166:OE1-π 3.99

H41-A:ARG188:O 2.18

Molecular docking studies were carried out on theasinensin A and EGCG, both
molecules that have shown promising anti-inflammatory potential in vitro, along with co-
crystal ligand (native) of 6,7-dimethyl-3-[(methyl{2-[methyl({1-[3-(trifluoromethyl)phenyl]-
1h-indol-3-yl}methyl) amino]ethyl}amino)methyl]-4h-chromen-4-one as a standard towards
protein target 2AZ5 (TNF-α) [36]. The native small molecule compound was bound with
TNF-α homomer chains A and B (Figure 9). The chain-A residues bound with Leu57, Tyr59,
Ser60, Gln61, Tyr119, Leu120, Gly121, Gly122, and Tyr151, while the remaining seven are
a subset of these residues present in the chain-B of Leu55, Tyr59, Ser60, Tyr119, Leu120,
Gly121, and Tyr151. Among the tested compounds, theasinensin A showed the highest
(−7.2 kcal/mol) docking score, while this value was lowest (−6.4 kcal/mol) (Table 5)
for epigallocatechin gallate against TNF-α. The theasinensin A formed six h-bonds with
chain-A (5) and chain-B residues of Tyr119, Leu120, Leu120, Gly121, Gly121, and Tyr151,
respectively, while epigallocatechin gallate formed five with chain-A of Ile58, Gln61, and
Tyr119 and chain-B of Ser60 and Tyr151.

In the case of IL-6, the compounds of theasinensin A (−7.2 kcal/mol) and EGCG
(−6.4 kcal/mol) (Table 5) showed the highest and lowest molecular docking score val-
ues, respectively. Interactive h-bonds between the protein and compounds are shown
in Figure 10. The IL-6 target protein formed four h-bonds with Arg179, three h-bonds with
Gln175, and two each of h-bonds with Arg30 and Arg182 were found in the theasinensin A.
The EGCG formed six h-bonds, two with Arg30 and three with Asp34, and one with Ser37.
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Figure 9. Molecular docking and interactions of TNF-α with theasinensin A and epigallocatechin
gallate. (A) Chain-A (Cyan) and chain-B (green) of TNF-α bound with compounds of theasinensin
A (blue) and epigallocatechin (red). (B) Higher magnification of theasinensin A (blue) and epigal-
locatechin gallate (red) with TNF-α. (C) Molecular interactions of IL-1 and theasinensin A (blue).
(D) Molecular interactions of TNF-α and epigallocatechin (red).

3.9.2. Inhibitor against Main Protease of SARS-CoV-2

3CL protease, or Mpro, facilitated the maturation of functional polypeptides involved
in the assembly of replication–translation machinery [37]. Mpro begins by cleaving this
enzyme from pp1a and pp1ab, then proceeds to cleave the polyprotein at 11 conserved
locations [38]. The molecular docking analysis and visualisation of Mpro binding with
theasinensin A and EGCG is shown in Figure 11. The compound theasinensin A exhibits
the best docked score (−8.70 kcal/mol) with SARS-CoV2 Mpro (Table 5) and molecular
interactions with the residues of His41, Met49, Phe140, Leu141, Asn142, Cys145, His163,
Met165, and Thr190. The EGCG has a binding affinity of −7.77 kcal/mol with Mpro of
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SARS-CoV-2. Leu141, Asn142 (2), Met165, Glu166, Arg188, and Gln189 were the residues
participating in the interaction at the binding pocket of the main protease of SARS-CoV2.

Figure 10. Molecular docking and interactions of IL-6 with theasinensin A and epigallocatechin
gallate. (A) IL-6 (green) bound with compounds of theasinensin A (blue) and epigallocatechin
(red). (B) Higher magnification of theasinensin A (blue) and epigallocatechin gallate (red) with
IL-6. (C) Molecular interactions of IL-6 and theasinensin A (blue). (D) Molecular interactions of IL-6
and epigallocatechin (red).
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Figure 11. Molecular docking and interactions of Mpro with theasinensin A and epigallocatechin
gallate. (A) Mpro (yellow) bound with compounds of theasinensin A (blue) and epigallocatechin
(red). (B) Higher magnification of theasinensin A (blue) and epigallocatechin gallate (red) with Mpro.
(C) Molecular interactions of Mpro and theasinensin A (blue). (D) Molecular interactions of Mpro and
epigallocatechin (red).

4. Discussion

The indication of auto-oxidation of EGCG and formation of dimers led to the present
study, which investigated the therapeutic activity of EGCG and its oxidized product.
Human colon cancer cell lines were used to investigate the antioxidation and immunomod-
ulatory action of EGCG and O-EGCG. With the intriguing results obtained in in vivo
studies, we attempted to conduct an in silico analysis to analyse the anti-inflammatory and
pro-inflammatory effect of EGCG and O-EGCG and their inhibitory action against the main
protease of SARS-CoV-2.

When examined on various cell lines, including MCF-7, SV-80, HepG2, Y-79, and
Caco-2, EGCG exhibited lower cell viability [39]. EGCG treatment reduced cell viability in
Caco-2, MCF-7 (10 M yielded 70% viability [40]), and HepG2 (IC50 at 48 h exposure was
74.7 g/mL), according to other researchers [41].

The most likely possible markers for EGCG antioxidant responses in biological systems
are oxidation products of the B-ring of EGCG. To further understand how antioxidant
reactions affect catechins’ ability to protect against disease, further investigation of these
compounds may be recommended [42]. EGCG can be chemically altered to change its
relative therapeutic activity, allowing for synergistic supplementation to improve health



Antioxidants 2022, 11, 294 18 of 23

benefits [43]. The total phenolic and flavonoid content of plant extracts was found to have a
positive linear connection with antioxidant activity. In addition to their anti-inflammatory
properties, plant extracts high in phenolic and flavonoid content also showed good cell
survival [44]. The oxidation product has shown an increase in antioxidant activity as
compared to the reduced form, which makes it a promising compound to show elevated
anti-inflammatory responses.

One of the polyphenols in green tea, EGCG, has been shown to have the highest
antioxidant capacity [45]. The galloyl groups on the B and D rings are thought to be
responsible for EGCG’s radical scavenging abilities. Since EGCG reacts with O2−, leading
to oxidation of the D ring−, the vicinal trihydroxy group in the B-ring is the primary
site responsible for antioxidant reactions, which are further strengthened by the vicinal
trihydroxy group in the D-ring [46,47]. Erythrocytes treated with 1 to 15 M of EGCG
showed reduced levels of lipid peroxidation and ATPase damage [48], whereas UVA-
irradiated keratinocytes exposed to EGCG produced less hydrogen peroxide [49]. UV-
induced hydrogen peroxide and DNA damage can both be reduced using green tea extract.
Treatment of leukocytes with EGCG reduced bleomycin-induced DNA damage, but it
had no effect on DNA repair [50]. Cao et al. (2017) [51] found that EGCG inhibited
apoptosis in αTC1-6 cells exposed to H2O2-induced oxidative stress. They further believe
that EGCG’s positive effects on αTC1-6 cells are due to its activation of Akt and inhibition
of PARP, caspase-3, P38, and JNK MAPK. Furthermore, a study by Luo and colleagues in
2021 [52] demonstrated that EGCG had an anti-proliferative effect on SW480, SW620, and
LS411N colorectal cancer cells by down-regulating the level of STAT3. Experimentation
on the effectiveness and safety of EGCG as an anti-cancer supplement for people with
colon cancer has been suggested following an examination into its effectiveness in animals
and humans with colon cancer. Additionally, the anti-inflammatory properties of EGCG,
particularly on human primary T cells, are well-documented. A recent study by Huang
et al. (2021) [53] showed that EGCG regulates IL-2 and TNF-alpha levels, while Th1 cells
producing inflammatory cytokines, TNF-alpha, and IL-2 showed that they can be inhibited
during inflammation. According to the findings, EGCG has the ability to effectively
decrease the release of cytokines by activated human primary T cells. Additionally, EGCG
is known to exhibit anti-inflammatory effects, especially stimulating the human primary
T cells.

The oxidized form of EGCG has shown a greater potential to exhibit antioxidant
activity than EGCG, however, the oxidation products of EGCG have not been studied for
their biological effects. Enzyme-catalysation and auto-oxidation are two of the various
ways in which EGCG can be oxidized, as indicated in the examples above. Regardless of
the oxidation method, EGCG is always polymerized, resulting in a large number of EGCG
oxidation products [54]. Theasinensins are produced through the enzymatic oxidation of
a commercially accessible combination of green tea catechins [55]. Gallocatechin gallate
(GCG), an epimer of EGCG, was generated when the auto-oxidation speed of EGCG
was prolonged by SOD in previous research, while theasinensin A, an EGCG dimer, had
been reported as a temporary intermediate along with the EGCG auto-oxidation [56].
Theasinensin A (or D) and GCG were found in 2-h EAOPs by Wei et al., 2016 [10]. The
antioxidant activity of theasinensins A–E was reported by Hashimoto et al. (2003) [13] to
vary from 9 to 13%, in comparison to 3% and 17% for BHA and alpha-tocopherol, in a
five-day lipid peroxidation. It appears that theasinensins A–E have a lesser lipid oxidation
inhibitory activity than BHA (the synthetic antioxidant), but a stronger lipid oxidation
inhibitory activity than alpha tocopherol.

Despite the paucity of research on EAOPs and their anti-inflammatory effects, theasi-
nensins’ molecular mechanism has received little attention. Theasinensin A may have
inhibited COX-2 production by down-regulating TAK1-mediated NF-κB and MAPK sig-
nalling pathways [57]. Using a genome-wide DNA microarray, researchers were able to
identify the molecular mechanism of theasinensin A’s anti-inflammatory actions. It was
discovered in LPS-activated RAW264 cells that the expression levels of 406 genes increased
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three-fold, while theasinensin A treatment decreased the signals of 259 of these genes by
a factor of two (two-fold). LPS-activated cells reduced the expression of 717 genes by a
factor of three, of which 471 genes were recovered by theasinensin A treatment (a two-fold
increase). This suggested that theasinensin A had anti-inflammatory effects by modulating
the expression networks of chemokines, interleukins, and interferons [14]. It has been
shown that theasinensin A can reduce the levels of pro-inflammatory cytokines, such as
inducible nitric oxide synthase (iNOS), nitric oxide (NO), interleukin-12 (IL-12), TNF- α,
and MCP-1, in LPS-activated macrophages in an in vitro experiment. These findings reveal
a cellular signalling pathway in which the theasinensin A directly inhibited MAPK/ERK
kinase (MEK) signalling by directly binding to MEK–ERK for the inhibitory activity. Th-
easinensin A also reduced LPS-induced mouse paw edema and inhibited the production of
IL-12 (p70), TNF-α, and MCP-1 in the in vivo research [15].

We extended the present study by exploring molecular docking analysis with the anti-
inflammatory and pro-inflammatory proteins of IL-1, IL-6, and TNF-α with the compounds
theasinensin A and EGCG, respectively. The complex IL-1α and IL-1β is a major mediator
of signal transduction and inflammatory disease, and inhibiting this complex might be
a potential pharmacological target for the development of novel therapeutic candidates.
In the delivery of drugs, enzyme catalysis, and biosensors, peptides have been explored
extensively as probes in protein–protein or peptide–protein interactions [58], and hence
N3 peptides were studied in our docking. The compounds theasinensin A and EGCG
were docked in the complex of IL-1α and IL-1β; the domain binding residues of Glu105,
Asn107, Asn108, Ser13, Gln126, Asp145, Met148, Gln149, and Phe150 of IL-1α and IL-1β
of Arg163 and Asn204 were potentially formed h-bonds replacing the native complex
interactions that were formed between its cleft. In this instance, the native complex of
TNF-α co-crystalized with the small molecule of 6,7-dimethyl-3-[(methyl{2-[methyl({1-[3-
(trifluoromethyl) phenyl]-1h-indol-3-yl} methyl) amino] ethyl} amino) methyl]-4h-chromen-
4-one, IL-6 with L (+)-tartaric acid, and Mpro of SARS-CoV-2 complexed with N3 peptide,
which were also replaced with theasinensin A and epigallocatechin compounds.

The search for novel medications, particularly those derived from plants, holds enor-
mous promise. Molecular docking by Platella et al. in 2020 [59] showed that the primary
contact is of the hydrogen bonding type and, similarly, hydrogen atoms with polar charges
were introduced to the structures before beginning the molecular docking procedure in our
study. Stilbenoid analogues, previously identified for various biological functions, were
repurposed against the SARS-CoV-2 spike protein and the human ACE2 receptor complex
using molecular dynamics modelling and binding free energy analysis based on molecular
docking in a study by Wahedi HM et al., 2021 [60]. Molecular docking simulations were
performed on the A chain receptor-binding domain (RBD) surface as well as the exposed B
chain and C chain interfaces at the base of the A chain RBD, in a study on the interference
of Polydatin/Resveratrol in the ACE2, titled Spike recognition during COVID-19 infection.
The molecular docking simulations were conducted around the ACE2 protease domain 1
and 2 helices. Several polar glucoses (with Gly205, Glu208, Asp206, Ala396, and Lys562)
and resveratrol moiety (with N-acetylglucosamine 905, His195) interactions resulted in
a high docking score (8.4 kcal/mol) [61], which was similar to our study, where the oxi-
dised polyphenol showed higher docking scores on the treatment with the M-protease of
SARS-CoV-2.

The results have reported that the compounds might block the binding site residues
and elevate the levels of human IL-1, IL-6, and TNF-α inflammatory markers and also of
the SARS-CoV-2, thereby effectively preventing the protein binding by the virus.

5. Conclusions

Overall, the present study examined the therapeutic effects, such as antioxidation and
anti-inflammatory action, of EGCG and O-EGCG. Previous studies conducted on EGCG
have already proven this effect. However, due to its instability, we examined the effect of
O-EGCG and found that the oxidized product showed increased ability and effectiveness
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in both in vitro and in silico studies. The in vitro studies showed an increase in total
antioxidative capacity of the O-EGCG as compared with EGCG. It was observed that EGCG
and O-EGCG demonstrated a significant increase in the IC-10 – IC-50 levels of MDA formed,
as compared with the control group. O-EGCG has shown a better antioxidant activity and
greater ability to reduce inflammation than the non-oxidized form of EGCG. Furthermore,
IL-6 proteins were significantly reduced in all the concentrations of O-EGCG, and it also
significantly reduced the levels of TNF-α proteins as compared with the control group.
The in silico studies of molecular docking on AutoDock Vina software of theasinensin A
and EGCG were performed with the complexes of IL-1α, IL-1β chains, IL-6, and TNF-α,
and the results showed a high docking score for both the compounds. The complexes
potentially formed h-bonds, which were replaced in the native complex interactions, and
oxidised compound has shown elevated docking scores as compared to the parent form.
The docking with M protease of SARS-CoV-2 has also shown that the compounds are
significantly blocking the attachment of binding sites and acting against the COVID virus.
Although the present study showed the enhanced therapeutic activity of the oxidised
form of EGCG, the characterization of the biological properties of EAOPs will be useful
for gaining an in-depth understanding of their therapeutic action in vitro and may help
gain insight into molecular mechanisms in vivo. However, due to the complexity of the
polyphenols in tea, their biological actions of EAOPs have not been extensively examined
due to challenges in obtaining pure molecules.
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Author Contributions: Conceptualization: R.U.; Analysis: R.U.; Methodology: R.U. and D.K.; Soft-
ware, Analysis: M.M.; Data Curation: R.U.; Validation: S.N.S.; Investigation: S.N.S.; Resources: S.N.S.
and S.C.; Supervision: S.N.S., R.S.S. and S.C.; Project Administration: S.N.S.; Writing—Supervision:
S.N.S., R.S.S. and S.C.; Writing—Original Draft Preparation: R.U. and M.M.; Writing—Reviewing and
Editing: R.U., S.N.S., M.M., D.K., R.S.S. and S.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article or supplementary material.

Acknowledgments: The authors are grateful to the Indian Council of Medical Research for granting
the fellowship, and to the National Institute of Nutrition and Osmania University for the facilities,
encouragement, and support towards the study. The author would also like to mention special thanks
to Srujana Medithi for her critical evaluation and support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients

2018, 10, 1618. [CrossRef] [PubMed]
2. Tekin, I.; Marotta, F. Polyphenols and Immune System. In Polyphenols: Prevention and Treatment of Human Disease, 2nd ed.;

Academic Press: Cambridge, MA, USA, 2018; pp. 263–276.
3. Zhang, X.; Li, J.; Li, Y.; Liu, Z.; Lin, Y.; Huang, J. Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-

3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB/MITF signaling pathway in B16F10
melanoma cells. Fitoterapia 2020, 145, 104634. [CrossRef] [PubMed]

4. Du, G.-J.; Zhang, Z.; Wen, X.-D.; Yu, C.; Calway, T.; Yuan, C.-S.; Wang, C.-Z. Epigallocatechin Gallate (EGCG) Is the Most Effective
Cancer Chemopreventive Polyphenol in Green Tea. Nutrients 2012, 4, 1679–1691. [CrossRef] [PubMed]

5. Srividhya, R.; Jyothilakshmi, V.; Arulmathi, K.; Senthilkumaran, V.; Kalaiselvi, P. Attenuation of senescence-induced oxidative
exacerbations in aged rat brain by (−)-epigallocatechin-3-gallate. Int. J. Dev. Neurosci. 2008, 26, 217–223. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/antiox11020294/s1
https://www.mdpi.com/article/10.3390/antiox11020294/s1
http://doi.org/10.3390/nu10111618
http://www.ncbi.nlm.nih.gov/pubmed/30400131
http://doi.org/10.1016/j.fitote.2020.104634
http://www.ncbi.nlm.nih.gov/pubmed/32454171
http://doi.org/10.3390/nu4111679
http://www.ncbi.nlm.nih.gov/pubmed/23201840
http://doi.org/10.1016/j.ijdevneu.2007.12.003
http://www.ncbi.nlm.nih.gov/pubmed/18207349


Antioxidants 2022, 11, 294 21 of 23

6. Gao, Z.; Han, Y.; Hu, Y.; Wu, X.; Wang, Y.; Zhang, X.; Fu, J.; Zou, X.; Zhang, J.; Chen, X.; et al. Targeting HO-1 by epigallocatechin-
3-gallate reduces contrast-induced renal injury via anti-oxidative stress and anti-inflammation pathways. PLoS ONE 2016, 1,
e0149032. [CrossRef] [PubMed]

7. Zhang, J.-M.; An, J. Cytokines, inflammation and pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [CrossRef] [PubMed]
8. Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 en la inflamación, la inmunidad, y la enfermedad. Cold Spring Harb. Perspect. Biol.

2014, 10, a016295. [CrossRef] [PubMed]
9. Chen, L.; Wang, W.; Zhang, J.; Cui, H.; Ni, D.; Jiang, H. Dual effects of ascorbic acid on the stability of EGCG by the oxidation

product dehydroascorbic acid promoting the oxidation and inhibiting the hydrolysis pathway. Food Chem. 2020, 337, 127639.
[CrossRef]

10. Wei, Y.; Chen, P.; Ling, T.; Wang, Y.; Dong, R.; Zhang, C.; Zhang, L.; Han, M.; Wang, D.; Wan, X.; et al. Certain (−)-epigallocatechin-
3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG. Food Chem. 2016, 204, 218–226.
[CrossRef]

11. Tanaka, T.; Watarumi, S.; Matsuo, Y.; Kamei, M.; Koun, I. Production of theasinensins A and D, epigallocatechin gallate dimers of
black tea, by oxidation–reduction dismutation of dehydrotheasinensin A. Tetrahedron 2003, 59, 7939–7947. [CrossRef]

12. Weerawatanakorn, M.; Hung, W.-L.; Pan, M.-H.; Li, S.; Li, D.; Wan, X.; Ho, C.-T. Chemistry and health beneficial effects of oolong
tea and theasinensins. Food Sci. Hum. Wellness 2015, 4, 133–146. [CrossRef]

13. Hashimoto, M.; Ono, C.; Masuoka, C.; Ito, Y.; Sakata, Y.; Shimizu, K.; Nonaka, G.-I.; Nishioka, I.; Nohara, T. Evaluation of the
antioxidative effect (in vitro) of tea polyphenols. Biosci. Biotechnol. Biochem. 2003, 67, 396–401. [CrossRef]

14. Chen, J.; Qin, S.; Xiao, J.; Tanigawa, S.; Uto, T.; Hashimoto, F.; Fujii, M.; Hou, D.X. A genome-wide microarray highlights the
antiinflammatory genes targeted by oolong tea theasinensin A in macrophages. Nutr. Cancer 2011, 63, 1064–1073. [CrossRef]

15. Hisanaga, A.; Ishida, H.; Sakao, K.; Sogo, T.; Kumamoto, T.; Hashimoto, F.; Hou, D.-X. Anti-inflammatory activity and molecular
mechanism of Oolong tea theasinensin. Food Funct. 2014, 5, 1891–1897. [CrossRef]

16. Jang, M.; Park, R.; Park, Y.-I.; Cha, Y.-E.; Yamamoto, A.; Lee, J.I.; Park, J. EGCG, a green tea polyphenol, inhibits human
coronavirus replication in vitro. Biochem. Biophys. Res. Commun. 2021, 547, 23–28. [CrossRef]

17. Tallei, T.E.; Tumilaar, S.G.; Niode, N.J.; Fatimawali; Kepel, B.J.; Idroes, R.; Effendi, Y.; Alam Sakib, S.; Bin Emran, T. Potential of
Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking
Study. Scientifica 2020, 2020, 6307457. [CrossRef]

18. Norouzi, M.; Norouzi, S.; Ruggiero, A.; Khan, M.; Myers, S.; Kavanagh, K.; Vemuri, R. Type-2 Diabetes as a Risk Factor for Severe
COVID-19 Infection. Microorganisms 2021, 9, 1211. [CrossRef]

19. Zhu, N.; Huang, T.C.; Yu, Y.; LaVoie, E.J.; Yang, C.S.; Ho, C.T. Identification of oxidation products of (−)-epigallocatechin gallate
and (−)-epigallocatechin with H2O2. J. Agric. Food Chem. 2000, 48, 979–981. [CrossRef]

20. Vigers, G.P.A.; Anderson, L.J.; Caffes, P.; Brandhuber, B.J. Crystal structure of the type-I interleukin-1 receptor complexed with
interleukin-1β. Nature 1997, 386, 190–194. [CrossRef]

21. Vigers, G.P.A.; Dripps, D.J.; Edwards, C.K.; Brandhuber, B.J. X-ray Crystal Structure of a Small Antagonist Peptide Bound to
Interleukin-1 Receptor Type 1. J. Biol. Chem. 2000, 275, 36927–36933. [CrossRef]

22. Somers, W.; Stahl, M.; Seehra, J.S. 1.9 Å crystal structure of interleukin 6: Implications for a novel mode of receptor dimerization
and signaling. EMBO J. 1997, 16, 989–997. [CrossRef]

23. Eck, M.J.; Sprang, S.R. The structure of tumor necrosis factor-α at 2.6 Å resolution: Implications for receptor binding. J. Biol. Chem.
1989, 264, 17595–17605. [CrossRef]

24. Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of M pro from SARS-CoV-2
and discovery of its inhibitors. Nature 2020, 582, 289–293. [CrossRef]

25. Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev. 2014, 66, 334–395.
[CrossRef]

26. Khandare, A.L.; Validandi, V.; Manne, M.; Reddy, G.B.; Putcha, U.K.; Gourineni, S.R.; Nagalla, B. Tamarind fruit extract
ameliorates fluoride toxicity by upregulating carbonic anhydrase II: A mechanistic study. Fluoride 2018, 51, 137–152.

27. Munikumar, M.; Natarajan, P.; Amineni, U.; Krishna, K.R. Discovery of potential lumazine synthase antagonists for pathogens
involved in bacterial meningitis: In silico study. Inf. Med. Unlocked 2019, 15, 100187. [CrossRef]

28. Naik, V.R.; Munikumar, M.; Ramakrishna, U.; Srujana, M.; Goudar, G.; Naresh, P.; Kumar, B.N.; Hemalatha, R. Remdesivir
(GS-5734) as a therapeutic option of 2019-nCOV main protease–in silico approach. J. Biomol. Struct. Dyn. 2021, 39, 4701–4714.
[CrossRef]

29. Manne, M.; Goudar, G.; Varikasuvu, S.R.; Khetagoudar, M.C.; Kanipakam, H.; Natarajan, P.; Ummiti, D.M.; Yenagi, V.A.;
Chinthakindi, S.; Dharani, P.; et al. Cordifolioside: Potent inhibitor against Mpro of SARS-CoV-2 and immunomodulatory through
human TGF-β and TNF-α. 3 Biotech 2021, 11, 136. [CrossRef]

30. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4:
Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [CrossRef]

31. Azam, S.S.; Abbasi, S.W. Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-
methyltransferase using different docking routines. Theor. Biol. Med. Model. 2013, 10, 63. [CrossRef]

http://doi.org/10.1371/journal.pone.0149032
http://www.ncbi.nlm.nih.gov/pubmed/26866373
http://doi.org/10.1097/AIA.0b013e318034194e
http://www.ncbi.nlm.nih.gov/pubmed/17426506
http://doi.org/10.1101/cshperspect.a016295
http://www.ncbi.nlm.nih.gov/pubmed/25190079
http://doi.org/10.1016/j.foodchem.2020.127639
http://doi.org/10.1016/j.foodchem.2016.02.134
http://doi.org/10.1016/j.tet.2003.08.025
http://doi.org/10.1016/j.fshw.2015.10.002
http://doi.org/10.1271/bbb.67.396
http://doi.org/10.1080/01635581.2011.596643
http://doi.org/10.1039/C4FO00152D
http://doi.org/10.1016/j.bbrc.2021.02.016
http://doi.org/10.1155/2020/6307457
http://doi.org/10.3390/microorganisms9061211
http://doi.org/10.1021/jf991188c
http://doi.org/10.1038/386190a0
http://doi.org/10.1074/jbc.M006071200
http://doi.org/10.1093/emboj/16.5.989
http://doi.org/10.1016/S0021-9258(18)71533-0
http://doi.org/10.1038/s41586-020-2223-y
http://doi.org/10.1124/pr.112.007336
http://doi.org/10.1016/j.imu.2019.100187
http://doi.org/10.1080/07391102.2020.1781694
http://doi.org/10.1007/s13205-021-02685-z
http://doi.org/10.1002/jcc.21256
http://doi.org/10.1186/1742-4682-10-63


Antioxidants 2022, 11, 294 22 of 23

32. Ram, T.S.; Munikumar, M.; Raju, V.N.; Devaraj, P.; Boiroju, N.K.; Hemalatha, R.; Prasad, P.V.V.; Gundeti, M.; Sisodia, B.S.; Pawar,
S.; et al. In silico evaluation of the compounds of the ayurvedic drug, AYUSH-64, for the action against the SARS-CoV-2 main
protease. J. Ayurveda Integr. Med. 2022, 13, 100413. [CrossRef] [PubMed]

33. Pradeepkiran, J.A.; Munikumar, M.; Hema, K.; Natarajan, P.; Sainath, S. Molecular docking and dynamics simulations of novel
drug targets. In Brucella Melitensis; Academic Press: Cambridge, MA, USA, 2021; pp. 79–131.

34. Munikumar, M.; Krishna, V.S.; Reddy, V.S.; Rajeswari, B.; Sriram, D.; Rao, M.V. In silico design of small peptides antagonist
against leptin receptor for the treatment of obesity and its associated immune-mediated diseases. J. Mol. Graph. Model. 2018, 82,
20–36. [CrossRef] [PubMed]

35. Halim, S.A.; Jawad, M.; Ilyas, M.; Mir, Z.; Mirza, A.A.; Husnain, T. In silico identification of novel IL-1β inhibitors to target
protein–protein interfaces. Comput. Biol. Chem. 2015, 58, 158–166. [CrossRef] [PubMed]

36. He, M.M.; Smith, A.S.; Oslob, J.D.; Flanagan, W.M.; Braisted, A.C.; Whitty, A.; Cancilla, M.T.; Wang, J.; Lugovskoy, A.A.; Yoburn,
J.C.; et al. Small-Molecule Inhibition of TNF-α. Science 2005, 310, 1022–1025. [CrossRef]

37. Wang, F.; Chen, C.; Liu, X.; Yang, K.; Xu, X.; Yang, H. Crystal structure of feline infectious peritonitis virus main protease in
complex with synergetic dual inhibitors. J. Virol. 2016, 90, 1910–1917. [CrossRef]

38. Yang, H.; Bartlam, M.; Rao, Z. Drug design targeting the main protease, the Achilles’ heel of coronaviruses. Curr. Pharm. Des.
2006, 12, 4573–4590. [CrossRef]

39. Silva, A.M.; Martins-Gomes, C.; Fangueiro, J.F.; Andreani, T.; Souto, E.B. Comparison of antiproliferative effect of epigallocatechin
gallate when loaded into cationic solid lipid nanoparticles against different cell lines. Pharm. Dev. Technol. 2019, 24, 1243–1249.
[CrossRef]

40. Kang, H.W. Inhibitory Effect of Cancer Cells Proliferation from Epigallocatechin-3-O-gallate. J. Food Nutr. Res. 2015, 3, 281–284.
[CrossRef]

41. Shen, X.; Zhang, Y.; Feng, Y.; Zhang, L.; Li, J.; Xie, Y.-A.; Luo, X. Epigallocatechin-3-gallate inhibits cell growth, induces apoptosis
and causes S phase arrest in hepatocellular carcinoma by suppressing the AKT pathway. Int. J. Oncol. 2014, 44, 791–796. [CrossRef]

42. Valcic, S.; Burr, J.A.; Timmermann, B.N.; Liebler, D.C. Antioxidant Chemistry of Green Tea Catechins. New Oxidation Products of
(−)-Epigallocatechin Gallate and (−)-Epigallocatechin from Their Reactions with Peroxyl Radicals. Chem. Res. Toxicol. 2000, 13,
801–810. [CrossRef]

43. Kim, H.-S.; Quon, M.; Kim, J.-A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from
the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014, 2, 187–195. [CrossRef]

44. Diaz, P.; Jeong, S.C.; Lee, S.; Khoo, C.; Koyyalamudi, S.R. Antioxidant and anti-inflammatory activities of selected medicinal
plants and fungi containing phenolic and flavonoid compounds. Chin. Med. 2012, 7, 26. [CrossRef]

45. Yashin, A.; Yashin, Y.; Nemzer, B. Determination of Antioxidant Activity in Tea Extracts, and Their Total Antioxidant Content. Am.
J. Biomed. Sci. 2011. Available online: http://www.nwpii.com/ajbms/papers/AJBMS_2011_4_09.pdf (accessed on 18 October
2021).

46. Severino, J.F.; Goodman, B.A.; Kay, C.W.; Stolze, K.; Tunega, D.; Reichenauer, T.G.; Pirker, K.F. Free radicals generated during
oxidation of green tea polyphenols: Electron paramagnetic resonance spectroscopy combined with density functional theory
calculations. Free Radic. Biol. Med. 2009, 46, 1076–1088. [CrossRef]

47. Sang, S.; Lambert, J.D.; Ho, C.-T.; Yang, C.S. The chemistry and biotransformation of tea constituents. Pharmacol. Res. 2011, 64,
87–99. [CrossRef]

48. Saffari, Y.; Sadrzadeh, S. Green tea metabolite EGCG protects membranes against oxidative damage in vitro. Life Sci. 2004, 74,
1513–1518. [CrossRef]

49. Huang, C.-C.; Fang, J.-Y.; Wu, W.-B.; Chiang, H.-S.; Wei, Y.-J.; Hung, C.-F. Protective effects of (−)-epicatechin-3-gallate on
UVA-induced damage in HaCaT keratinocytes. Arch. Dermatol. Res. 2005, 296, 473–481. [CrossRef]

50. Glei, M.; Pool-Zobel, B. The main catechin of green tea, (−)-epigallocatechin-3-gallate (EGCG), reduces bleomycin-induced DNA
damage in human leucocytes. Toxicol. In Vitro 2006, 20, 295–300. [CrossRef]

51. Cao, T.; Zhang, X.; Yang, D.; Wang, Y.-Q.; Qiao, Z.-D.; Huang, J.-M.; Zhang, P. Antioxidant effects of epigallocatechin-3-gallate on
the aTC1-6 pancreatic alpha cell line. Biochem. Biophys. Res. Commun. 2017, 495, 693–699. [CrossRef]

52. Luo, K.-W.; Xia, J.; Cheng, B.-H.; Gao, H.-C.; Fu, L.-W.; Luo, X.-L. Tea polyphenol EGCG inhibited colorectal-cancer-cell
proliferation and migration via downregulation of STAT3. Gastroenterol. Rep. 2020, 9, 59–70. [CrossRef]

53. Huang, S.-C.; Kao, Y.-H.; Shih, S.-F.; Tsai, M.-C.; Lin, C.-S.; Chen, L.W.; Chuang, Y.-P.; Tsui, P.-F.; Ho, L.-J.; Lai, J.-H.; et al.
Epigallocatechin-3-gallate exhibits immunomodulatory effects in human primary T cells. Biochem. Biophys. Res. Commun. 2021,
550, 70–76. [CrossRef]

54. Lambert, J.D.; Elias, R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch.
Biochem. Biophys. 2010, 501, 65–72. [CrossRef] [PubMed]

55. Shii, T.; Miyamoto, M.; Matsuo, Y.; Tanaka, T.; Kouno, I. Biomimetic One-Pot Preparation of a Black Tea Polyphenol Theasinensin
A from Epigallocatechin Gallate by Treatment with Copper(II) Chloride and Ascorbic Acid. Chem. Pharm. Bull. 2011, 59,
1183–1185. [CrossRef] [PubMed]

56. Hong, J.; Lu, H.; Meng, X.; Ryu, J.-H.; Hara, Y.; Yang, C.S. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol
(−)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res. 2002, 62, 7241–7246. [PubMed]

http://doi.org/10.1016/j.jaim.2021.02.004
http://www.ncbi.nlm.nih.gov/pubmed/33654345
http://doi.org/10.1016/j.jmgm.2018.04.002
http://www.ncbi.nlm.nih.gov/pubmed/29649778
http://doi.org/10.1016/j.compbiolchem.2015.06.004
http://www.ncbi.nlm.nih.gov/pubmed/26253030
http://doi.org/10.1126/science.1116304
http://doi.org/10.1128/JVI.02685-15
http://doi.org/10.2174/138161206779010369
http://doi.org/10.1080/10837450.2019.1658774
http://doi.org/10.12691/jfnr-3-4-8
http://doi.org/10.3892/ijo.2014.2251
http://doi.org/10.1021/tx000080k
http://doi.org/10.1016/j.redox.2013.12.022
http://doi.org/10.1186/1749-8546-7-26
http://www.nwpii.com/ajbms/papers/AJBMS_2011_4_09.pdf
http://doi.org/10.1016/j.freeradbiomed.2009.01.004
http://doi.org/10.1016/j.phrs.2011.02.007
http://doi.org/10.1016/j.lfs.2003.08.019
http://doi.org/10.1007/s00403-005-0540-5
http://doi.org/10.1016/j.tiv.2005.08.002
http://doi.org/10.1016/j.bbrc.2017.11.006
http://doi.org/10.1093/gastro/goaa072
http://doi.org/10.1016/j.bbrc.2021.02.132
http://doi.org/10.1016/j.abb.2010.06.013
http://www.ncbi.nlm.nih.gov/pubmed/20558130
http://doi.org/10.1248/cpb.59.1183
http://www.ncbi.nlm.nih.gov/pubmed/21881268
http://www.ncbi.nlm.nih.gov/pubmed/12499265


Antioxidants 2022, 11, 294 23 of 23

57. Hou, D.X.; Masuzaki, S.; Tanigawa, S.; Hashimoto, F.; Chen, J.; Sogo, T.; Fujii, M. Oolong tea theasinensins attenuate
cyclooxygenase-2 expression in lipopolysaccharide (LPS)-activated mouse macrophages: Structure–activity relationship and
molecular mechanisms. J. Agric. Food Chem. 2010, 58, 12735–12743. [CrossRef]

58. Battista, E.; Scognamiglio, P.L.; Di Luise, N.; Raucci, U.; Donati, G.; Rega, N.; Netti, P.A.; Causa, F. Turn-on fluorescence detection
of protein by molecularly imprinted hydrogels based on supramolecular assembly of peptide multi-functional blocks. J. Mater.
Chem. B 2018, 6, 1207–1215. [CrossRef]

59. Platella, C.; Raucci, U.; Rega, N.; D’Atri, S.; Levati, L.; Roviello, G.N.; Fuggetta, M.P.; Musumeci, D.; Montesarchio, D. Shedding
light on the interaction of polydatin and resveratrol with G-quadruplex and duplex DNA: A biophysical, computational and
biological approach. Int. J. Biol. Macromol. 2020, 151, 1163–1172. [CrossRef]

60. Wahedi, H.M.; Ahmad, S.; Abbasi, S.W. Stilbene-based natural compounds as promising drug candidates against COVID-19. J.
Biomol. Struct. Dyn. 2021, 39, 3225–3234. [CrossRef]

61. Perrella, F.; Coppola, F.; Petrone, A.; Platella, C.; Montesarchio, D.; Stringaro, A.; Ravagnan, G.; Fuggetta, M.; Rega, N.; Musumeci,
D. Interference of Polydatin/Resveratrol in the ACE2:Spike Recognition during COVID-19 Infection. A Focus on Their Potential
Mechanism of Action through Computational and Biochemical Assays. Biomolecules 2021, 11, 1048. [CrossRef]

http://doi.org/10.1021/jf103605j
http://doi.org/10.1039/C7TB03107F
http://doi.org/10.1016/j.ijbiomac.2019.10.160
http://doi.org/10.1080/07391102.2020.1762743
http://doi.org/10.3390/biom11071048

	Introduction 
	Materials and Methods 
	Cell Culture and Cell Lines 
	Chemicals and Kits 
	Oxidation of EGCG 
	Cell Viability Assay 
	Antioxidant Activity 
	Total Antioxidant Assay 
	TBARS Assay 

	Cell Supernatant Collection 
	Inflammatory Markers 
	Human IL-6 
	Human IL-1 
	TNF- 

	In Silico Molecular Docking 
	Statistical Analysis 

	Results 
	Oxidation of EGCG 
	Cell Viability Assay 
	Antioxidant Assay 
	Thiobarbituric Acid Reactive Species Assay (TBARS) 
	Effect of EGCG and O-EGCG on Inflammatory Markers 
	Human IL-1 
	Human IL-6 
	TNF-Alpha 
	In Silico Analysis 
	Anti-Inflammatory and Pro-Inflammatory Analysis 
	Inhibitor against Main Protease of SARS-CoV-2 


	Discussion 
	Conclusions 
	References

