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Abstract

Epidemiological data are frequently recorded at coarse spatio-temporal resolutions to pro-

tect confidential information or to summarize it in a compact manner. However, the detailed

patterns followed by the source data, which may be of interest to researchers and public

health officials, are overlooked. We propose to use the penalized composite link model

(Eilers PCH (2007)), combined with spatio-temporal P-splines methodology (Lee D.-J., Dur-

ban M (2011)) to estimate the underlying trend within data that have been aggregated not

only in space, but also in time. Model estimation is carried out within a generalized linear

mixed model framework, and sophisticated algorithms are used to speed up computations

that otherwise would be unfeasible. The model is then used to analyze data obtained during

the largest outbreak of Q-fever in the Netherlands.

Introduction

In recent decades, the development of spatio-temporal statistical methods in Epidemiology,

the cornerstone of Public Health, has been remarkable. Such development has been mainly

driven by advances in geographic information systems (GISs), access to reliable health data

registers, and the availability of powerful software capabilities to process and analyze large

amounts of data. The methodological contributions to the analysis of spatio-temporal health

data come from several interdisciplinary researchers, whose backgrounds are mostly related to

Statistics, Geography, Environmental Sciences, and Epidemiology.

Within the diversity of of epidemiological research, disease mapping has attracted much

interest in Public Health as it helps to visualize disease incidence of mortality risk patterns in a

specific area. To this end, appropriate statistical methods have been applied to health data,

which are usually recorded per spatial units, to provide smoothed disease incidences per unit.

Smoothing is performed to obtain more stable and less noisy estimates of the incidence rates

associated with each unit [1], which helps to determine meaningful spatial patterns. By adding

the temporal dimension to this context, it is possible to examine the evolution of disease
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incidence in each unit, during a certain period of time (generally divided in years), but it

implies a challenge for smoothing data, in terms of computational time and storage, even

more if disaggregation is also needed in time. Several techniques have been proposed for the

spatio-temporal smoothing of health data; most of which are developed under an empirical

Bayes approach, where B-splines are used [2, 3] or a hierarchical Bayesian framework where

conditional autoregressive (CAR) structures are included [4–6]. Regarding this last approach,

methods that use integrated nested Laplace approximations (INLA, [7]) have recently been

proposed (see [8–10]; among others).

All the works mentioned above provide smoothed estimates that change over time within a

unit and across units within time interval, although each estimated value is assigned to the

whole unit. Furthermore, most of them can be extended to include covariates or explanatory

variables, which must have the same spatio-temporal resolution as health data. Therefore, they

restrict the incorporation of population information at fine-scale and other relevant risk fac-

tors recorded at a finer resolution (see the modifiable areal unit problem; [11, Ch. 29]). The

challenge here is not only that the map is dynamic, but the fact that, in order to obtain a better

insight of the evolution of the incidence, detailed maps are needed at a finer spatial and tempo-

ral scale than the one provided (for example, grid instead of areas and weeks instead of

months) while maintaining the coherence with the aggregated observed counts. To overcome

the limitations of previous works, we propose the use of the spatio-temporal penalized compos-

ite link model(ST-PCLM) to estimate the latent distribution of spatio-temporally grouped

count data. Our proposal is based on the penalized composite link model of [12], combined

with a spatio-temporal P-spline methodology [13], to obtain smoothed estimates at a finer res-

olution from data aggregated over space and/or time. Moreover, the approach allows to

include population information at fine-scale and specific random effects or further correlation

structure, if necessary. This could be in the form of unstructured variation (including random

effects per spatial unit) or structured variation by assuming a known variance-covariance

matrix for the spatial random effects, for example using a CAR model as in [14].

As in any latent observation problem, there are infinitely possible solutions that fit the

observed data. In that sense, the model is not identifiable, and the use of some prior knowledge

or constraints (based on experience or common sense) is required for the problem to be well

posed. Because we want to estimate a distribution, it is reasonable to expect a relatively smooth

result, so we assume here that the underlying spatio-temporal process behind aggregated data

is smooth and stationary (although this last hypothesis could also be relaxed by using multidi-

mensional adaptive smoothing as in [15]). The flexibility of the model is given by the use of B-

spline bases and a discrete penalty on the regression coefficients, following the P-spline meth-

odology [16]. Smoothness is controlled by three smoothing parameters (two for the spatial

dimension and one for the temporal dimension) that have to be estimated along with the over-

all trend at the fine scale. To perform the spatio-temporal disaggregation, the ST-PCLM uses a

composition matrix that links both coarse and fine resolutions, and which is expressed as a

Kronecker product of two marginal composition matrices (one acting at a spatial level and

another at temporal level).

We can find several techniques that allow the spatial disaggregation of health data. For

example, the use of an interpolation process from empirical Bayes estimates [17], (generalized)

Poisson kriging methods [18], log-Gaussian Cox processes [19], and spatial composite link

mixed models [20] have been suggested to produce a continuous smooth surface (across the

study area) from regional health data. However, as far as we know, there is no appropriate

model to address the problem of disaggregation of health data in both space and time

(although there are some works about spatio-temporal disaggregation in a Gaussian context;

see, for example, [21–25]). A common among social scientist is geographical microsimulation
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(see for example [26]). Geographical microsimulation models simulate populations in given

geographical areas, with population characteristics as close as possible to their real counter-

parts. But a drawback may be that a representative sample of individuals at the fine-scale data

required by those methods is not always available. The methodology presented here allows to

create detailed dynamic maps for disease incidence data. Publicly available maps in aggregated

form over space and time are the only information required, as well as geographical locations

and time points where a finer resolution prediction is required.

Materials and methods

Q fever data

Q fever is a widespread zoonotic disease caused by the bacterium Coxiella burnetii. C. burnetii

transmission to humans is mainly associated with ruminants such as cattle, sheep, and goats.

During parturition or abortion of infected animals, high numbers of C. burnetii are shed

within the amniotic fluids and the placenta. These organisms end up in the environment,

where they may survive for long periods due to their resistance to heat, dryness, and many

common disinfectants. Humans are often highly susceptible to the disease, and very few organ-

isms may be necessary to cause infection. More information about this infectious disease is

provided in [27].

The Southern Netherlands faced large outbreaks of human Q fever from 2007 to 2010 [28].

In this country, the local municipal health services (MHSs) are responsible for registering all

confirmed diagnoses of acute Q fever. The information collected is then entered into the elec-

tronic national infectious diseases surveillance database. Due to confidentiality, these data are

not publicly available and, in some instances, maybe provided in an aggregated form. In this

case, the data were made available monthly at the municipality level.

Fig 1 shows the temporal distribution of Q fever cases (in months) from January 2007 to

July 2010. A total of 3806 acute Q fever cases were registered in this period: 192 in 2007, 980 in

2008, 2309 in 2009, and 325 in 2010. The epidemic peaks of each year were observed every

spring, specifically during May. This coincides with the birth period of small ruminants (sheep

and goats), a fact that was pointed out in several studies about those exceptionally large Q fever

outbreaks in the Netherlands (see, for example, [28, 29]). Since the largest outbreak was

observed during 2009, we have studied the distribution of Q fever incidence in that year.

Fig 2a shows postal code areas affected by human Q fever (red points) in 2009. However,

the number of cases was only publicly available at the municipality level. Since dairy goat and

sheep farms are not evenly distributed across the Netherlands, Q-fever infection did not occur

in all areas of the country. In this study we have focused on a 60 × 60km area in the south of

the Netherlands (see black square in Fig 2a) with a total of 72 municipalities. The total number

of Q fever cases reported in these municipalities was 1798. Taking into account the number of

inhabitants in each municipality, we can calculate Q fever incidence (per 100000 inhabitants).

Fig 2b shows the spatial distribution of the resulting Q fever incidence (aggregated over

months in 2009), with higher incidence values observed around the municipalities of Landerd

(1439.676), Lith (562.546), and Heusden (295.006). Both Figs 1 and 2 show a smooth distribu-

tion of counts in space and time which makes our initial assumption of a smooth latent distri-

bution plausible.

The spatio-temporal penalized composite link model

The Spatio-Temporal Penalized Composite Link Model (ST-PCLM) is the name of the model

we propose for the spatio-temporal disaggregation of epidemiological data. ST-PCLM com-

bines the penalized composite link model (PCLM) of [12] and spatio-temporal smoothing
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with P-splines [13]. The PCLM generalizes the model proposed by [30] and allows the estima-

tion of a smooth trend, from grouped data, at a finer resolution. The idea behind it is as fol-

lows:

Distribution
° ! Composition

¹ = C° ! Sampling
y v Poiss (¹)

We observe data y from a Poisson distribution with mean μ, then we assume that μ is a

composition of the ungrouped distribution γ. The approach assumes that the underlying

(ungrouped) distribution is smooth, but otherwise let the data determine their shape.

As PCLM applies to the unidimentional scenario, we develop it in the spatio-temporal con-

text. Then, we have included the ideas presented in [13] to reformulate the new spatio-tempo-

ral PCLM under a generalized linear mixed model (GLMM) framework, i.e., ST-PCLM.

Hereafter, we will show the development of the ST-PCLM and a computationally efficient way

to estimate the ST-PCLM parameters.

The model. Let yit, i = 1, . . ., n, t = 1, . . ., Ta, denote count data recorded over n non-over-

lapping spatial units vi, which constitute the area of interest, at Ta time periods. Suppose that

Fig 1. Human Q fever cases in the Netherlands grouped per months, from January 2007 to July 2010.

https://doi.org/10.1371/journal.pone.0263711.g001
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we want to estimate the latent distribution of the vector of counts at a spatio-temporal support

that is a refinement of the original one. The fine support is determined by three coordinates:

x1 = (x11, . . ., x1m)0 and x2 = (x21, . . ., x2m)0, with m> n, which represent the longitude and lati-

tude coordinates of the spatial refinement, respectively; and x3 ¼ ðx31; :::; x3Tf
Þ
0
, with Tf > Ta,

which represents the coordinates of the temporal refinement. We assume that the spatial

refinement remains fixed at each instant of time in x3, but the method can easily be extended

to relax this assumption. Assuming that y is Poisson distributed with mean vector μ, the

ST-PCLM is given by:

μ ¼ Cstγf ¼ Cstexpffstðx1; x2; x3Þg; ð1Þ

where γf denotes the fine-scale latent mean, Cst is the composition matrix that describes how

these latent means are combined to yield μ, and fst(x1, x2, x3) represents the fine-scale spatio-

temporal trend. Several approaches can be used to model that function, e.g.: Gaussian random

fields, spatio-temporal kriging or penalized splines, among others. We propose the last option

since smoothness might be a reasonable property to ask for: if we are estimating an unknown

distribution, it seems natural to assume smoothness since we do not know much about the

underlying process (the use of the other techniques mentioned is out of the scope of this paper

and will be subject of further work). We assume that the non-separable function fst(x1, x2, x3)

may be represented by the product of simpler functions fx1
ðx1Þ, fx2

ðx2Þ, and fx3
ðx3Þ. Therefore,

the basis representation of the function would be given by:

fstðx1; x2; x3Þ ¼ Bstθ ¼ fB3 � ðB2□B1Þgθ; ð2Þ

where B1 = B(x1), B2 = B(x2), and B3 = B(x3) are univariate B-spline bases [16] of dimensions

m × c1, m × c2 and Tf × c3 respectively. The matrix operators� and □ on the right-hand side of

Fig 2. Map of human Q fever cases in the Netherlands, 2009. Left: red points indicate the residential addresses of human cases (2309 in

total). Right: study area in the south of the Netherlands showing (raw) incidence (per 100000 inhabitants) of Q fever by municipality in 2009.

Source: geo-referenced data are obtained from https://www.cbs.nl/en-gb/onze-diensten/open-data/statline-as-open-data/cartography. a) Q

fever outbreaks in 2009. b) Q fever incidence in study area.

https://doi.org/10.1371/journal.pone.0263711.g002
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Eq (2) represent Kronecker and Box products (row tensor products), respectively [31] (if the

spatial refinement changes over time, Box product would be used instead of Kronecker prod-

uct). To achieve smoothness, we use an anisotropic penalty (based on second order differences

constructed separately for each independent variable) over the vector of regression coefficients

θ. The form of this matrix is as follows:

Pst ¼ l1Ic3 � Ic2 � P1 þ l2Ic3 � P2 � Ic1 þ l3P3 � Ic2 � Ic1 ; ð3Þ

where Icd denotes an identity matrix of dimension cd × cd, λd is the smoothing parameter that

controls the amount of smoothing along the coordinate xd, and Pd ¼ D0dDd is the marginal

penalty matrix based on Dd, which computes qd-th differences, i.e., D
qdθ ¼ Ddθ, for d = 1, 2, 3.

As we mentioned earlier, the matrix in Eq (3) has an anisotropic property in the sense that

allows a different amount of smoothing for each coordinate.

Since we are assuming that the spatial refinement is fixed over the temporal refinement, the

composition matrix Cst in model (1) is obtained as:

Cst ¼ Ct � Cs; ð4Þ

where Cs and Ct are the spatial and temporal composition matrices of dimensions n ×m and

Ta × Tf, respectively. The structure of these matrices depends on the type and level of aggrega-

tion. For example, if we want to estimate the latent distribution at a fine spatial grid (over a

study area), the entries of the spatial composition matrix will be:

½Cs�ij ¼
1 if ðx1j; x2jÞ belongs to unit vi

0 otherwise

(

ð5Þ

where (x1j, x2j) are the cell centroid coordinates of the fine grid, for i = 1, . . ., n and j = 1, . . .,

m. Another option to construct Cs is to consider its entries as the area proportions that each

grid cell shares with a specific unit. The temporal composition matrix Ct is used to disaggre-

gate coarse time intervals into detailed time periods (for example, from years or trimesters to

months, weeks, or days). In our application, we show the structure that Ct will have, specifi-

cally for our purposes. Note that if Cs = In, Ct ¼ ITa , and the unit centroids are used as spatial

coordinates, the presented methodology is reduced to the Poisson version of the proposal

given by [13] for smoothing of spatio-temporal count data.

When spatial data are recorded over a coarse rectangular grid, an appropriate definition for

Bst in Eq (2) is Bst = B3� (B2� B1), where the spatial refinement correspond to the cell cen-

troid coordinates of a fine grid. The penalty matrix Pst in Eq (3) is still valid in this context,

because its definition is independent of data structure. Moreover, the spatial composition

matrix would be given by Cs = C2� C1, where each Cd is constructed according to the disag-

gregation of the coarse grid cells into small ones, for d = 1, 2. Although the Kronecker structure

in (4) is a computational advantage, our model can cope with more complex situations where

the spatial disaggregation changes from one time point to another (for example, census tracks

changes along the years) by simply changing the structure of Cst.

Mixed model representation. Now, we show how to incorporate fine-scale population

information into the model (1). To do so, we must reformulate the model as a Generalized Lin-

ear Mixed Model (GLMM) by following the proposal of [13] as it is briefly described below.

In the P-splines literature, [13] show a nice representation of the spatio-temporal trend as a

mixed model. Following their approach, the term fst(x1, x2, x3) in model (2) can be rewritten as

fst(x1, x2, x3) = Bst θ = x β + Z α. Thus, we have:

μ ¼ Cstγf ¼ CstfexpðXβþ Zα þ logðefÞÞg; with α � N ð0;GÞ; ð6Þ
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where X and Z are fixed and random effects matrices, and β and α are their associated coeffi-

cients, respectively. Random effects have covariance matrix G that depends on the smoothing

parameters. The model includes an offset term log(ef) that allows the analysis of mortality or

incidence rates instead of counts. The vector ef could be, for example, fine-scale population

information or expected number of deaths. If we only have the offset term at the coarse scale,

i.e., logðeÞ ¼ ðlogðe11Þ; :::; logðen1Þ; :::; logðe1T1
Þ; ::::; logðenTaÞÞ

0
, a naive approach to estimate ef

assumes that the elements of e are evenly distributed throughout the fine resolution. Therefore,

we can compute these naive estimates as benaive ¼ C�ste, where C�st denotes the Moore-Penrose

inverse of Cst.

The construction of the matrices X, Z, and G in model (6) are obtained by using the singu-

lar value decomposition (SVD) of each discrete penalty matrix Pd in Eq (3), for d = 1, 2, 3. The

mixed model matrices are given by:

X ¼ X3 � ðX2□X1Þ;

Z ¼ ½Z3 � ðX2□X1Þ : X3 � ðZ2□X1Þ : X3 � ðX2□Z1Þ :

Z3 � ðZ2□X1Þ : Z3 � ðX2□Z1Þ : X3 � ðZ2□Z1Þ : Z3 � ðZ2□Z1Þ�;

ð7Þ

where Xd = Bd Udn and Zd = Bd Uds are constructed from the matrices of singular vectors cor-

responding to null and non-null singular values of the SVD of Pd, Udn and Uds, respectively,

for d = 1, 2, 3. Denoting ~Σd as the diagonal matrix with the non-null singular values of the

SVD of Pd in the main diagonal, the inverse of the covariance matrix G becomes the block-

diagonal matrix:

G� 1 ¼ blockdiag ðl3F3u; l2F2u; l1F1u;

l2F22 þ l3F32; l1F12 þ l3F31; l1F11 þ l2F21;

l1F1t þ l2F2t þ l3F3tÞ;

ð8Þ

where:

F1u ¼ Iq3
� Iq2

� ~Σ1; F2u ¼ Iq3
� ~Σ2 � Iq1

; F3u ¼
~Σ3 � Iq2

� Iq1
;

F11 ¼ Iq3
� Ic2 � q2

� ~Σ1; F12 ¼ Ic3 � q3
� Iq2

� ~Σ1; F21 ¼ Iq3
� ~Σ2 � Ic1 � q1

;

F22 ¼ Ic3 � q3
� ~Σ2 � Iq1

; F31 ¼
~Σ3 � Iq2

� Ic1 � q1
; F32 ¼

~Σ3 � Ic2 � q2
� Iq1

;

F1t ¼ Ic3� q3
� Ic2 � q2

� ~Σ1; F2t ¼ Ic3 � q3
� ~Σ2 � Ic1 � q1

; F3t ¼
~Σ3 � Ic2 � q2

� Ic1 � q1
:

If data are spatially recorded over a rectangular coarse grid, the corresponding mixed

model matrices are obtained as in Eq (7), but replacing the Box products □ by Kronecker prod-

ucts�. The formulation of G−1 remains the same.

Parameter estimation. Once the ST-PCLM defined in (6) is in the GLMM framework, it

is possible to estimate its parameters. This estimation procedure was presented by [20] in a

spatial disaggregation context, and it involves two interrelated stages: (a) estimation of fixed

coefficients and random effects (β and α); and (b) estimation of smoothing parameters (λ1, λ2,

and λ3). The penalized quasi-likelihood (PQL) methods of [32] are used for stage (a), and the

restricted (or residual) maximum likelihood (REML, [32, 33]) is used for stage (b) as a numeri-

cal optimization criterion for smoothing parameter selection. Technical details are provided in

[20] and, thus, we only describe here the necessary results.

For given values of λ1, λ2, and λ3, the estimation of the fixed and random effects coefficients of

the model (6) are obtained by maximizing the following approximate penalized log-likelihood:

y0logðμÞ � 10μ �
1

2
α0G� 1α; ð9Þ
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where 1 denotes a vector of ones of length n � Ta and μ = Cst γf, with γf = ef
� exp(X β + Z α).

Differentiation of Eq (9) with respect to β and α leads to the score equations:

X̆ 0ðy � μÞ ¼ 0;

Z̆ 0ðy � μÞ ¼ G� 1α;
ð10Þ

whereX̆ ¼W� 1CstΓX andZ̆ ¼W� 1CstΓZ are called ‘working’ mixed model matrices, since W

= diag(μ) and Γ = diag(γf) change during the estimation procedure. Defining the working vec-

tor as:

z ¼ X̆βþZ̆α þW� 1ðy � μÞ;

the solution of the score equations in (10) via Fisher scoring algorithm is expressed as the itera-

tive solution of the system:

X̆ 0WX̆ X̆ 0WZ̆G

Z̆ 0WX̆ IþZ̆ 0WZ̆G

2

4

3

5
β

b

" #

¼
X̆ 0Wz

Z̆ 0Wz

2

4

3

5; ð11Þ

where b = G−1 α. This yields to a modified version of the standard mixed model estimators:

bβ ¼ ðX̆ 0V� 1X̆Þ� 1X̆ 0V� 1z; ð12Þ

bα ¼ GZ̆ 0V� 1ðz � X̆bβÞ

¼ GZ̆ 0Nz;
ð13Þ

where:

V ¼W� 1 þZ̆GZ̆ 0;

N ¼ V� 1 � V� 1X̆ðX̆ 0V� 1X̆Þ� 1X̆ 0V� 1: ð15Þ

Conditioning on the estimates (12) and (13), the smoothing parameters λ1, λ2, and λ3 can

be estimated by maximizing the approximate REML (see [32, Eq. 13]):

l�ðVÞ ¼
1

2
logjVj �

1

2
logjX̆ 0V� 1X̆j �

1

2
ðz � X̆bβÞ0V� 1ðz � X̆bβÞ

¼
1

2
logjVj �

1

2
logjX̆ 0V� 1X̆j �

1

2
z0ðV� 1 � V� 1X̆ðX̆ 0V� 1X̆Þ� 1X̆ 0V� 1Þz;

ð16Þ

where λ1, λ2, and λ3 are involved in V through G. Therefore, optimal estimates for the

ST-PCLM parameters are obtained by iteration between Eqs (12), (13) and (16), until

convergence.

Once the ST-PCLM parameter estimates at convergence are obtained, we can derive stan-

dard errors for bη ¼ Xbβ þ Zbα by using the Bayesian approximation of the variance-covariance

matrix for ðbβ; bαÞ0 (see [34] for further details). Thus, the approximate standard errors for bη are

obtained by taking the square root of VarðbηÞ, which is obtained as:

VarðbηÞ ¼ diagð½X : Z�
X̆ 0WX̆ X̆ 0WZ̆

Z̆ 0WX̆ Z̆ 0WZ̆ þ G� 1

2

4

3

5

� 1

½X : Z�0Þ:

We should note that the estimation procedure described above can be computationally

inefficient if we are working with large datasets and the goal is to obtain estimates at a very fine

scale. Furthermore, the direct creation of the matrices Csf, X, and Z in model (7) can easily
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lead to storage problems. In the next Sections, we will provide solutions for the ST-PCLM esti-

mation in terms of storage and efficiency (these solutions were not available in [20]).

Fast algorithm for spatio-temporal penalized composite link models. In order to effi-

ciently compute estimates of the smoothing parameters, we have adapted the SAP (Separation

of Anisotropic Penalties) algorithm of [35] to the ST-PCLM context. To avoid possible storage

problems, we have used the so-called GLAM (Generalized Linear Array Methods, [31, 36]) in the

ST-PCLM setting. These methods also provide an efficient way to compute the matrix of cross-

products required for the SAP algorithm, easing the computation time of model estimation.

Under the ST-PCLM approach and conditioning on the estimates given in Eqs (12) and

(13), we can estimate λ1, λ2, and λ3 by numerical maximization of the approximate REML in

Eq (16). The usual algorithms used to approximate the solutions, such as the one proposed by

[37] (extended to the generalized case by [38]), can only deal with situations in which the vari-

ance-covariance matrix is linear on the variance parameters. In the case of spatio-temporal

models with anisotropic penalties, regression parameters are affected by more than one

smoothing parameter, and so standard approaches can’t be used, since the corresponding vari-

ance-covariance matrix does not have the required form. [35] proposed the SAP algorithm

which provides a numerical solution to REML estimates, but it is able to deal with models that

have a precision matrix for the random effect vector that is linear in the inverse of the variance

parameters. These precision matrices are common when penalized smooth models with aniso-

tropic penalties are reformulated as (generalized) linear mixed models, where the smoothing

parameters are seen as ratios of variance components, i.e., ld ¼
�

t2d
, for d = 1, 2, 3. Since we are

working under a Poisson framework, the dispersion parameter, ϕ, is equal to 1. Thus, the prob-

lem is reduced to obtain estimates for the variance components t2
1
, t2

2
, and t2

3
. The reformula-

tion of the SAP algorithm for the ST-PCLM is described below.

Following [35] we can derive closed-form expressions, from the approximate REML, for

the variance components t2
d, for d = 1, 2, 3. These estimates are given by:

bt2
d ¼

bα 0Λdbα
edd

; ð17Þ

where:

edd ¼ trace Z̆ 0NZ̆G
Λd

t2
d
G

� �

; ð18Þ

with N defined in Eq (15), and

Λ1 ¼ blockdiagð0q1q2ðc3� q3Þ
; 0q1q3ðc2 � q2Þ

; F1u; 0q1ðc2 � q2Þðc3 � q3Þ
; F12; F11; F1tÞ;

Λ2 ¼ blockdiagð0q1q2ðc3� q3Þ
; F2u; 0q2q3ðc1 � q1Þ

; F22; 0q2ðc1 � q1Þðc3 � q3Þ
; F21; F2tÞ;

Λ3 ¼ blockdiagðF3u; 0q1q3ðc2 � q2Þ
; 0q2q3ðc1 � q1Þ

; F32; F31; 0q3ðc1 � q1Þðc2 � q2Þ
; F3tÞ:

The non-null submatrices of each Λd were previously defined in Section. Here the inverse of

the covariance matrix G in model (6) is written in terms of t2
d’s and can be decomposed as

G� 1 ¼ 1

t2
1

Λ1 þ
1

t2
2

Λ2 þ
1

t2
3

Λ3, where the capital lambdas are defined above. The SAP algorithm

for the ST-PCLM parameter estimation is given in Algorithm 1, which is an adaptation of the

algorithm provided in [35, p. 945].

Algorithm 1 SAP algorithm for the ST-PCLM parameters estimation
Require: Convergence tolerances ν1 and ν2 (e.g., 1 × 10−6) and maximum

number of iterations maxit1 and maxit2 (e.g., 100).
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1: Set initial values for the mixed model coefficients β and α, and

the variance components t2
1
, t2

2
, and t2

3
(for example, bβð0Þ ¼ 0 with

length q1 q2 q3, bαð0Þ ¼ 0 with length (c1 c2 c3−q1 q2 q3), and
bt

2ð0Þ

1 ¼ bt
2ð0Þ

2 ¼ bt
2ð0Þ

3 ¼ 1). Set k = 0.
2: for 1 to maxit1 do
3: Given the current estimates for the mixed model coefficients, con-

struct the matrix of weights W and the working vector z as follows:

Γ ¼ diagðbgðkÞf Þ; with bg
ðkÞ
f ¼ expðXbβðkÞ þ ZbαðkÞ þ logðefÞÞ;

W ¼ diagðbmðkÞÞ; with bmðkÞ ¼ Cstbg
ðkÞ
f ;

z ¼ X̆bβðkÞ þZ̆bαðkÞ þW� 1ðy � bμðkÞÞ ¼W� 1CΓbηðkÞ þW� 1ðy � bμðkÞÞ;

with bηðkÞ ¼ XbβðkÞ þ ZbαðkÞ.
4: for 1 to maxit2 do
5: Given the current estimates for the variance components, obtain

new estimates for β and α by solving the system in Eq (11). The

resulting estimates are denoted as bβðkþ1Þ and bαðkþ1Þ, respectively.
6: Obtain new estimates for the variance components using Eq (17).

The resulting estimates are denoted as bt2ðkþ1Þ

d , for d = 1, 2, 3.
7: Compare new variance component estimates with the previous

ones, using the following convergence criterion:

P3

d¼1
jbt

2ðkþ1Þ

d � bt
2ðkÞ
d j

3
� n1:

8: If the convergence tolerance is achieved, break, otherwise set
bt

2ðkÞ
d ¼ bt

2ðkþ1Þ

d and repeat steps 5, 6, and 7 until convergence.
9: end for
10: Compute a new estimate for the fine-scale smooth trend vector

using the fixed and random effects estimates obtained in the
last iteration of step 5. The resulting vector is denoted as
bηðkþ1Þ. Compare the new estimate with the previous one, using the
following convergence criterion:

kbηðkþ1Þ � bηðkÞk2

kbηðkþ1Þk
2
� n2:

11: If the convergence tolerance is achieved, break, otherwise set k
= k + 1 and repeat steps 2 to 11 until convergence.

12: end for
Although we have suggested setting the maximum number of iterations to 100, our experi-

ence is that the number of iterations needed to achieve convergence is much smaller. In gen-

eral, we have observed that the maximum number of iterations to obtain optimal variance

components is greater than the number of iterations to obtain optimal estimates for the linear

predictor. In the analysis of Q-fever data, convergence was reached after 30 iterations.

We should note that we can efficiently compute the trace in Eq (18) by taking into account

that G Λd G is a diagonal matrix. Thus, we only have to compute the diagonal ofZ̆ 0NZ̆ to obtain
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this trace. From [39, Eq. (5.3)], we have that:

Z̆ 0N ¼ ½0ðc1c2c3 � q1q2q3Þ�q1q2q3
: Iðc1c2c3 � q1q2q3Þ

�
X̆ 0WX̆ X̆ 0WZ̆G

Z̆ 0WX̆ IþZ̆ 0WZ̆G

2

4

3

5

� 1

½X̆ : Z̆�W:

Therefore, the diagonal elements of matrixZ̆ 0NZ̆ are obtained by the column-wise addition of:

½0ðc1c2c3 � q1q2q3Þ�q1q2q3
: Iðc1c2c3 � q1q2q3Þ

�
X̆ 0WX̆ X̆ 0WZ̆G

Z̆ 0WX̆ IþZ̆ 0WZ̆G

2

4

3

5

� 10

@

1

A

0

�
X̆ 0WZ̆

Z̆ 0WZ̆

2

4

3

5:

An advantage of using the adapted SAP algorithm provided above is that we can directly

compute the effective dimension (ED) of model (6). This model complexity measure is given by:

ED ¼ q1q2q3 þ
X3

d¼1

edd; ð19Þ

where each edd is computed from Eq (18). The first term on the right-hand side of Eq (19) corre-

sponds to the dimension of the unpenalized (or fixed) part, whereas the second corresponds to

the unpenalized (or random) part of the fitted model. To visualize the later statement, note that:

X3

d¼1

edd ¼ trace
X3

d¼1

Z̆ 0NZ̆G
Λd

t2
d
G

 !

¼ trace Z̆ 0NZ̆G
� �

¼ trace Z̆GZ̆ 0N
� �

;

whereZ̆GZ̆ 0N is the ‘hat matrix’ [40] of the unpenalized part of the fitted ST-PCLM (see Eq (13)).

Note that the matrix cross-productsX̆ 0WX̆,X̆ 0WZ̆, andZ̆ 0WZ̆ (and its transpose) are

involved in the computation of the variance component estimates. They also appear in the esti-

mation of fixed and random effects coefficients, which are obtained by solving the system in

Eq (11). These and other required matrix cross-products can be efficiently computed by adapt-

ing the so-called GLAM methods to the ST-PCLM setting, which we will show in the next

Section.

GLAM methods for spatio-temporal penalized composite link models. When we deal

with estimating latent trends in multiple dimensions, we are susceptible to problems with stor-

age and computational burden. In the case of data arranged in multidimensional grids, these

problems can be overcome using the GLAM methods developed in [31, 36]. These methods

are designed to avoid direct computation of matrix cross-products where Kronecker opera-

tions are involved, by using sequences of nested matrix operations. In this Section, we show

the use of these methods in the ST-PCLM context.

First consider the matrix-by-vector products X β, Z α, and Cst γf that appear in line 3 of

Algorithm 1. These expressions can be computed as:

Xβ � rfX3; rðR1;
~QÞg;

Zα � ½rfZ3; rðR1;
~A1Þg : rfX3; rðR2;

~A2Þg : rfX3; rðR3;
~A3Þg : rfZ3; rðR2;

~A4Þg :

rfZ3; rðR3;
~A5Þg : rfX3; rðR4;

~A6Þg : rfZ3; rðR4;
~A7Þg�;

Cstgf � rfCt; rðCs;
~ΓÞg;

with R1 ¼ GðX2;X1Þ, R2 ¼ GðZ2;X1Þ, R3 ¼ GðX2;Z1Þ, R4 ¼ GðZ2;Z1Þ, where ρ and G denote

the rotated H� transform and the row-tensor product, respectively, defined in the S1 File. The

symbol�means that both sides have the same elements but in a different order. The matrices
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~Q, ~Γ, and ~Ak, for k = 1, . . ., 7, are arrangements of the vectors β, γ, and αk, respectively, with

α ¼ ðα0
1
; :::;α0

7
Þ
0
. The dimensions of these matrices correspond to the number of columns of

the first matrix where ρ acts, times the number of columns of the second matrix where ρ acts

(i.e., ~Q has dimension ncol(R1) × ncol(x3) = q1 q2 × q3, ~Γ has dimension ncol(Cs) × ncol(Ct) =

m × Tf, and so on). Therefore, it holds that vecð ~QÞ ¼ β, vecð~ΓÞ ¼ gf , and vecð~AkÞ ¼ αk, for

k = 1, . . ., 7.

Next consider the matrix cross-productsX̆ 0WX̆,Z̆ 0WZ̆,X̆ 0WZ̆,Z̆ 0WX̆ (which is equal to

ðX̆ 0WZ̆Þ0),X̆ 0Wz, andZ̆ 0Wz that appear in line 5 in Algorithm 1 (i.e., in the system in Eq (11)).

Note first that they can be reduced as:

X̆ 0WX̆ ¼ ðCstΓXÞ
0W� 1ðCstΓXÞ;Z̆ 0WZ̆ ¼ ðCstΓZÞ

0W� 1ðCstΓZÞ;

X̆ 0WZ̆ ¼ ðCstΓXÞ
0W� 1ðCstΓZÞ;X̆ 0Wz ¼ ðCstΓXÞ

0z;

Z̆ 0Wz ¼ ðCstΓZÞ
0z:

Therefore, we only need to compute Cst Γ x and Cst Γ Z. These expressions are obtained as fol-

lows:

CstΓX � rðGðX3;C
0

tÞ
0
; rfGðR1;C

0

sÞ
0
; ~ΓgÞ;

CstΓZ � ½rðGðZ3;C
0

tÞ
0
; rfGðR1;C

0

sÞ
0
; ~ΓgÞ : rðGðX3;C

0

tÞ
0
; rfGðR2;C

0

sÞ
0
; ~ΓgÞ :

rðGðX3;C
0

tÞ
0
; rfGðR3;C

0

sÞ
0
; ~ΓgÞ : rðGðZ3;C

0

tÞ
0
; rfGðR2;C

0

sÞ
0
; ~ΓgÞ :

rðGðZ3;C
0

tÞ
0
; rfGðR3;C

0

sÞ
0
; ~ΓgÞ : rðGðX3;C

0

tÞ
0
; rfGðR4;C

0

sÞ
0
; ~ΓgÞ :

rðGðZ3;C
0

tÞ
0
; rfGðR4;C

0

sÞ
0
; ~ΓgÞ�:

Results

Once the ST-PCLM has been stated, we analyzed the data related to Q fever outbreaks in the

Netherlands.

Weekly high-resolution smooth incidence maps

As mentioned above, we have focused on the distribution of Q fever incidence in the south of

the Netherlands during 2009. Some of this data were analyzed in [41], the authors focused on

the construction of a smooth incidence map at a fixed time, without considering the need to

obtain predictions that were consistent with the aggregated data. More recently [42] focused

on the spatial transmission of the disease.

Let’s remember that the data are aggregated at municipality and monthly levels, and that

our goal is to obtain estimates of Q fever incidence at that fine grid and at each week of 2009

(i.e., disaggregate simultaneously in space and time) to obtain better insights of the evolution

of the disease. The ST-PCLM approach, allows to visualize Q fever incidence at a finer spatio-

temporal resolution, and also to incorporate fine-scale population information to the estima-

tion of the latent process. Here we use two sources of information: 1) The Q fever counts that

are available in the municipalities of the study area described in Fig 2b and months of 2009

(i.e., the initial spatial and temporal scales are municipalities and months, respectively), and 2)

population measured at a fine spatial grid over the study area. Population information at fine

spatial grids is available from the WorldPop project. The data containing the spatial distribu-

tion of population in 2009 in the Netherlands can be downloaded from https://www.

worldpop.org/geodata/summary?id=42722.
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Fig 3a shows a fine grid composed of 4871 regular cells of size 1000 m × 1000 m. Blue dots

represent the spatial coordinates of the centroids of these cells, and Fig 3b shows the spatial

distribution of the population on this fine grid, which is heterogeneous across municipalities.

To set up the ST-PCLM formulation, we have used: centroids of the cells described in Fig 3a as

fine-scale spatial coordinates, i.e., as x1 and x2, x3 = (1, . . ., 53)0 (since 53 weeks were observed

in 2009), second order penalties, 12 equally-spaced knots for the marginal cubic B-spline bases

B1 and B2, and 8 equally-spaced knots for the marginal cubic B-spline basis B3. We have

assumed here that the population at the fine grid is constant throughout the time period; thus,

ef in model (6) is considered as a vector obtained by repeating the fine-scale population fifty

three times. The elements of the spatial composition matrix are obtained using Eq (5), whereas

the temporal composition matrix for this case has the following form:

Ct =

2
66666666666664

1 1 1 1 1
1 1 1 1

1 1 1 1 3
7
4
7
1 1 1 5

7
2
7
1 1 1 1 1

7
6
7
1 1 1 3

7
4
7
1 1 1 6

7
1
7
1 1 1 1 2

7
5
7
1 1 1 4

7
3
7
1 1 1 1

1 1 1 1 2
7
5
7
1 1 1 1

3
77777777777775

,

where Sunday is considered the first day of the week. As opposed to the spatial composition

matrix, the matrix Ct has some entries that are fractions. This is because some months share

parts of a specific week (for example, some days of week 14 belong to March and the others to

April).

Fig 4 shows the resulting ST-PCLM Q fever incidence (per 100000 inhabitants) at the target

fine spatial resolution, for six selected weeks. These incidences are obtained as

Fig 3. The map on the left shows the fine grid of 1000 × 1000 m cells in the study area shown in Fig 2b. The map on the right shows the spatial

distribution of the population on this fine grid. Source: Estimated population density per grid-cell from the WorldPop project in 2009, the Netherlands

https://www.worldpop.org/geodata/summary?id=42722. a) Fine grid (cells of size 1000x1000 m). b) Population on grid.

https://doi.org/10.1371/journal.pone.0263711.g003
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Fig 4. Smoothed Q fever incidence at a detailed spatio-temporal scale, resulting from the ST-PCLM approach, for six

selected weeks.

https://doi.org/10.1371/journal.pone.0263711.g004
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cinc ¼ 100000expðXbβ þ ZbαÞ. The evolution of the incidence varies across municipalities and

weeks, where the highest incidences are observed mostly around week 19. Most of those weeks

belong to April, May, and June, which have the largest number of Q fever outbreaks observed

in 2009 (see Fig 1). Note also that most of the highest incidences in week 19 are spatially con-

centrated around the area that includes points A and C in Fig 4, which are located in the

municipalities of Landerd and Heusden, respectively (see Fig 2b). Fig 5 shows the approximate

standard error maps associated with Fig 4. As expected in a Poisson setting, larger variances

are found in areas with higher incidence rates.

From the previous ST-PCLM estimates, we can also visualize the disaggregated (weekly)

temporal evolution of the Q fever disease at specifics spatial coordinates of the fine grid. Fig 6

shows the down-scaled smoothed temporal incidence (per week) at three specific locations A,

B, and C, in the study area. We observe that the temporal evolution of the incidence at point B

Fig 5. Approximate standard error maps associated with the smoothed Q fever incidence maps in Fig 4.

https://doi.org/10.1371/journal.pone.0263711.g005
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is constant and almost zero, whereas, at points A and C, the temporally smoothed incidence

present a unimodal behaviour, where the peak is reached around week 19 (May). This is con-

sistent with the summaries of the incidences given in Figs 1 and 2.

Simulation studies

In this Section, we present one of two simulation studies that have been carried out to examine

the predictive performance of the model under different scenarios. In both of them, we have

done spatial and temporal disaggregation, but the focus of each simulation exercise is different.

The first aims to check the performance of the ST-PCLM approach under different degrees of

spatial dependence. In the second, we will study the behaviour of the model under different

levels of temporal disaggregation (results from this second study are available in the S1 File).

Simulation study 1. Data are generated using the fine grid in Fig 3a as the spatial region

of study, and the 53 weeks in a year as the disaggregated temporal scale. The simulation is con-

ducted as follows:

1. The fine-resolution incidence vector is constructed based on the smoothed Q fever inci-

dences obtained in the previous section. We denote these smoothed incidences as inc(uk),
where uk, k = 1, . . ., K, with K = 4371 × 53 = 258163, represents the spatio-temporal coordi-

nates at fine resolution. The different levels of spatial dependence are achieved by changing

the values of the variance components that control the spatial term in the model, t2
1

and t2
2

(the variance component for the temporal term, t2
3
, will remain fixed at the optimal value

Fig 6. Weekly temporal evolution of Q fever incidence in three specific points (A, B, and C), spatially presented in

Fig 4 on the high-resolution map at week 19.

https://doi.org/10.1371/journal.pone.0263711.g006
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obtained in the fit). The values for the optimal variance components in the fit were:

t2
1
¼ 218:7, t2

2
¼ 127:7, and t2

3
¼ 92:4. Based on these results we set 3 different scenarios:

• Scenario 1: Variances for the spatial component are those in the fit.

• Scenario 2: Variances for the spatial component are 100 times larger than those in the fit.

• Scenario 3: Variance for the spatial component are 1000 times smaller than those in the fit.

2. Calculation of the aggregated expected number of cases (over municipalities and months),

μkl, k = 1, . . ., 72, l = 1, . . ., 12:

μ ¼ ðCt � CsÞincðukÞ:

3. 100 realizations of the number of cases in each municipality and month are generated

through a random drawing from a Poisson distribution with mean parameter μ.

Fig 7 shows the incidences, incg(uk), corresponding to week 19 (which is the one with the

highest number of cases) used in the three scenarios of simulation study 1. They reflect the

three different levels of smoothness obtained by increasing or decreasing the variance compo-

nents that control the spatial effect in the model.

For all realizations l = 1, . . ., 100, the predicted incidences incðlÞPg ðukÞ obtained from the

ST-PCLM approach for each scenario g, with g = 1, 2, 3, were compared to the smoothed inci-

dences incg(uk). To evaluate the performance of the model we computed, for each scenario,

the mean absolute error (MAE), the root mean squared error (RMSE):

MAEðlÞg ¼
1

K

XK

k¼1

jincðlÞPg ðukÞ � incgðukÞj;

RMSEðlÞg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK

k¼1

ðincðlÞPg ðukÞ � incgðukÞÞ
2

s

;

the correlation between the observed and predicted incidence, and the percent of grid cells

with true incidence falling within 95% prediction intervals of the model. These metrics were

averaged over 100 simulated data sets and they are summarized in Table 1.

The model performance criteria reported in Table 1 show good model performance in

terms of prediction accuracy in all scenarios. All criteria showed that slightly worse predictions

where obtained in scenario 2, this is mainly due to the fact that, for consistency, we have used

Fig 7. Plots of incidences (for one of the weeks) used in each simulated scenario.

https://doi.org/10.1371/journal.pone.0263711.g007
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the same size of B-spline basis for all scenarios (those used in the data analysis), but in the case

of rapidly changing spatial patters (as is the case in scenario 2), a larger basis would be neces-

sary to correctly capture the spatial effect, or adaptive P-splines [43] could be used; however,

this approach is beyond of the scope of this paper.

In Fig 8 we provide further insight on the 95% coverage achieved in scenario 1 (similar

plots for the other scenarios can be found in the S1 File). The lowest coverage over time (aver-

aged over all pixels) was 85%, and was found at the extremes of the time interval (correspond-

ing to the periods of lower incidence). The coverage for each pixel at the fine-grid resolution

(averaged over time), shows that areas with lower coverage (60%–80%) correspond to loca-

tions with the highest number of cases. However, the coverage for these pixels is not constant

over time, reaching almost 100% in weeks with low incidence rates. In scenario 2, the results

are similar, although the coverage is lower (especially for a small number of pixels where the

averaged coverage is between 20% and 30%), this is mainly due to the poor fitting for points

with a sudden high incidence pick. The coverage in scenario 3 (the smoothest spatial trend) is

nearly constant over the grid, ranging from 90% to 100%.

Taking into account the fact that we are predicting over more than 4000 grid cells and 53

weeks using aggregated data from 72 municipalities and 12 months, these results indicate a

good predictive performance of the model.

Table 1. Performance comparison of the ST-PCLM approach in three different types of scenarios of simulation study 1. Correlation coefficient average (avg) of the

100 replicates, average coverage % and mean absolute errors (MAE) and root mean squared error (RMSE) are also shown.

Scenarios Correlation Coverage MAE RMSE

1 0.9829 92.06% 0.00159 0.00996

2 0.9566 89.50% 0.00255 0.01619

3 0.9941 96.44% 0.00086 0.00434

https://doi.org/10.1371/journal.pone.0263711.t001

Fig 8. Percentage of cells in the grid with true incidence falling within 95% prediction in scenario 1. On the left, averaged coverage per week over all

cells in the grid, and on the right, averaged coverage per cell over all weeks.

https://doi.org/10.1371/journal.pone.0263711.g008
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Discussion

We have presented a novel model for the disaggregation of grouped data in both space and

time, based on the spatio-temporal penalized composite link model approach. This framework

was used to model Q fever counts (recorded in municipalities and months) to obtain Q fever

incidence estimates over the fine grid and weeks. The model allows to obtain detailed trends in

disease incidence, mortality risks, or any other vital rates at a desirable fine spatio-temporal

resolution. Therefore, the resulting ST-PCLM outcomes can be displayed as a dynamic map. It

also allows to include population information at a fine resolution in the estimation process.

The flexibility of the model is provided by the use of B-splines, along with a penalty on the

regression coefficients, and the link between the areas and the fine-resolution grid is achieved

through the composition matrix. Our proposal can also address situations in which population

information is recorded over small spatial units that are nested in coarser ones (for example,

from municipalities to census tracts). In that case, the centroids of the small units can be used

to represent the fine spatial scale.

Furthermore, the model allows the incorporation of covariates of interest (such as, for

example, socio-economic, demographic, and environmental factors) in the ST-PCLM formu-

lation to improve the estimation of the latent trend. They can be included at the aggregated

level or at the fine-scale level (or at both levels simultaneously). The inclusion of covariates at

the fine-scale level is immediate by adding them as columns in the design matrix X in (6) (if a

linear relationship is assumed), or adding columns in Z if a non-linear relationship is expected.

Details on how to include explanatory variables measured at the aggregated level can be found

in [20].

It is important to acknowledge the use of GLAM methods in conjunction with the SAP

algorithm, to avoid storage problems and to speed up computations. However, we are aware

that the disaggregation of grouped data into a very detailed resolution could lead to increased

computational load and storage problems. The sparsity of the marginal composition matrices

can be exploited to deal with these issues (see, for example, [44]).

We have conducted two simulation studies to evaluate the prediction accuracy of the

ST-PCLM. The first study aimed to check the performance of the model under different

degrees of spatial dependence, and the second to asses the effect of different levels of temporal

disaggregation. The overall performance of the model was good, although, as expected, it was

affected by the number of units available at the aggregated level.

In the ST-PCLM formulation, we assume the spatial unit boundaries remain fixed over

time. But it may happen that some of these boundaries change over the years. This issue is

known in the statistical literature as the spatio-temporal misalignment problem. As future

work, we plan to extend the ST-PCLM approach to handle this problem, where marginal com-

position matrices will play an important role. Furthermore, we can exploit the unique relation-

ship between the penalties associated with basis and the covariance structure they yield to

explore the use of other common spatio-temporal covariance matrices.

The implementation of our proposal and all data analyses were carried out using the statisti-

cal software R [45].
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6. Martı́nez-Beneito MA, López-Quilez A, Botella-Rocamora P. An autoregressive approach to spatio-

temporal disease mapping. Statistics in Medicine. 2008; 27(15):2874–2889. https://doi.org/10.1002/

sim.3103 PMID: 17979141

7. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using inte-

grated nested Laplace approximations. Journal of the Royal Statistical Society Series B: Statistical

Methodology. 2009; 71(2):319–392. https://doi.org/10.1111/j.1467-9868.2008.00700.x

8. Schrödle B, Held L. Spatio-temporal disease mapping using INLA. Environmetrics. 2011; 22(6):725–

734. https://doi.org/10.1002/env.1065

9. Ugarte MD, Adin A, Goicoa T, Militino AF. On fitting spatio-temporal disease mapping models using

approximate Bayesian inference. Statistical Methods in Medical Research. 2014; 23(6):507–530.

https://doi.org/10.1177/0962280214527528 PMID: 24713158

10. Bauer C, Wakefield J, Rue H, Self S, Feng Z, Wang Y. Bayesian penalized spline models for the analy-

sis of spatio-temporal count data. Statist Med. 2016; 35(11):1848–1865. https://doi.org/10.1002/sim.

6785 PMID: 26530705

11. Gelfand AE, Diggle PJ, Fuentes M, Guttorp P. Handbook of Spatial Statistics. CRC Press, Boca

Raton, Florida; 2010.

12. Eilers PCH. Ill-posed problems with counts, the composite link model and penalized likelihood. Statisti-

cal Modelling. 2007; 7(3):239–254. https://doi.org/10.1177/1471082X0700700302

13. Lee D.-J., Durban M. P-spline ANOVA-type interaction models for spatio-temporal smoothing. Statisti-

cal Modelling. 2011; 11(1):49–69. https://doi.org/10.1177/1471082X1001100104

PLOS ONE Modeling latent spatio-temporal disease incidence using penalized composite link models

PLOS ONE | https://doi.org/10.1371/journal.pone.0263711 March 10, 2022 20 / 22

https://doi.org/10.1111/j.0006-341X.2001.00949.x
http://www.ncbi.nlm.nih.gov/pubmed/11550949
https://doi.org/10.1002/env.1011
https://doi.org/10.1080/01621459.1997.10474012
https://doi.org/10.1080/01621459.1997.10474012
https://doi.org/10.1002/1097-0258(20000915/30)19:17/18%3C2555::AID-SIM587%3E3.0.CO;2-%23
https://doi.org/10.1002/1097-0258(20000915/30)19:17/18%3C2555::AID-SIM587%3E3.0.CO;2-%23
http://www.ncbi.nlm.nih.gov/pubmed/10960871
https://doi.org/10.1002/sim.3103
https://doi.org/10.1002/sim.3103
http://www.ncbi.nlm.nih.gov/pubmed/17979141
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1002/env.1065
https://doi.org/10.1177/0962280214527528
http://www.ncbi.nlm.nih.gov/pubmed/24713158
https://doi.org/10.1002/sim.6785
https://doi.org/10.1002/sim.6785
http://www.ncbi.nlm.nih.gov/pubmed/26530705
https://doi.org/10.1177/1471082X0700700302
https://doi.org/10.1177/1471082X1001100104
https://doi.org/10.1371/journal.pone.0263711


14. Lee D.-J., Durbán M. Smooth-CAR mixed models for spatial count data. Computational Statistics and

Data Analysis. 2009; 53(8):2968–2979. https://doi.org/10.1016/j.csda.2008.07.025
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