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Abstract 

Background: Chronic obstructive pulmonary disease (COPD) is a progressive, life‑threatening lung disease with 
increasing prevalence and incidence worldwide. Increasing evidence suggests that lung microbiomes might play a 
physiological role in acute exacerbations of COPD. The objective of this study was to characterize the association of 
the microbiota and exacerbation risk or airflow limitation in stable COPD patients.

Methods: The sputum microbiota from 78 COPD outpatients during periods of clinical stability was investigated 
using 16S rRNA V3‑V4 amplicon sequencing. The microbiome profiles were compared between patients with differ‑
ent risks of exacerbation, i.e., the low risk exacerbator (LRE) or high risk exacerbator (HRE) groups, and with different 
airflow limitation severity, i.e., mild to moderate (FEV1 ≥ 50; PFT I) or severe to very severe (FEV1 < 50; PFT II).

Results: The bacterial diversity (Chao1 and observed OTUs) was significantly decreased in the HRE group compared 
to that in the LRE group. The top 3 dominant phyla in sputum were Firmicutes, Actinobacteria, and Proteobacteria, 
which were similar in the HRE and LRE groups. At the genus level, compared to that in the LRE group (41.24%), the 
proportion of Streptococcus was slightly decreased in the HRE group (28.68%) (p = 0.007). However, the bacterial diver‑
sity and the proportion of dominant bacteria at the phylum and genus levels were similar between the PFT I and PFT 
II groups. Furthermore, the relative abundances of Gemella morbillorum, Prevotella histicola, and Streptococcus gordonii 
were decreased in the HRE group compared to those in the LRE group according to linear discriminant analysis effect 
size (LEfSe). Microbiome network analysis suggested altered bacterial cooperative regulation in different exacerba‑
tion phenotypes. The proportions of Proteobacteria and Neisseria were negatively correlated with the FEV1/FVC value. 
According to functional prediction of sputum bacterial communities through Phylogenetic Investigation of Commu‑
nities by Reconstruction of Unobserved States (PICRUSt) analysis, genes involved in lipopolysaccharide biosynthesis 
and energy metabolism were enriched in the HRE group.

Conclusion: The present study revealed that the sputum microbiome changed in COPD patients with different risks 
of exacerbation. Additionally, the bacterial cooperative networks were altered in the HRE patients and may contribute 
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Background
Chronic obstructive pulmonary disease (COPD) is a 
common respiratory disease characterized by airflow 
limitation, lung function impairment, and airway inflam-
mation. The incidence of COPD has increased world-
wide, and it will become the third most prevalent cause 
of death by 2030 [1]. The Epidemiology and Impact of 
COPD (EPIC) Asia survey concluded that there was a 
high prevalence of COPD and a substantial socioeco-
nomic burden of the disease in nine Asia–Pacific regions 
[2]. Airway obstruction, which is confirmed by spirom-
etry, leads to air trapping and shortness of breath in 
response to physical exertion, and the poorly irreversible 
airway obstruction that characterizes COPD is progres-
sive. In 2007, the grading of COPD severity proposed by 
the Global Initiative for Chronic Obstructive Lung Dis-
ease (GOLD) was based on forced expiratory volume in 
1 s (FEV1) only. This classification could not adequately 
predict clinical outcomes [3, 4]. Exacerbations of COPD 
are important events in the disease course, and in par-
ticular, mortality in the year after an exacerbation requir-
ing hospital admission is estimated to be as high as 21% 
[5]. The Evaluation of COPD Longitudinally to Identify 
Predictive Surrogate End-points (ECLIPSE) study sug-
gested that individuals with two or more exacerbations 
in a given year represent a distinct frequent exacerbation 
phenotype [6]. However, exacerbations can occur across 
all stages of airflow limitation measured by FEV1, which 
emphasizes the need to identify other predictors of high 
exacerbation risk [6]. The GOLD 2011 revision presented 
an ABCD classification that combined respiratory symp-
toms, risks of exacerbations, and airflow limitations as 
indicated by FEV1 [7]. In 2017, The Global Initiative for 
Chronic Obstructive Lung Disease (GOLD) guide to 
COPD diagnosis and management used a threshold of 
two or more acute exacerbations in the previous year or 
at least one hospital admission related to an acute exacer-
bation to identify individuals at high risk of future events 
(groups C and D) and separated spirometric grades from 
the “ABCD” groupings [8].

Recent data have suggested that COPD is a complex 
and heterogeneous disease resulting from a number of 
different pathological processes, including infections 
[9]. Bacterial pathogens are commonly identified in the 
respiratory tracts of patients both in the stable state and 
during acute exacerbations, with significant changes in 

the prevalence of airway bacteria occurring during acute 
exacerbations of COPD [10–12]. An increased bacterial 
load has been associated with a decline in lung func-
tion [13] and increased rates of exacerbations in COPD 
patients [14], suggesting an important role of bacteria in 
the pathogenesis of COPD. Advances in next-generation 
sequencing platforms for 16S rRNA gene sequencing 
have provided opportunities to study the lung microbi-
omes in COPD patients, and the results have suggested 
that changes in the lung microbiota may be associated 
with enhanced airway inflammation and disease pro-
gression [15]. In patients with COPD, two large studies 
(AERIS study and COPDMAP study) have recently inves-
tigated the value of respiratory microbiome research to 
understand the association of microbiome changes and 
COPD exacerbations [16, 17]. Interestingly, both studies 
also identified alteration in the taxonomic composition of 
the lung microbiome related to the frequency of exacer-
bation. Pragman et al. reported that even during periods 
of clinical stability, the frequent exacerbation phenotype 
is associated with decreased alpha diversity, beta diver-
sity clustering, and changes in taxonomic abundance 
[18].

Most patients with COPD are stable outpatients, and 
an important clinical challenge is to provide COPD out-
patients appropriate education and prescribe appropriate 
therapy to prevent exacerbations. The current param-
eters for evaluating the severity of COPD patients are 
airflow limitation, symptoms, and exacerbation risks. 
Therefore, we undertook the present study to determine 
if the lung microbiome is associated with COPD clinical 
assessment parameters. Our hypothesis is that the lung 
microbiota alteration is important factor of exacerbation 
risk or airflow limitation in COPD outpatients during 
periods of clinical stability. We hope that by understand-
ing the lung microbiome, a potentially modifiable clinical 
factor, further targets for improved COPD therapies may 
be elucidated.

Methods
Study subjects and study design
Seventy-eight subjects with COPD were enrolled in 
this study. The study was approved by the Institutional 
Review Board of the Tri-Service General Hospital Tai-
wan, and all subjects were enrolled from April 2015 to 
April 2016 and provided written informed consent. The 

to disease exacerbation. Our results provide evidence that sputum microbiome community dysbiosis is associated 
with different COPD phenotypes, and we hope that by understanding the lung microbiome, a potentially modifiable 
clinical factor, further targets for improved COPD therapies during the clinically stable state may be elucidated.
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patients were included if they were aged ≧ 40 years and 
had been diagnosed with COPD. We categorized each 
patient in our cohort according to GOLD 2017 clas-
sifications. Patients had no exacerbations or infections 
for at least 30 days prior to sample collection, and their 
sociodemographic and clinical data were recorded. For 
full inclusion and exclusion criteria see Additional file 1: 
Table  S1. Symptoms were quantified with the modified 
Medical Research Council (mMRC) scale. The sever-
ity of exacerbations was classified as mild in the case of 
self-management with short-acting bronchodilators only; 
moderate if the patient was not hospitalized but received 
a prescription of systemic corticosteroids, antibiotics or 
both; and severe if the patient was hospitalized. The 78 
COPD patients were classified by exacerbation risk as 
low-risk exacerbators (LREs, < 2 moderate exacerbations 
and no severe exacerbations per year, n = 60) and high-
risk exacerbators (HREs, ≥ 2 moderate or severe exacer-
bations or ≥ 1 hospitalizations for COPD exacerbation, 
n = 18). Furthermore, according to pulmonary function 
testing, the 78 COPD patients were grouped as mild-to-
moderate airflow limitation with a value of forced expira-
tory volume in the post-bronchodilator (post-BD) second 
FEV1% predicted ≥ 50 (PFT I, n = 43) and as severe-to-
very severe airflow limitation with a value of post-BD 
FEV1% predicted < 50 (PFT II, n = 35).

Sputum sampling and processing
Sputum was collected from patients by induction dur-
ing stable visits after pulmonary function testing. All 
participants reported that they had no special dietary 
habits, had no known periodontal disease, had not taken 
systemic antibiotics in 4  weeks, and had not used anti-
septic mouthwash before sample collection. Sputum was 
induced according  to a  previous protocol, with  slight 
modifications [19]. For detailed methods for sputum 
sampling in this study, see Additional file 1.

DNA extraction
Total bacterial genomic DNA was isolated from the spu-
tum samples using the QIAamp DNA Microbiome Kit 
(Qiagen, USA). Briefly, 250 µl of AHL buffer was added 
to 500 µl of sample for host cell lysis, followed by diges-
tion of the host nucleic acids with 1.25 μl of benzonase 
and 10 μl of proteinase K. The host DNA was separated 
by centrifugation, after which 100  μl of ATL buffer was 
added to the bacterial cells in a pathogen lysis tube L 
and the sample was vortexed using a TissueLyser LT for 
10 min at 30 Hz. The bacterial DNA was washed, eluted 
using nuclease-free water, and stored at − 80 °C. The con-
centrations and qualities of the purified DNA were deter-
mined with a Qubit high-sensitivity dsDNA assay (Life 
Technologies).

Sputum microbiota profiling by 16S rRNA gene sequencing
A 16S rRNA gene amplicon library targeting the 16S 
rRNA V3-V4 region was constructed as in a previ-
ous report [20]. Illumina adaptor overhang nucleotide 
sequences were added to the gene-specific forward and 
reverse primers. Two-round PCRs were performed, and 
the final amplicon libraries were approximately 630  bp 
in length. The multiplex amplified libraries were pooled 
equally and sequenced on a MiSeq system with 2 × 300 
paired-end v3 sequencing reagents (Illumina, USA). For 
detailed methods for 16S rRNA gene sequencing, see 
Additional file 1.

Bioinformatics analysis
The sequencing reads were processed, and the taxo-
nomic classification was performed using FLASH (ver-
sion 1.2.11) [21]. Low-quality reads were filtered [22], and 
only sequence tags with lengths > 400  bp were retained 
for subsequent analysis. The operational taxonomic units 
(OTUs) were clustered at 97% sequence similarity using 
USEARCH (version 9.2.64) [23] against the Greengenes 
16S rRNA gene database (13_8 release), and final taxo-
nomic assignments were performed using the RDP clas-
sifier [24]. Furthermore, our results were validated by 
another bioinformatic pipeline using the DADA2 pack-
age [25] for modelling and amplicon error correction, 
which was followed by quality filtering, dereplication, 
denoising, merging and chimaera removal. A naïve Bayes 
classifier [24] was trained using the most recent avail-
able version of the Silva (version 132) sequences for taxo-
nomic assignments. A bivariate correlation analysis of 
the 15 most abundant genera using Spearman’s correla-
tion coefficient was performed in R. We then constructed 
a co-occurrence network of the predominant sputum 
microbiota with different COPD disease severities. The 
network was generated using Cytoscape (version 3.7.0) 
and visualized using a circular layout [26]. Potential 
biomarkers were determined using linear discriminate 
analysis effect size (LEfSe) [27]. Microbial functionality 
profiles were predicted using Phylogenetic Investigation 
of Communities by Reconstruction of Unobserved States 
(PICRUSt) to generate the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways [28]. For detailed meth-
ods for bioinformatics analysis, see Additional file 1.

Statistical analyses
Box and whiskers plots (10–90 percentile) of alpha diver-
sity indices and taxonomic abundances comparing two 
groups were plotted using GraphPad Prism 6 (Graph-
Pad Software, Inc., La Jolla, CA, USA). Principal compo-
nent analysis plots for LRE vs HRE, PFT I vs PFT II, and 
smoker vs non-smoker were prepared using unweighted 
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UniFrac distance. The Mann–Whitney Wilcoxon test fol-
lowed by Bonferroni correction was used to test for sig-
nificant differences in alpha diversity or taxonomic levels 
between groups. Bonferroni-adjusted p values were cal-
culated as an alpha error of 0.05 divided by the numbers 
of parameters in each table. Spearman’s correlation was 
used to determine the association of the dominant phyla 
or genera with FEV1/FVC, and p values were adjusted by 
using Bonferroni correction for multiple tests. Statistical 
analyses were performed by using R or SPSS (SPSS Inc., 
Chicago, IL, USA).

Results
COPD patient demographics and sputum microbiota 
profiling
To characterize the lung microbiome constituents that 
differentiate the low risk vs high risk exacerbation groups 
or mild-to-moderate vs severe-to-very severe airway 
limitation groups under stable COPD conditions, spu-
tum specimens were collected from 78 COPD patients 
during stable visits. The characteristics of the patients 
are summarized in Table  1, and the detailed informa-
tion regarding inclusion and exclusion criteria are avail-
able in Additional file 1: Table S1. The patients’ age range 
was 40–93  years, and none of the patients had been 
on antimicrobial therapy for the last 4  weeks prior to 

sample collection. Ages and smoking histories were simi-
lar in COPD patients at different stages. Among these 78 
patients, 31 patients (39.7%) with COPD received a long-
acting bronchodilator (LAB) and 45 patients (57.6%) 
received both long-acting β2 agonists (LABA) and 
inhaled corticosteroid (ICS) treatment. The 78 COPD 
patients were divided into two subgroups, including LRE 
(n = 60) and HRE (n = 18). Furthermore, the 78 COPD 
patients were grouped as mild-to-moderate airflow 
limitation with a value of FEV1% predicted ≥ 50 (PFT I, 
n = 43) and as severe-to-very severe airflow limitation 
with a value of FEV1% predicted < 50 (PFT II, n = 35).

DNA isolated from the sputum specimens was sub-
jected to two-round PCR amplification and library con-
struction of the 16S V3-V4 region and was sequenced 
on an Illumina MiSeq system. The average number of 
raw reads was 228,741 for all COPD patients (Addi-
tional file  1: Table  S2). After selecting the qualified 
reads, the average number of paired quality-filtered 
reads was 133,386 for all COPD patients (Additional 
file  1: Table  S2). The rarefaction curve showed that the 
sequencing depth per sample was enough to represent 
most of the community diversity and reached a saturated 
plateau phase (data not shown).

We first compared the bacterial compositions and 
diversity of the sputum microbiomes in different COPD 

Table 1 Clinical characteristics of the study population (N = 78) in this study

LRE low risk exacerbator, HRE high risk exacerbator, PFT pulmonary function test, PFT I FEV1 ≥ 50, PFT II FEV1 < 50, FEV1 forced expiratory volume in the first second, 
FVC forced vital capacity, LAB long-acting bronchodilator, LABA long-acting β2 agonists, ICS inhaled corticosteroid

Characteristics All Low risk exacerbator (LRE) High risk exacerbator 
(HRE)

PFT I PFT II

Number of patients 78 60 18 43 35

Age (years)

 Range 40–93 40–91 52–93 40–90 52–93

 Mean ± s.e.m 74.17 ± 1.446 73.63 ± 1.673 75.94 ± 2.889 72.37 ± 2.020 76.37 ± 2.025

Gender

 Male 68 (87.2%) 50 (83.3%) 18 (100%) 36 (83.7%) 32 (91.4%)

 Female 10 (12.8%) 10 (16.7%) 0 (0%) 7 (16.3%) 3 (8.6%)

FEV1 (% predicted)

 Range 24.6–97.9 30.5–97.9 24.6–73.8 50.0–97.9 24.6–49.6

 Mean ± s.e.m 53.24 ± 1.682 55.73 ± 1.902 44.95 ± 2.901 63.62 ± 1.702 40.49 ± 1.097

FEV1/FVC

 Range 37.31–69.54 45.33–69.54 37.31–66.86 52.30–69.54 37.31–69.18

 Mean ± s.e.m 59.59 ± 0.767 60.98 ± 0.783 54.95 ± 1.673 62.45 ± 0.738 56.07 ± 1.218

Current smoking

 No 17 (21.8%) 13 (21.7%) 4 (22.2%) 11 (25.6%) 6 (17.1%)

 Yes 61 (78.2%) 47 (78.3%) 14 (77.8%) 32 (74.4%) 29 (82.9%)

Medication

 LAB 31 (39.7%) 28 (46.7%) 3 (16.7%) 28 (65.1%) 3 (8.6%)

 LABA + ICS 45 (57.7%) 30 (50.0%) 15 (83.3%) 13 (30.2%) 32 (91.4%)

 No 2 (2.6%) 2 (3.3%) 0 (0%) 2 (4.7%) 0 (0%)
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phenotypic subgroups. Regardless of exacerbation phe-
notype, the unweighted principal component analy-
sis (PCA) plot revealed a similar sputum microbiota 
between the LRE and HRE groups (Fig. 1a). Species rich-
ness according to Chao1 index (p = 0.002) and observed 
OTUs (p = 0.002) was lower in the HRE group, indicating 
that the sputum microbiota in these patients was charac-
terized by a lower diversity than that in the LRE patients 
(Fig.  1b). The species evenness according to Shannon 
index was similar in the LRE and HRE groups (p = 0.652) 
(Fig.  1b). We then analysed the microbiome diversity 
in patients with different airway limitation severity. 
The unweighted PCA plot (Fig.  1c) and alpha diversity 
according to Chao1, observed OTUs, and Shannon indi-
ces (Fig.  1d) were similar between the PFT I vs PFT II 
groups. The bacterial compositions and diversity of the 
sputum microbiomes in smokers and non-smokers were 
similar (Additional file  1: Figure S1). These results indi-
cated that the sputum microbiome was altered and that 

these compositional changes may have been associated 
with exacerbation risk.

Most abundant bacterial taxa changes in stable COPD 
patients with high risk of exacerbation
Figure  2 shows the dominant taxa at the phylum and 
genus levels. The sputum microbiome dataset from our 
cohort revealed a total of five phyla, which accounted for 
99% of all the bacteria (Fig. 2a; Table 2). The top five dom-
inant phyla were Firmicutes, Actinobacteria, Proteobacte-
ria, Bacteroidetes, and Fusobacteria. Firmicutes was the 
most dominant phylum in stable COPD patients, with a 
relative abundance of 43.5–54.6%, with Actinobacteria 
being the second most dominant phylum, with a relative 
abundance of 16.6–16.7% (Table  2). The proportions of 
the dominant phyla were similar in the LRE vs HRE or 
PFT I vs PFT II groups (Fig. 2b, c; Table 2). The relative 
abundance of Proteobacteria was slightly increased but 

Fig. 1 Analysis of the sputum microbiome and diversity in stable COPD. The unweighted PCA plot (a) and Chao1 index, observed OTUs, and 
Shannon index (b) were calculated in the LRE vs HRE groups. The unweighted PCA plot (c) and the diversity index (d) were presented in the PFT I vs 
PFT II groups. The box and whiskers plots show the median, 10th and 90th percentile in each group. Bonferroni‑adjusted p‑values < 0.05/6 = 0.0083 
indicate significance. LRE low‑risk exacerbator, HRE high‑risk exacerbator
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not significantly different in the HRE group compared 
with that in the LRE group (p = 0.031) (Fig. 2b).

The top 10 dominant genera in sputum were Strep-
tococcus, Rothia, Haemophilus, Neisseria, Veillonella, 
Granulicatella, Porphyromonas, Leptotrichia, Actino-
myces, and Capnocytophaga (Fig.  2d; Table  2). Among 
the top 10 genera, the relative abundance of Streptococ-
cus was slightly decreased but not significantly different 
in the HRE group (28.68%) compared to that in the LRE 
group (41.24%) (p = 0.007) (Fig.  2e; Table  2). The rela-
tive abundance of Streptococcus was similar between the 
PFT I (39.94%) and PFT II groups (34.83%) (p = 0.226) 
(Fig.  2f ). We also classified the participants into older-
aged adults (60  years and above, n = 67). Among the 

older-aged COPD patients, the proportions of the domi-
nant phyla and genera were similar in the LRE (n = 51) vs 
HRE groups (n = 16) (Additional file 1: Table S3). A trend 
of slightly increased Proteobacteria and decreased Strep-
tococcus abundances was also observed in older-aged 
COPD patients with different risks of exacerbation. How-
ever, the taxonomic distribution was similar in smoker 
(n = 61) vs non-smoker (n = 17) COPD patients (Addi-
tional file 1: Table S4).

Differential taxa in the microbiome of stable COPD patients
A LEfSe analysis was performed to identify the differ-
ences in taxonomic distributions associated with differ-
ent COPD phenotypic subgroups. The cladogram plotted 

Fig. 2 Relative abundance of the most prevalent bacteria at the phylum and genus levels in stable COPD patients. The bacterial taxonomic 
distributions are shown at the phylum and genus levels in the sputum microbiomes of COPD patients. The stacked bar represents differentially 
expressed bacteria at the phylum level (a) in different COPD phenotypic subgroups. The box and whisker plots (10–90 percentile) show the 
relative abundance of Proteobacteria in the LRE vs HRE groups (b) or in the PFT I and PFT II groups (c). The stacked bar represents differentially 
expressed bacteria at the genus level (d) in the different COPD phenotypic subgroups. The box and whisker plots show the relative abundance of 
Streptococcus in the LRE vs HRE groups (e) or in the PFT I and PFT II groups (f). The p value was analyzed using the Mann–Whitney Wilcoxon test. 
Bonferroni‑adjusted p‑values < 0.05/15 (5 phyla and 10 genera) = 0.0033 indicate significance. LRE low‑risk exacerbator, HRE high‑risk exacerbator
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based on LEfSe analysis shows five taxonomic levels, with 
the phyla levels and genera levels plotted in the inner-
most ring and outermost ring, respectively (Additional 
file 1: Figure S2). The amount of Pseudomonadales, which 
is an order of the phylum Proteobacteria, was enriched 
and had the highest linear discriminant analysis (LDA) 
score in HRE subjects. Otherwise, the amounts of Bacilli 
and Lactobacillales, which is a subclass of phylum Fir-
micutes, were enriched with in LRE subjects (Additional 
file 1: Figure S2).

To identify the differential bacterial taxa at the species 
level, we performed LEfSe analysis based on the known 
OTUs at the species level. Many bacteria at the species 
level were enriched in different subgroups of COPD; 
therefore, we selected a LDA score higher than 3 or lower 
than -3 to represent the most significantly enriched spe-
cies in each group (Fig.  3). The relative abundances of 
Gemella morbillorum (G. morbillorum), Prevotella his-
ticola (P. histicola), and Streptococcus gordonii (S. gor-
donii) were significantly decreased in HRE compared to 
LRE subjects (Fig.  3a). Furthermore, the relative abun-
dances of Gemella morbillorum (G. morbillorum), Veil-
lonella atypica (V. atypica), and Corynebacterium durum 
(C. durum) were significantly decreased in patients 
with severe-to-very severe airflow limitation compared 
with patients with mild-to-moderate airflow limitation 
(Fig. 3b). In our cohort, the percentages of patients who 
were treated with a long-acting bronchodilator (LAB) 

or long-acting β2 agonists (LABA) and an inhaled cor-
ticosteroid (ICS) were approximately 39.7% and 57.7%, 
respectively. We also compared the microbiomes of 
COPD patients who received different medications. The 
Chao1 index and observed OTUs were similar between 
these two medications (Additional file 1: Figure S3). The 
proportions of Fretibacterium fastidiosum and Oribac-
terium sinus were enriched in LAB and LABA plus ICS, 
respectively (Fig. 3c).

Correlation between lung function and the microbiome
To explore the potential bacterial co-existence and co-
exclusion relationships, we performed an interaction net-
work analysis. We first selected the top 15 most abundant 
genera in each group, and the specific network was built 
and estimated based on the relative abundances of bac-
terial genera using SparCC correlation coefficients. Each 
node represents a genus of bacteria, and the red and blue 
lines represent positive and negative correlations, respec-
tively. All plotted nodes of the networks with significant 
coefficients are shown in Fig. 4. In total, 12 and 9 nodes 
were constructed in the LRE (Fig.  4a) and HRE groups 
(Fig.  4b), respectively. In HRE subjects, Moraxella was 
included in a closed negatively correlated network con-
taining Streptococcus, Haemophilus, Moraxella, Capno-
cytophaga, Lactobacillus, and Porphyromonas. (Fig.  4b). 
Furthermore, Actinomyces showed a negative correlation 
with Moraxella in HRE subjects (Fig. 4b). The heat map 

Table 2 Taxonomic identification at the phylum and genus levels in COPD

Data are presented as median (25–75 percentile)

LRE low risk exacerbator, HRE high risk exacerbator, PFT pulmonary function test, PFT I FEV1 ≥ 50, PFT II FEV1 < 50.0

The p value is analyzed using Mann Whitney Wilcoxon test. Bonferroni-adjusted p-values < 0.05/15 (5 phylum and 10 genus) = 0.0033 indicate significance

Phylum LRE HRE p value PFT I PFT II p value

Patients 60 18 43 35

Firmicutes 54.59 (41.54–73.32) 43.50 (31.63–60.68) 0.075 48.32 (40–66.09) 57.67 (38.70–69.2) 0.605

Actinobacteria 16.63 (8.48–28.24) 16.71 (11.58–22.79) 0.652 17.08 (8.62–27.99) 15.19 (10.11–24.00) 0.591

Proteobacteria 10.87 (1.69–22.06) 22.28 (8.70–37.70) 0.031 12.66 (1.90–21.82) 11.25 (5.96–24.55) 0.289

Bacteroidetes 3.26 (0.87–6.47) 3.98 (0.27–12.59) 0.610 3.51 (1.22–7.41) 3.18 (0.58–7.55) 0.706

Fusobacteria 2.00 (0.88–4.57) 2.95 (0.57–4.73) 0.585 2.36 (1.04–4.95) 1.65 (0.84–3.44) 0.083

Genera

 Streptococcus 41.24 (28.72–60.15) 28.68 (22.91–35.54) 0.007 39.94 (28.61–60.65) 34.83 (25.70–49.55) 0.226

 Rothia 10.83 (4.31–18.67) 10.20 (4.82–21.14) 0.859 10.86 (4.50–19.53) 10.51 (3.96–16.65) 0.543

 Neisseria 3.07 (0.34–10.51) 3.42 (0.82–11.06) 0.400 3.04 (0.39–9.95) 4.21 (0.31–13.13) 0.393

 Haemophilus 2.72 (0.19–6.43) 1.34 (0.22–11.76) 0.962 3.21 (0.23–6.41) 2.38 (0.16–11.69) 0.868

 Granulicatella 2.54 (1.57–3.93) 2.95 (1.71–5.54) 0.343 2.54 (1.33–3.64) 2.86 (1.77–4.39) 0.317

 Veillonella 1.45 (0.73–3.19) 2.25 (0.69–5.25) 0.226 1.73 (0.71–4.11) 1.64 (0.89–3.48) 0.956

 Leptotrichia 1.30 (0.42–2.67) 1.14 (0.32–3.62) 0.840 1.67 (0.49–3.51) 0.96 (0.36–2.60) 0.353

 Porphyromonas 0.96 (0.03–3.29) 0.94 (0.04–4.50) 0.677 1.03 (0.05–3.39) 0.78 (0.02–3.02) 0.790

 Actinomyces 0.55 (0.19–1.35) 0.92 (0.34–1.48) 0.215 0.82 (0.19–1.43) 0.50 (0.25–1.26) 0.802

 Capnocytophaga 0.37 (0.06–1.58) 0.61 (0.08–1.88) 0.585 0.46 (0.09–1.73) 0.42 (0.04–1.19) 0.457
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of Spearman correlation coefficients between the top 15 
genera is shown in the LRE and HRE groups (Fig. 4c, d).

To explore the potential relationship between differ-
ent bacterial taxa and lung function in COPD patients, 
we performed Spearman’s correlation analyses using the 
16S rRNA gene sequence dataset. Among the most abun-
dant phyla and genera, the relative abundances of Proteo-
bacteria and Neisseria were negatively correlated with 
FEV1/FVC (Fig. 5a, b). In a comparison of the Chao1 and 
Shannon indices with the FEV1/FVC value, there was no 
significant association with bacterial diversity and lung 
function (Fig. 5c).

Functional analysis of the microbiome in stable COPD 
patients by PICRUSt analysis
To explore the predicted functional capacity of the 
microbiome involved in COPD, we performed a PICRUSt 
analysis to predict the sputum microbiome functions in 
stable COPD patients. The results predicted a number of 
KEGG pathways that were slightly enriched or depleted 

associated with COPD exacerbation risk. The levels of 
metabolism, such as glycan biosynthesis and metabolism, 
lipopolysaccharide biosynthesis, sulphur metabolism, 
and biotin metabolism, were positively associated with 
high exacerbation risk of COPD, as their abundances 
were higher in the HRE group than in the LRE group 
(Fig. 6a, b). In contrast, parameters related to the phos-
photransferase system, fructose and mannose metabo-
lism and galactose metabolism were increased in the 
LRE group (Fig. 6c, d). These results may suggest that an 
altered sputum microbiome affect the nutrient availabil-
ity, sugar metabolism, or growth conditions.

Discussion
In 2017, the GOLD announced another major revision of 
the COPD guidelines. The recommendations for medica-
tions used in each patient group were also updated [8]. In 
this study, we extensively investigated the sputum micro-
biota in stable COPD patients with a high-throughput 
16S rRNA gene sequencing analysis. Overall, the micro-
biome diversity decreased in HRE subjects, and the com-
position of the sputum microbiome changed between the 
two different exacerbation risk subgroups. We further 
explored the significant taxa and the predicted functional 
analyses associated with different COPD phenotypic sub-
groups. Collectively, our findings suggest notable airway 
microbiome changes in stable COPD patients and high-
light its cooperative network and functional capacity.

Our results demonstrated that the bacterial richness 
was reduced in HRE COPD patients with even during 
periods of clinical stability. Mayhew et  al. reported that 
the bacterial diversity index was reduced in very severe 
COPD patients compared with moderate COPD patients 
in sputum samples obtained in both stable and exacer-
bated states [16]. Diao et al. also reported that the OTU 
richness in throat swab samples from COPD patients 
was lower than that observed in samples obtained from 
healthy controls [29]. These results are consistent with 
our findings in this study. In contrast, Pragman et  al. 
reported an increase in the microbial diversity index with 
the development of COPD in bronchoalveolar lavage 
fluid (BALF) samples in a cohort that included 14 moder-
ate and 8 severe COPD patients [30]. These discrepancies 
may be due to the different geographical areas and the 
different sampling methods used.

In our study, the most dominant phylum in sputum 
samples was Firmicutes (approximately 43.5–54.6%), 
which was consistent with other reports that analysed 
sputum samples and identified the proportion of Fir-
micutes as approximately 40–50% [16, 31]. Our finding 
contrasts with the results of Garcia-Nunez et  al. who 
also analysed sputum samples during stable COPD and 
observed that Proteobacteria (44%) and Firmicutes (16%) 

Fig. 3 Linear discriminant analysis (LDA) effect size (LEfSe) revealed 
differentially abundant bacterial taxa in stable COPD. The plots from 
LEfSe analysis indicated differentially enriched bacteria in the LRE 
vs HRE groups (a), PFT I vs PFT II groups (b), and different medical 
treatments (c). LRE low‑risk exacerbator, HRE high‑risk exacerbator
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were the first and second most abundant phyla, respec-
tively, in 17 moderate to advanced COPD patients [32]. 
The most dominant phylum in bronchial wash samples 
from stable COPD patients was Firmicutes [33]. Other-
wise, Bacteroides (approximately 40–60%) was the most 
abundant phylum in lung and throat swab samples [29, 
34]. There are differences in the microbiome at different 
locations within the respiratory tract [35]. The micro-
biota of the induced sputum might represent the upper 

airway microbiota, which would explain the difference 
in the microbiome compositions from the BALF or 
lung samples. Pragman et al. profiled the microbiome in 
oral, bronchial, and lung tissue samples from individual 
patients and observed that oral bacteria are true mem-
bers of the early-stage COPD lung microbiota and exhibit 
ecological drift [36].

In the present study, the top 7 dominant genera present 
in COPD patient sputum samples were Streptococcus, 

Fig. 4 Sputum microbiome networks in COPD patients in different phenotypic subgroups. The networks of the top 15 genera were built using 
Spearman correlation coefficients in COPD patients. In total, 12 and 9 nodes were constructed in the LRE (a) and HRE groups (b), respectively. The 
nodes represent bacterial genera. The red and blue lines represent positive and negative correlations, respectively. Heatmap of the Spearman 
correlation matrix from the LRE (c) or HRE groups (d) with the top 15 genera. In the figure, the larger the circle, the higher is the correlation 
coefficient. Red dots represent positive correlations, and blue dots represent negative correlations. The correlation values ranged from − 1.00 (blue) 
to 1.00 (red). LRE low‑risk exacerbator, HRE high‑risk exacerbator
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Rothia, Haemophilus, Neisseria, Veillonella, Granulica-
tella, and Porphyromonas, genera to which some patho-
genic bacteria belong. Streptococcus was the most 
common genus in the oral, bronchial, and lung tissue 
samples in COPD patients [36]. Of the 5 dominant gen-
era identified from sputum samples by Mayhew et al. our 
study identified 3 common taxa (Streptococcus, Haemo-
philus, and Veillonella) among our 7 most common taxa. 
In the report by Tangedal et al. the 7 most dominant gen-
era in induced sputum samples were identical to those 
observed in our results [37]. Furthermore, the relative 
abundance of Streptococcus was decreased in the sta-
ble HRE COPD patients compared with that in the LRE 
patients in our cohort. In contrast, the relative abundance 
of Streptococcus was not altered between the groups with 
different lung function levels. Streptococcus pneumoniae 
infection is reported to be important pathological bacte-
ria in COPD in association with disease exacerbation or 

airway limitation [38]. However, the 16S rRNA sequenc-
ing platform was unable to discriminate between the 
various species in the genus of Streptococcus because the 
sequences of 16S rRNA gene in this genus are relatively 
similar.

Some reports have indicated that bacterial diversity 
was positively associated with lung function [30, 32], 
whereas other researchers observed that the bacterial 
diversity was not correlated with lung function [29]. In 
our study, the Chao1 diversity index and the observed 
OTUs were not associated with lung function (FEV1/
FVC) in the 78 stable COPD patients. Another interest-
ing finding from our study was that the proportions of 
Proteobacteria and Neisseria were negatively correlated 
with FEV1/FVC in stable COPD patients. The propor-
tion of Neisseria was slightly increased in the HRE group 
(3.42%) compared to that in the LRE group (3.07%) in our 
cohort. Neisseria are gram-negative bacteria that belong 

Fig. 5 Correlation between the sputum microbiome and lung function in stable COPD. a Spearman correlations between the relative abundances 
of bacteria and the values of post‑BD FEV1/FVC were calculated and plotted. b Proteobacteria and Neisseria show negative correlations with 
the values of post‑BD FEV1/FVC. c The association of the Chao1 and Shannon indices and the values of post‑BD FEV1/FVC. Bonferroni‑adjusted 
p‑values < 0.05/27 (5 phyla, 20 genera, 2 diversity indices) = 0.0019 indicate significance
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to the family Neisseriaceae and are present in mucosal 
surfaces in the upper respiratory and genitourinary tracts 
[39]. Commensal Neisseria can be opportunistic patho-
gens in humans, and some clinical cases of infections 
with Neisseria species such as N. bacilliformis in sputum 
samples from patients with bronchitis and with N. flave-
scens, N. lactamase, and N. mucosa in lung samples from 
patients with pneumonia have been reported [40, 41].

The proportions of Gemella morbillorum (G. morbil-
lorum, LDA score in LRE = 3.64, p value = 0.033) and 
Prevotella histicola (P. histicola, LDA score in LRE = 3.54, 
p value = 0.016) were significantly decreased in HRE sub-
jects in the present study. G. morbillorum and P. histicola 
are some of the normal flora of the mucous membranes, 
predominantly of the oropharynx, but can also be found 
in the upper respiratory and other sites. P. histicola may 
suppress the production of inflammatory cytokines, 
and P. histicola suppresses disease in the animal model 
of multiple sclerosis or arthritis [42, 43]. These results 
may suggest that the altered normal flora distribution 
may affect the colonization of pathogenic bacteria and 
enhanced inflammation, leading to airway obstruction 
and increased exacerbation risk.

Functional prediction showed that lipopolysaccha-
rides (LPS) biosynthesis, which produces the main cell 
wall components of gram-negative bacteria, was slightly 
enriched in HRE subjects. LPS challenging may lead to 
air flow limitation, decreases in the level of FEV1 and 
enhanced pulmonary inflammation, suggesting that 
this occurs during exacerbations in COPD patients [44, 
45]. Also, sulphur and biotin metabolism were enriched 
in HRE subjects [46, 47]. These pathways are essen-
tial for the survival of bacteria, including some patho-
gens. Furthermore, the levels of phosphotransferase 
system-related parameters, such as fructose and man-
nose metabolism and galactose metabolism were sig-
nificantly reduced in COPD patients compared to the 
controls. The phosphotransferase system plays a pivotal 
role in the uptake of multiple sugars in bacteria. Glucose 

concentration in the airway might contribute to bacte-
rial infections, and impaired glucose metabolism was 
also observed in COPD [48, 49]. These results may sug-
gest that the normal flora balance is disrupted and that 
the energy and metabolic machinery of normal and/or 
pathogenic bacteria are altered.

An important limitation of our study was that no 
follow-up was conducted. Further studies with longi-
tudinal sampling from each individual at both stable 
and exacerbation time points will be important for 
monitoring the microbiome dynamics, clinical pheno-
types and treatment responses. Another limitation of 
our study was that the patients were enrolled at a sin-
gle site; therefore, exploring other variables between 
different areas was not possible. A third limitation was 
that fewer female subjects were enrolled. We observed 
that among the PFT II group (n = 35), only about 
40% of patients (n = 14) had severe airflow limitation 
(FEV1 < 50) and frequent exacerbations, although this 
finding could be due to the small sample size of this 
subgroup in our cohort during the one-year study. 
Interestingly, it was previously reported that “high-risk” 
COPD patients (GOLD groups C and D) are highly het-
erogeneous populations [50]. Moreover, environmental 
and occupational exposures may affect the exacerbation 
of COPD patients.

Conclusions
In conclusion, the present study revealed that the sputum 
microbiome changed in different exacerbation risk sub-
groups of COPD. Additionally, the bacterial cooperative 
networks were different in the different COPD pheno-
typic subgroups. An altered lung microbiome can have 
an important effect on the host immunity and initiates 
disease pathogenesis, promotes chronic inflammation, 
or merely serves as a marker of injury and inflammation. 
Understanding the mechanisms driving bacterial compo-
sitions and diseases will help us prevent or treat COPD.

(See figure on next page.)
Fig. 6 Differentially enriched functions in COPD patients by PICRUSt analysis. Comparison of the relative abundance of the PICRUSt‑generated 
functional profile of the sputum microbiome in COPD patients. Upregulated KEGG pathways associated with HRE subjects are plotted as a heatmap 
(a) and bar graph (b). Bonferroni‑adjusted p‑values < 0.05/7 = 0.0071 indicate significance. Upregulated KEGG pathways associated with LRE 
subjects are plotted as a heatmap (c) and bar graph (d). Bonferroni‑adjusted p‑values < 0.05/11 = 0.0045 indicate significance. GOLD A, B, C, and D 
were identified via the GOLD 2017 classification. LRE low‑risk exacerbator, HRE high‑risk exacerbator
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