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As the global population ages, the prevalence of Alzheimer’s disease (AD), the most

common form of dementia, is also increasing. At present, there are no widely recognized

drugs able to ameliorate the cognitive dysfunction caused by AD. The failure of several

promising clinical trials in recent years has highlighted the urgent need for novel strategies

to both prevent and treat AD. Notably, a growing body of literature supports the

efficacy of acupuncture for AD. In this review, we summarize the previously reported

mechanisms of acupuncture’s beneficial effects in AD, including the ability of acupuncture

to modulate Aβ metabolism, tau phosphorylation, neurotransmitters, neurogenesis,

synapse and neuron function, autophagy, neuronal apoptosis, neuroinflammation,

cerebral glucose metabolism, and brain responses. Taken together, these findings

suggest that acupuncture provides therapeutic effects for AD.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative disease among elderly
populations and accounts for nearly 80% of all dementia diseases. AD is characterized by
progressive memory decline, executive dysfunction, personality and behavioral changes, and
other neuropsychiatric syndromes (McKhann et al., 2011). The pathological hallmark of AD is
extracellular senile plaque deposition containing Aβ and intracellular neurofibrillary tangles (NFTs)
composed of hyperphosphorylated tau proteins (Hane et al., 2017). However, the pathogenesis
of AD is complicated and remains largely unclear. It is widely accepted that the occurrence of
AD is closely related to aging (Hou et al., 2019). As the global population ages, the morbidity
of AD is thus also increasing. As a result, it is estimated that by 2050, there will be 138 million
people with ADworldwide, posing a tremendous challenge to global healthcare (Alzheimer’s, 2015).
Although acetylcholinesterase inhibitors have been approved by the US FDA for the treatment
of AD, their efficacy at improving cognitive function and preventing AD progression is less than
satisfactory (Mohammad et al., 2017). Sodium oligomannate (GV-971), a marine algae-derived oral
oligosaccharide, able to recondition the gut microbiota and alleviate neuroinflammation (Wang
et al., 2019), was recently approved in China for the treatment of mild to moderate AD (Syed,
2020). However, more experimental and clinical evidence is needed regarding the mechanism of
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action, long-term efficacy, and safety of sodium oligomannate.
Therefore, there remains a great clinical need for effective
strategies for preventing and treating AD.

Acupuncture, a crucial practice in traditional Chinese
medicine, is one of the most popular complementary and
alternative therapies and is accepted by the World Health
Organization and National Institutes of Health. Acupuncture
is a relatively safe procedure in which stainless steel needles
are inserted into acupoints to achieve the sensation of deqi
and produce therapeutic effects. The effects of acupuncture
can be further enhanced by electrical stimulation or manual
manipulation. In electroacupuncture (EA), electrical stimulation
is applied via acupuncture needles at a certain current and
frequency accurately. In China, acupuncture has a long history of
use in the treatment of neurological diseases. Mounting evidence
supports that acupuncture provides satisfactory effects for
various neuropsychiatric disorders including vascular dementia
(Yu et al., 2006; Xiao et al., 2018), depression (Wang et al.,
2016), and insomnia (Yin et al., 2017). Notably, there is also
accumulating clinical and experimental evidence for acupuncture
as a potential treatment for AD. Several systematic reviews
and meta-analyses have concluded that acupuncture alone
(Huang et al., 2019a), acupuncture plus herbal medicine (Zhou
et al., 2017), or acupuncture plus western drugs (Wang et al.,
2020b) provide more beneficial effects for cognitive function
in AD patients than western drugs alone. However, to our
knowledge, the proposed mechanisms of action of acupuncture
for AD have not been systematically reviewed and discussed.
Here, we comprehensively summarize and review the current
experimental evidence of the therapeutic effects of acupuncture
for AD. Based on the findings, significant issues for future studies
are then put forward.

EFFECTS OF ACUPUNCTURE ON THE
PATHOGENESIS AND PATHOLOGICAL
PROCESS OF ALZHEIMER’S DISEASE

Aβ Metabolism
Extracellular senile plaque (SP) deposition due to dysregulated
amyloid-β (Aβ) metabolism is a typical pathological change
associated with AD. Aβ is a small peptide fragment formed
by proteolytic cleavage of amyloid precursor protein (APP),
a transmembrane protein that can be cleaved in a non-
amyloidogenic or amyloidogenic pathway (Vassar et al., 1999).
In the non-amyloidogenic pathway, APP is catabolized by α-
secretase to the APP-α precursor (sAPPα) and the C83 α-
subunit (C83), followed by the p3 fragment and APP intracellular
domain (AICD) cleaved by γ-secretase. By contrast, in the
amyloidogenic pathway, APP is first cleaved by β-secretase 1
(BACE1) into the APP-β precursor (sAPPβ) and C99 β-subunit
fraction (C99). Additional processing of C99 by γ-secretase
leads to the generation of either Aβ1−40 or Aβ1−42 peptides,
which are considered to be responsible for the formation
of toxic SP (Figure 1). According to the amyloid cascade
hypothesis of AD, the formation, aggregation, and deposition
of Aβ peptides result in a series of pathogenic processes

including neuroinflammation, mitochondria damage, neuron
apoptosis, and tau hyperphosphorylation. These events can, in
turn, aggravate Aβ deposition and result in a vicious cycle,
triggering cascade amplification effects and ultimately leading to
neurodegeneration (Hardy and Higgins, 1992; Selkoe and Hardy,
2016). Thus, targeting Aβ formation and clearance is a potential
therapeutic approach for treating AD.

Accumulating evidence supports that acupuncture can
decrease Aβ deposition in AD patients and in AD-like animal
models. Jiang et al. (2019) reported that acupuncture alone
or acupuncture combined with donepezil treatment reduced
cortical Aβ amyloid content and improved spatial learning
and memory in SAMP8 mice. In addition, EA was shown to
decrease the hippocampal Aβ plaque load in APP/PS1 mice via
downregulation of APP and BACE1 levels to alleviate cognitive
deficits (Yang et al., 2018; Tang et al., 2019), while inhibition
of the JNK signal transduction pathway was implicated in EA-
induced APP downregulation (Tang et al., 2020). Zhang et al.
(2017) reported that activation of the peroxisome proliferator-
activated receptor γ (PPAR-γ) by EA treatment contributed to
the reduced hippocampal Aβ burden in Aβ1−40-induced AD
rats. It was suggested that activation of PPAR-γ can reduce Aβ

generation via inhibition of BACE1 (Wang X. et al., 2017). PPAR-
γ activation can also reduce the number of activated microglia,
resulting in lower release of pro-inflammatory cytokines (Heneka
et al., 2005). Thus, PPAR-γ is a potential therapeutic target for AD
(Khan et al., 2019). Several kinases related to Aβ clearance are
also involved in EA-induced decreases in Aβ deposition, namely,
ApoE, lipoprotein lipase (Tang et al., 2018), insulin-degrading
enzyme (Yang et al., 2018), and neprilysin (Jha et al., 2015;
Wang X. et al., 2018). Taken together, these findings support that
acupuncture reduces Aβ deposition via effects on cleavage and
degradation pathways.

The existing studies investigating the effects of acupuncture
on Aβ have mainly focused on whether acupuncture reduced
Aβ plaque or the effects of acupuncture on molecular proteins
involved in the amyloidogenic pathway. Fewer studies have
examined effects on the pathological process resulting from β-
amyloid accumulation and deposition, which could be a more
convincing mechanism for explaining acupuncture-induced
neuroprotection. Besides, the investigated pathways associated
with acupuncture-induced decreases in Aβ load are not in-
depth. Additional signaling pathways involved in the cleavage
and degradation of Aβ, as well as the interaction with Aβ, warrant
further research attention.

Tau Phosphorylation
Tau protein is a microtubule-associated protein (MAP) that
is highly enriched in neurons located in frontal, temporal,
hippocampal, and entorhinal regions. Its main biological
function is to promote microtubule assembly and stabilize
microtubules, which are significant for normal axonal transport
and synaptic plasticity (Šimić et al., 2016). Tau protein
undergoes various posttranslational modifications, including
phosphorylation, acetylation, methylation, ubiquitination,
SUMOylation, nitration, glycosylation, truncation, and
splicing. Tau phosphorylation is the main posttranslational
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FIGURE 1 | Schematic representation of APP metabolism via non-amyloidogenic and amyloidogenic pathways.

modification event (D’Souza and Schellenberg, 2005). Normal
tau phosphorylation plays a significant role in hippocampal
neurogenesis (Hong et al., 2010) and anti-apoptosis (Li et al.,
2007); however, tau hyperphosphorylation can reduce its
affinity for microtubules, and further results in a decreased
microtubule stability and disordered axoplasmic transport,
which subsequently affect the synthesis, transport, release, and
uptake processing of neurotransmitters, thereby leading to
neurodegeneration (Spillantini and Goedert, 2013). It is well-
established that imbalanced regulation of tau phosphorylation
and dephosphorylation results in tau hyperphosphorylation due
to dysregulation of protein kinases and protein phosphatases
(Figure 2). These protein kinases and protein phosphatases
include glycogen synthase kinase (GSK-3β), cyclin-dependent
kinase 5 (CDK5), janus kinase (JAK), mitogen-activated
protein kinase (MAPK), extracellular signal-regulated protein
kinases 1 and 2 (ERK1/2), protein kinase A (PKA), calmodulin
kinase II (CaMKII), microtubule affinity-regulating kinase
(MARK), protein phosphatase type 2A (PP2A), among
others. Neurofibrillary tangles (NFTs), which are composed of
hyperphosphorylated tau in the form of paired helical filaments
(PHFs), are a hallmark of the AD brain, and the formation
of NFTs is positively correlated with the degree of dementia
(Berg et al., 1998; Giannakopoulos et al., 2003) rather than
Aβ plaques (Thal et al., 2002; Braak et al., 2011). Thereby, tau
hyperphosphorylation-based therapies could be a promising
strategy for AD.

Yang et al. reported that 2Hz EA treatment at GV20, BL23,
and GV14 reduced hippocampal phosphorylation levels at the

Ser202 and Thr231 sites of tau and decreased tau mRNA
expression in SAMP8 mice. Behaviorally, these mice showed
improvements in learning and memory ability in the Morris
water maze test (Yang et al., 2020). Wang et al. reported that
EA significantly reduced phosphorylation levels at the Ser199
and Ser202 epitopes via inhibition of CDK5 activity in Aβ25−35-
induced AD rats (Wang et al., 2020a). In addition, EA at a
low burst frequency of 2Hz decreased phosphorylation levels at
the Ser396/404, Ser202, and Ser262 epitopes in the cortex and
hippocampus of streptozotocin-induced diabetic rats. Inhibition
of GSK-3β and p38 by EA is involved in the counteraction of
streptozotocin-induced increases in tau phosphorylation (Rocco
et al., 2013). As the main protein kinase associated with tau
phosphorylation, GSK-3β is able to phosphorylate a number of
phospho-tau epitopes including Thr205, Thr231, Ser396, Ser404,
Ser202, Ser262, and Ser214 (Maqbool et al., 2016). Furthermore,
Zhang et al. (2017) demonstrated that EA decreased tau
phosphorylation levels via inhibition of the p38 MAPK signaling
pathway. Mounting evidence supports a correlation of the p38
MAPK signaling pathway with both Aβ deposition (Kheiri et al.,
2018) and tau phosphorylation (Sheng et al., 2001; Feijoo et al.,
2005; Munoz and Ammit, 2010).

The ability of acupuncture to alter the activity of other
protein kinases to influence tau phosphorylation levels in
AD requires further research. Of the protein phosphatases
implicated in tau dephosphorylation and aggregation, PP2A
plays the largest role (Martin et al., 2013). Thus, the effects
of acupuncture on protein phosphatases that are able to
dephosphorylate tau protein should be investigated. Factors
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FIGURE 2 | Schematic representation of tau phosphorylation and formation of NFTs.

besides protein kinases and protein phosphatases are also
known to promote tau hyperphosphorylation, including other
posttranslational modifications. It has been demonstrated that
SUMOylation of tau at K340 promotes tau phosphorylation at
multiple sites (Luo et al., 2014), and O-glycosylation attenuates
tau phosphorylation (Li et al., 2006), whereas N-glycosylation
aggravates tau phosphorylation and accumulation (Wang et al.,
1996). Future studies should aim to expand our understanding of
how acupuncture affects other posttranslational modifications of
tau protein, which in turn affect tau phosphorylation.

Neurotransmitters
According to the cholinergic hypothesis, the cholinergic
system plays a significant role in the pathogenesis of AD.
The cholinergic system is involved in primary physiological
processes such as attention, learning, memory, sleep, and stress
response (Hasselmo et al., 1992; Bucci et al., 1998; Miranda
and Bermúdez-Rattoni, 1999). Loss of cholinergic function is
associated with decreased synthesis of acetylcholine (ACh) in

the basal forebrain, which contributes to memory loss in AD
(Whitehouse et al., 1981). In the cytoplasm of cholinergic
neurons, choline and acetyl-coenzyme A (acetyl-CoA) are
synthesized into ACh by choline acetyltransferase (ChAT).
ACh is then transported from the cytoplasm into synaptic
vesicles via the vesicular acetylcholine transporter (VAChT) and
hydrolyzed by acetylcholinesterase (AChE) in the synaptic cleft
into choline, which is eventually reuptaken into presynaptic
cholinergic neurons (Figure 3). Disordered regulation of the
synthesis, storage, transportation, or degradation of ACh can
all result in cognitive dysfunction (Ferreira-Vieira et al.,
2016). It is well-recognized that reduced CAT contributes to
behavioral dysfunction, and reduced CAT has been reported
in the hippocampal and neocortical regions of AD brains.
Thus, ACh supplementation therapy has been proposed as a
treatment for AD. Accumulating research has reported that
acupuncture alters ACh levels via modulation of its metabolism.
Yun et al. (2017) reported that laser acupuncture reversed
post-ischemic decreases in ChAT in the hippocampal CA1
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FIGURE 3 | Schematic representation of synthesis of ACh and cholinergic transmission.

region and attenuated cognitive impairment in middle cerebral
artery occlusion rats. In addition, EA has been shown to
counteract LPS-induced decreases in α7nAChR, ACh content,
and ChAT activity and to prevent LPS-induced increases
in AChE activity, thus improving both working and spatial

memory (Han et al., 2018). Lee et al. (2014) found that
acupuncture stimulation at GV20 improved scopolamine-
induced cognitive deficits via activation of the cholinergic system,
as evidenced by increased levels of ChAT, choline transporter 1,
and VAChT.
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Glutamate (Glu), the most abundant excitatory
neurotransmitter in the central nervous system (CNS),
plays significant roles in modulating synaptic transmission,
neuronal survival and differentiation, synaptic plasticity,
learning, and memory (Benarroch, 2018). Glu receptors exist
in the form of G-protein-coupled receptors (GPCR, also
termed metabotropic receptors) and ionotropic receptors,
such as the N-methyl-D-aspartate receptor (NMDAR) and
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor (AMPA receptor) (Wang and Reddy, 2017). Glu
mostly binds to ionotropic NMDAR receptors to modulate
calcium and sodium influx into neurons. Overaction of Glu
due to disordered reuptake can result in excessive calcium
influx within neurons, leading to dysfunctional synaptic
transmission, neuron damage, and neurodegeneration (Hynd
et al., 2004). Clinical evidence suggests that memantine,
an NMDA receptor antagonist, can hinder AD progression
(Parsons et al., 2007). Lin et al. (2018) reported that EA
stimulation at an alternating burst frequency of 1 and 20Hz
alleviated cognitive dysfunction in APP/PS1 transgenic mice.
Enhanced hippocampal Glu metabolism, as measured by
magnetic resonance spectroscopy, and an increased number
of surviving neurons were also observed, implying that EA
ameliorated memory impairment via reduction in Glu content.
Similarly, 2Hz EA was demonstrated to improve learning
and memory ability in vascular dementia rats by inhibiting
Glu-NMDAR-mediated excitotoxity (Zhang et al., 2016).

Additional neurotransmitters to those described above have
been implicated in synaptic plasticity and neuroinflammation in
AD, including serotonin, noradrenaline, dopamine, and GABA.
Pathological changes in monoaminergic nuclei, particularly
the serotonergic dorsal raphe nucleus, noradrenergic locus
coeruleus, and dopaminergic nuclei, have been observed
during the early course of AD and are thought to influence
symptoms and pathogenesis (Šimić et al., 2017). However, few
studies have investigated the effects of acupuncture on these
neurotransmitters in AD animal models. Since alterations in
monoaminergic systems appear to play a significant role in AD,
neurotropic virus-mediated neural circuit tracing technology and
chemogenetic techniques could be used to explore the effects of
acupuncture on monoaminergic systems and their interactions
with the hippocampus, cholinergic system, or prefrontal cortex.

Neurogenesis
In various AD mouse models, it has been shown that adult
hippocampal neurogenesis is impaired (Zeng et al., 2016;
Richetin et al., 2017; Zaletel et al., 2018). Hippocampal
neurogenesis is also decreased in human AD patients, but
abundant in the dentate gyrus of neurologically healthy subjects
(Moreno-Jiménez et al., 2019). In a recent study, Tobin et al.
(2019) confirmed that hippocampal neurogenesis occurs in
both aging adults and AD patients. Thus, promoting adult
hippocampal neurogenesis could be a therapeutic strategy
for AD (Mu and Gage, 2011). Tang et al. (2006) reported
that acupuncture at GV20, KI1, KI3, and SP10 not only
upregulated ChAT activity in the medial septum but also
increased nerve growth factor (NGF) levels in the hippocampal

CA3 area in AD model rats. NGF plays critical roles in
cell survival and is implicated in memory deficits in AD
(Iulita and Cuello, 2014). It has been proven that NGF can
prevent cholinergic neuron degeneration. Interestingly, it has
been suggested that exogenous NGF supplementation enhances
the APP nonamyloidogenic cleavage pathway and reduces the
Aβ burden in the APP/PS1 mice brain (Yang et al., 2014).
Furthermore, biodelivery of NGF to the basal forebrain has
been shown to reduce brain atrophy in AD patients (Ferreira
et al., 2015). Thus, it is reasonable to assume that increasing
NGF content could be a treatment for AD. There is evidence
that acupuncture can increase NGF levels and alleviate cognitive
dysfunction in animal models of cerebral ischemia (Chen
et al., 2015; Ding et al., 2017; Zhao J. et al., 2019). Rocco
et al. (2013) also reported that EA counteracted diabetes-
associated tau hyperphosphorylation and decreases in NGF
and ChAT.

Brain-derived neurotrophic factor (BDNF), part of the
neurotrophic factor family, plays important roles in modulating
neuronal differentiation, proliferation, nutrition, and synaptic
plasticity (Kowiański et al., 2018; Numakawa et al., 2018).
BDNF activates tyrosine receptor kinase (TrkB), which then
stimulates several intracellular signaling cascades including
the MAPK/ERK, PLCγ, and PI3K/Akt signaling pathways
(Mohammadi et al., 2018). As BDNF has been implicated
in AD pathology, BDNF-based therapy could be a promising
strategy for treating AD (Lu et al., 2013; Song et al.,
2015). Choi et al. (2018) showed that the induction of adult
hippocampal neurogenesis combined with elevation of BDNF
levels ameliorated cognitive impairments in 5×FAD mice.
Acupuncture-induced rescue of cognitive dysfunction in AD
mice is associated with elevation of BDNF levels (Li et al., 2014;
Lin et al., 2016, 2018). Acupuncture has also been reported to
promote the proliferation and differentiation of neural stem cells
(NSCs) in the hippocampus of SAMP8 mice following NSCs
transplantation treatment. Furthermore, it was demonstrated
that acupuncture upregulated the expression of hippocampal
cytokines involved in NSC proliferation and differentiation,
including BDNF, basic fibroblast growth factor, and epidermal
growth factor, thereby promoting the repair of injured neurons
and improving cognitive function (Zhao et al., 2017).

At present, a few studies have examined the effects of
acupuncture on neurogenesis in AD and the underlying
mechanism. Multiple extrinsic and intrinsic factors that are
involved in regulating neurogenesis are also altered in AD. These
extrinsic modulators include metabolic growth factors, such as
VEFG (Wittko et al., 2009), BDNF, IGF-1 (Yuan et al., 2015),
FGF-2 (Woodbury and Ikezu, 2014), and IGF, that contribute
to the proliferation, maturation, and migration of NSCs. The
intrinsic modulators include Wnt signaling (Lie et al., 2005),
Notch signaling (Imayoshi et al., 2010), Sonic hedgehog signaling
(Lai et al., 2003), and epigenetic modifications (Li X. et al., 2016).
However, whether acupuncture can regulate these modulators
to promote neurogenesis in AD remains unknown. Studies
of the effects of acupuncture on the extrinsic and intrinsic
factors mentioned above could provide further evidence of how
acupuncture alters neurogenesis in AD.
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Synapse and Neuron Damage
It is well-established that synapse and neuron loss are strongly
correlated with cognitive dysfunction in AD, suggesting a causal
role of compromised synaptic and neuronal integrity in AD
pathogenesis. In addition, AD animal models show deficits in
both synaptic morphological plasticity and synaptic transmission
(Guo et al., 2017; Chakroborty et al., 2019). Accumulating
evidence has demonstrated that acupuncture may ameliorate
synapse and neuron damage caused by ischemic stroke (Jittiwat,
2019), inflammation, oxidative stress (Du et al., 2018), and
neurodegeneration (Zhao Y. et al., 2019). Li et al. (2012) reported
that acupuncture reduced neuron loss in the hippocampal
CA3 and DG areas in SAMP8 mice and attenuated memory
impairments. In addition, acupuncture increased the number
and total length of apical and basal dendritic branches in the
hippocampal CA1 region in the mouse model (Kan et al., 2018).
EA stimulation at an alternating frequency of 2 and 15Hz was
found to attenuate neuronal injury in Aβ1−42-induced AD rats.
Interestingly, this effect was accompanied by reduced levels
of reactive oxygen species (ROS), malondialdehyde (MDA),
and 8-OH-dG and increased total antioxidant capacity (T-
AOC), suggesting a correlation between EA-induced neuron
protection and anti-oxidative stress. Further study demonstrated
that inhibition of NOX2-related oxidative stress, as evidenced
by decreased NOX2 expression, contributed to the EA-induced
neuroprotective effects (Wu et al., 2017). Huang et al. (2018)
reported that 2-Hz EA ameliorated hippocampal neuron injury
and improved spatial learning and memory impairments in AD
rats via activation of the SIRT1/PGC-α pathway to counteract
oxidative stress damage. Also, it was suggested that EA’s
inhibitory effect on GSK-3β activity (Yu et al., 2018) and the
AMPK/eEF2K/eEF2 signaling pathway (Dong W. et al., 2019)
attenuated synaptic ultrastructure damage, thereby restoring
cognitive function in AD animals. Yu et al. reported that high-
frequency EA at 50Hz, rather than low- or medium-frequency
EA, exerted stronger protective effect on synapses (Yu et al.,
2018), highlighting the need for further studies of the optimal
EA stimulation dose. Our recent findings (Yu et al., 2020)
showed that EA alleviated memory deficits, attenuated dendritic
spine loss, and rescued neuronal microtubule damage in the
hippocampal CA1 area of aging rats, likely via inhibition of the
GSK3β/mTOR signaling pathway.

Several studies have found that EA enhances
synaptic transmission. Shen et al. (2010) reported that EA
at GV20, GV14, BL23, and LI3 enhanced hippocampal long-term
potentiation (LTP), the most prominent cellular model of
memory formation, in Aβ25−35-induced AD rats. In addition,
2Hz EA at ST36 and SP6 enhanced LTP of perforant path-DG
granule neurons (He et al., 2012). Although these findings suggest
that EA can enhance synaptic transmission in AD animals, the
molecules and pathways involved in this neuroprotective effect
remain unclear. Notably, acupuncture was found to enhance
LTP in the hippocampus by increasing norepinephrine levels
and activating β1-adrenergic receptors in a vascular dementia
animal model (Xiao et al., 2018). As the noradrenergic system is
also implicated in AD pathogenesis (Feinstein et al., 2016; Jeon
et al., 2018), it is possible that acupuncture prevents synaptic

transmission impairment via the modulation of noradrenergic
system pathways.

Autophagy
Autophagy is an essential lysosomal degradation pathway
in which misfolded or aggregated proteins and damaged
organelles are cleared from the intracellular space (Lee et al.,
2013). Autophagy acts in the mammalian target of rapamycin
(mTOR)-dependent pathway or mTOR-independent pathway
to maintain cellular homeostasis. Accumulating evidence has
implicated dysfunctional autophagy in the pathogenesis of
neurodegenerative diseases such as AD, Parkinson’s disease, and
amyotrophic lateral sclerosis (Menzies et al., 2017). By mediating
degradation and clearance of Aβ and tau, autophagy plays a
neuroprotective role in AD. Alteration of the PI3K/Akt/mTOR
signaling pathway, one of the mTOR-dependent autophagy
pathways, has been reported at the early stages of AD together
with increased Aβ1−42 levels and reduced LC3II and Beclin-1
(Tramutola et al., 2015). Microtubule-associated protein 1 light
chain 3 (LC3) and Beclin-1 are vital for phagophore elongation
and autophagosome biogenesis (Kraft and Martens, 2012;
Bernard and Klionsky, 2014). Conversion from a nonlipidated
form (LC3 I) to a phosphatidylethanolamine-conjugated form
(LC3 II) is necessary for the formation of complete and functional
autophagosomes. An elevated LC3 II/LC3 I ratio indicates
enhanced autophagy activity (Kraft and Martens, 2012).

Increased autophagic vacuoles containing Aβ1−40, Aβ1−42,

and APP have been observed in AD brains (Yu et al., 2004, 2005).
Therefore, targeting autophagy modulators may be an effective
AD treatment. Xue et al. (2014) found that EA at GV20 and
KI1 decreased cortical Aβ1−42 levels in AD mice, which was
associated with enhanced autophagy activity as demonstrated by
elevated autophagosomes after EA treatment. In addition, EA at
GV20 and BL23 increased the autophagy-related protein Beclin-
1 level and LC3 II/LC3 I ratio, but decreased Aβ plaque and
neuronal apoptosis in the hippocampal CA1 region (Guo et al.,
2016), suggesting that modulation of autophagy modulators by
EA is involved in the rescue of cognitive dysfunction in AD
model animals.

However, a few studies have investigated the effects of
acupuncture on specific autophagic pathways, such as mTOR-
dependent or mTOR-independent signaling pathways. Previous
studies have indicated that acupuncture can modulate autophagy
via several pathways including the mTOR-independent
autophagy lysosome pathway (Tian et al., 2016) and AMPK-
dependent pathway (Zeng et al., 2018) in Parkinson’s disease and
myocardial infarction injury. Thus, the pathways and molecules
involved in acupuncture-induced changes in autophagy in AD
warrant specific study. Of the studies that have examined these
topics, all have reported that acupuncture enhanced autophagy
activity in AD and promoted clearance of mutant or misfolded
proteins. These “positive” results should not be misunderstood
to mean that stimulation of autophagy by acupuncture is
purely neuroprotective in AD. Notably, excessive autophagy
could be detrimental to neurons with underlying dysfunctional
proteostasis, since it is still debated whether accumulation of
uncleared autophagosomes may be a cause or the consequence of
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the dysfunction of autophagy induction pathways. By contrast,
“negative results” of acupuncture on autophagy activity and the
ultimate effects on pathologies and cognition deficits in AD have
received little research attention. Thus, the effects of acupuncture
with varying stimulus parameters on the promotion or inhibition
of autophagy in AD should be examined and compared in
future studies.

Apoptosis
Apoptosis refers to the process of programmed cell death, which
is distinct from necrosis (Kennedy, 2015). Normal apoptosis
plays a significant role in self-renewal and the maintenance of
homeostasis, whereas hyperactive neuronal apoptosis can result
in neurodegenerative diseases such as AD and Parkinson’s disease
(Radi et al., 2014). Aβ deposition, NFTs, neuroinflammation,
and oxidative stress in the AD brain can all result in neuronal
apoptosis, which may further aggravate AD pathology (Radi
et al., 2014). Increased apoptosis-associated markers have been
observed in AD brains (Anderson et al., 1996). Several studies
have shown that EA can suppress hippocampal neuron apoptosis
by acting on apoptosis-associated proteins, including Bcl-2, Bax,
Caspase-3, and Caspase-9 (Li X. y. et al., 2016; Huang R. et al.,
2019; Zhang et al., 2019). Guo et al. (2015) reported that EA
at GV20 and BL23 reduced neuronal apoptosis and induced
downregulation of Notch1 and Hes1 mRNA in the hippocampus
of Aβ1−42-induced AD rats, implicating inhibition of the Notch
signaling pathway in the anti-apoptotic effects of EA. The anti-
apoptotic effects of EA have been reported in other neurological
disease. Liu et al. (2016) showed that EA suppressed apoptosis
by inhibiting autophagosome formation and autophagy activity
via the mTORC1–ULK complex–Beclin1 pathway in ischemic
stroke model animal. Activation of the PI3K/Akt-ERK signaling
pathway is also strongly correlated with anti-apoptosis mediated
by acupuncture in spinal cord injury (Renfu et al., 2014).
Additional specific signaling pathways involved in the anti-
apoptotic effect of acupuncture in AD require validation in
future studies.

Neuroinflammation
The critical role of neuroinflammation in the pathogenesis
of AD has been extensively discussed in previous reviews
(Heneka et al., 2015; Calsolaro and Edison, 2016; Ransohoff,
2016). Inflammatory cytokines overexpressed in proximity to
Aβ plaques and NFTs are known to promote the production
of Aβ peptides (Tuppo and Arias, 2005). These inflammatory
cytokines, such as interleukin-1β (IL-1β), tumor necrosis factor-α
(TNF-α), and interleukin-6 (IL-6), aggravate neuroinflammation
via deposition of Aβ plaques and thus exert neurotoxic effects
(Belkhelfa et al., 2014). Activation of neuroinflammation and
immune pathways is closely related to abnormal levels of pro-
inflammatory cytokines in the cerebrospinal fluid and blood
in AD (Swardfager et al., 2010; Rubio-Perez and Morillas-
Ruiz, 2012; Brosseron et al., 2014; Liu et al., 2014). Activated
glia surrounding Aβ plaque is considered a hallmark of
neuroinflammation. Chronic and sustained glial activation,
as well as pro-inflammatory cytokine release, can lead to
neurodegeneration and cognitive deficits (Hoozemans et al.,

2006). However, whether neuroinflammation is a cause or
consequence of AD remains under debate, as microglia and
astrocyte activation and Aβ deposition are strongly correlated
with cognitive dysfunction in AD (Heneka et al., 2013; Calsolaro
and Edison, 2016). Thus, attenuation of neuroinflammation
could be a promising AD treatment.

Acupuncture has been shown to yield anti-inflammatory
effects in various diseases such as pain (Gao et al., 2018), diabetes
(Huang et al., 2019b), ischemic stroke (Ma et al., 2019), and
myocardial ischemia (Wang J. et al., 2018). In recent years,
several studies have reported that acupuncture can also alleviate
inflammation in AD. Li et al. (2019) found that acupuncture
improved cognitive function and attenuated inflammation in
SAMP8 mice via inhibition of the PI3K/PDK1/Npkc/Rac1
signaling pathway. Downregulation of the JAK/STAT3 pathway
was also found to contribute to EA-induced anti-inflammatory
effects in Aβ1−42 induced AD rats (Liu et al., 2019). Mounting
evidence supports the role of NLRP3 inflammasome activation
in mediating neuroinflammation (Heneka et al., 2013), and
inhibition of NLRP3 inflammasome-related proteins can restore
cognitive function in AD (Dempsey et al., 2017; Wang D. et al.,
2017; Feng et al., 2018).

Several studies have reported that acupuncture ameliorated
hippocampal neuroinflammation via downregulation of the
NLRP3 inflammasome and decreased production of downstream
pro-inflammatory cytokines like IL-1β and Caspase-1 (Jiang
et al., 2018; Ding et al., 2019), thus improving learning and
memory abilities in SAMP8 mice. Furthermore, EA-induced
inhibition of NLRP3 inflammasome activation via CB2 receptors
has been shown to relieve inflammatory pain (Gao et al.,
2018). Acupuncture also has inhibitory effects on glia activation.
Zhang et al. (2013) reported that acupuncture prevented neuron
loss and decreased the number of activated astrocytes in the
hippocampal CA1 and CA3 regions of SAMP8 mice. Cai
et al. (2019) demonstrated that EA stimulation ameliorated
cognitive impairment via inhibition of synaptic degeneration and
neuroinflammation in 5xFAD mice, as evidenced by decreased
expression of CD11b (for microglia) and GFAP (for astrocytes)
in the prefrontal cortex. Similarly, EA was reported to attenuate
microglia-mediated Aβ1−42 deposition in the prefrontal cortex,
as supported by a reduction in colocalized Aβ1−42 and
CD68 (a microglia marker). In addition, EA can attenuate
reference memory deficits in APP/PS1 transgenic mice, likely via
inhibition of the astrocytic N-myc downstream-regulated gene
2 (Wang et al., 2014). Taken together, these findings support
that acupuncture can attenuate neuroinflammation and rescue
cognitive impairments in AD animal models. However, these
studies have focused specifically on the CNS, and few studies have
investigated the effects of acupuncture on systemic inflammation.
Notably, systemic inflammation can have downstream effects
on brain function via neuro-immune communication (Cao and
Zheng, 2018). For example, a recent study demonstrated that EA
activated distinct sympathetic pathways and modulated systemic
inflammation in a somatotopic manner in a lipopolysaccharide
(LPS)-induced inflammatory model that can be considered an
AD-like inflammatory model (Liu et al., 2020). Circulating
inflammatory proteins outside of the CNS can increase
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inflammatory signaling within the CNS, promoting activation of
astrocytes and microglia and thus neurodegeneration (Walker
et al., 2019). In light of these findings, it would be interesting
for future studies to investigate the effects of acupuncture on
peripheral-central neuroimmune communication in AD.

Glucose Metabolism
Diabetes is known to be a significant risk factor for AD (Barnes
and Yaffe, 2011; Silva et al., 2019), and AD can be considered
type 3 diabetes mellitus (Leszek et al., 2017). Hippocampal
insulin resistance is commonly observed in both AD patients
(Talbot et al., 2012) and AD model animals (Velazquez et al.,
2017). Accumulating evidence supports alterations in glucose
metabolism and blood flow in cognition-related brain regions
in AD patients (Nishimura et al., 2007; Dukart et al., 2013;
Zilberter and Zilberter, 2017). Decreased glucose metabolism in
the hippocampus, precuneus, and cingulate gyrus appear to be
closely related to the severity of cognitive impairment (Roy et al.,
2014). Dysregulated glucometabolism has also been observed in
the hippocampus, hypothalamus, insular cortex, and striatum of
AD rats (Lu et al., 2016). Identifying and assessing changes in
CNS glucose metabolismmay be a potential strategy for early and
accurate diagnosis of AD (Teune et al., 2014; Kato et al., 2016;
Oh et al., 2016; Takahashi et al., 2017). Furthermore, reversal of
low cerebral glucose metabolic activity and insulin resistance has
been shown to restore learning and memory in an AD mouse
model (Kang et al., 2017; Nakamura et al., 2017; Walker et al.,
2017).

It is recognized that acupuncture can regulate metabolic
processes via effects on the neuroendocrine system (Yu et al.,
2013; Ding et al., 2014). Mounting evidence supports the role
of acupuncture treatment in increasing glucose metabolism and
alleviating insulin resistance. Dong et al. (2015b) found that
EA stimulation at the BL23 and GV14 acupoints enhanced
brain glucose metabolism and increased ATP production,
likely via activation of the SIRT1/PGC-1α pathway. Activation
of the SIRT1/PGC-1α pathway can enhance mitochondrial
oxidative function, which is significant for the maintenance of
intracellular metabolic homeostasis (Fang et al., 2018; Fanibunda
et al., 2019). EA has also been found to improve insulin
sensitivity in diabetic animal models through activation of
the SIRT1/PGC-1α (Liang et al., 2011) and SIRT1/FOXO1
pathways (Shu et al., 2020). Decreased activity of triose phosphate
isomerase (TPI), a key enzyme in glucose metabolism, may
result in abnormal accumulation of dihydroxyacetone phosphate
(DHAP), thereby inhibiting the glycolysis process (Park et al.,
2010). Glycometabolism disorder resulting from abnormal TPI
activity is associated with learning and memory impairment
(Tajes et al., 2013). Zhao et al. (2013) reported that EA improved
cognitive impairment in SAMP8 mice by upregulating TPI
activity and correcting abnormal glycolysis in the hippocampus.
In addition, EA-induced improvement in cognition function in
SAMP8 mice is associated with activation of AMPK (Dong et al.,
2015a), a vital signal in regulating glucose and lipid metabolism
(Misra, 2008). Activation of AMPK has been shown to improve
altered metabolism in the CNS as well as learning and memory in
AD model animals (Dong Y. et al., 2019).

Liu et al. found that EA at GV20 increased glucose metabolism
in several brain areas including the cortex, hippocampus,
cingulate gyrus, basal forebrain septum, brain stem, and
cerebellum in APP/PS1 transgenic mice. This finding further
supports the activation of AMPK and AKT in EA-induced
increases in cortical and hippocampal glucose metabolism (Liu
et al., 2017). Using brain imaging technologies such as positron
emission tomography (PET), it is now possible to visualize AD-
induced changes in brain glucose metabolism and regional brain
blood flow changes in an objective way. Cui et al. (2018) showed
that acupuncture at the GV24 and GB13 acupoints improved
learning and memory abilities in Aβ1−42-induced AD rats,
possibly by increasing glycolysis metabolism in the thalamus,
hypothalamus, and brain stem areas. Ding et al. (2019) found
that acupuncture rescued cognitive dysfunction in SAMP8 mice
by inhibiting the astrocytic phospholipase A2-arachidonic acid
pathway, which resulted in increased blood flow in the prefrontal
lobe and hippocampus. Increased glycolysis in the hippocampus
after EA treatment was also observed in APP/PS1 transgenicmice
(Cao et al., 2017). Furthermore, EA has been shown to improve
glycolysis in several cognition-related brain regions including
the limbic system (pyriform cortex), temporal lobe (olfactory
cortex), amygdala, and hippocampus in AD-like pathology rats
(Lu et al., 2014). Enhanced glucose metabolic activity in the
hippocampus, thalamus, hypothalamus, and frontal/temporal
lobes, accompanied by restored memory, following acupuncture
treatment was observed in SAMP8 mice (Lai et al., 2016).
Using microPET, 2Hz EA stimulation was shown to increase
glucose metabolism in the frontal cortex and hypothalamus
in 5xFAD mice (Cai et al., 2019). In summary, these findings
suggest that enhancement of glucose metabolism in cognition-
related brain regions could be an important mechanism of the
beneficial effects of acupuncture in AD. However, few studies
have examined the underlying mechanisms of acupuncture-
induced glucose metabolism increases in AD. Rescuing brain
energy failure is seen as an emerging therapeutic approach for
aging-related neurodegenerative disorders. The gut–brain axis,
neuroendocrine crosstalk, interactions among neuronal loops,
and mitochondrial function are all known to regulate brain
energy metabolism and could be useful directions for future
studies of the underlyingmechanisms of therapeutic acupuncture
for AD.

Brain Response
In recent years, functional magnetic resonance imaging (fMRI)
has been used to examine acupuncture-associated changes in
brain activity. It is known that regional blood flow, oxygen
consumption, and the blood oxyhemoglobin/deoxyhemoglobin
ratio all change after increased neuronal activity. Thus, changes
in regional blood flowmeasured by fMRI are thought to represent
changes in integrated neuronal activity. fMRI measures regional
increases or decreases in neuronal activity based on increases or
decreases in the blood-oxygen-level-dependent (BOLD) signal
contrast, an objective measure that provides high temporal and
spatial resolution without the requirement for an exogenous
contrast medium (Gusnard et al., 2001; Shmuel et al., 2006).
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It has been demonstrated that fMRI brain responses to
acupuncture stimulation vary when different acupoints are
stimulated. In a trial investigating differences in fMRI brain
responses to acupuncture between healthy subjects and AD
patients, Fu et al. observed that both the frontal and temporal
lobes were activated by EA at PC6 in normal subjects. In contrast,
the frontal and temporal lobes, cingulate gyrus, and cerebellum
were activated in AD patients (Fu et al., 2005), suggesting
that EA induced wider responses in cognition-related regions
in AD brains. Jia et al. (2015) reported that acupuncture at
the KI3 acupoint activated cognition-related regions including
the medial frontal gyrus, inferior temporal gyrus, and posterior
cingulate, which were distinct from the findings of sham
acupuncture stimulation. In addition, stimulation at the LI4 and

LR3 acupoints induced extensive activation and deactivation in
cognition-related regions, vision-related regions, sensorimotor-
related areas, basal ganglia, and cerebellum in patients with
AD or mild cognitive impairment (MCI), but not in healthy
controls (Shan et al., 2018). However, other studies have reported
inconsistent results. Zheng et al. confirmed that acupuncture
at the LI4 and LR3 acupoints not only increased neuronal
activity in the hippocampus and precentral gyrus, but also
enhanced functional connectivity between these two regions in
AD patients. In addition, correlation analysis indicated strong
relationships between functional activity, connectivity, and
clinical performance (Zheng et al., 2018). Liang et al. reported
that default mode network (DMN) connectivity between the
left cingulate gyrus and right inferior parietal lobule was

FIGURE 4 | Mechanisms of action of acupuncture in AD.
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significantly compromised in AD patients. Acupuncture at the
LI4 and LR3 acupoints not only increased impaired DMN
connectivity but also enhanced DMN connectivity among the
left posterior cingulate cortex, right middle temporal gyrus,
and right inferior parietal lobule. In addition, the acupuncture
effect on the middle temporal gyrus was strongly correlated
with the severity of cognitive impairment (Liang et al., 2014).
Acupuncture at the Tiaoshen Yizhi acupoints, a combination
of acupoints based on Chinese acupuncture theory comprising
EX-HN1, EX-HN3, PC6, KI3, ST40, and LR3, improved
cognitive function in patients with MCI by increasing functional
connectivity among cognition-related brain areas including the
insula, dorsolateral prefrontal cortex, hippocampus, thalamus,
inferior parietal lobule, and anterior cingulate cortex (Tan et al.,
2017). In a functional near-infrared spectroscopy (fNIRS) study
investigating the longitudinal effects of acupuncture in MCI
patients, increased functional connectivity in the prefrontal
cortex induced by acupuncture contributed to improved
cognitive function (Ghafoor et al., 2019).

In summary, the neuroimaging findings provide relatively
objective evidence for the therapeutic effects of acupuncture
for AD. As the responding brain areas are inconsistent among
the studies, it can be concluded that acupuncture can induce
a wide range of cognition-related brain responses in AD and
increase functional connectivity. The differences in responding
brain areas could be due to the various acupoints stimulated,
acupuncture method (electrical or manual), EA stimulation
parameters (frequency, current, or wave type), or heterogeneities
among the included participants. The underlying mechanism of
increased functional connectivity among the activated brain areas
has not yet been fully explained. In the future, investigating the
specific types of activated neurons, as well as the projections
and innervations of the responding brain nuclei, may provide a
clearer and more specific understanding of the brain responses
induced by acupuncture in AD.

CONCLUSION

From this updated review of the literature, we conclude that the
underlying mechanisms of the beneficial effects of acupuncture
in AD likely involve modulation of Aβ metabolism, tau
phosphorylation, neurotransmitters, neurogenesis, synapse
and neuron function, autophagy, neuronal apoptosis,
neuroinflammation, cerebral glucose metabolism, and brain
response. Together, these studies provide a base of scientific
evidence to promote the clinical application of acupuncture as
treatment for AD. However, several issues remain. First, as the
pathogenesis of AD is complicated and remains unvalidated,
the involved pathophysiologies are intertwined and may even

coexist as a cause–consequence relationship. Previous studies
investigating the mechanisms of acupuncture for AD mainly
focused on a single factor, such as inflammation or dysregulated
neurotransmitters, with less consideration of the links with other
pathophysiologies or the impacts of parallel pathophysiologies,
which may, to some degree, undermine the evidence. As
illustrated in Figure 4, the effects of acupuncture can be achieved
via multiple targets and pathways, which is in accordance
with the features of systematic regulation by acupuncture.
Therefore, it may be preferred to study the mechanisms of
acupuncture in AD from a holistic view or systematic biology
perspective. Multi-omics technologies, such as transcriptomics,
proteomics, and metabolomics, could be adopted to explore
the potential mechanisms of action of acupuncture in AD.
Second, as acupuncture involves peripheral stimulation of
sensitized points to regulate neural and visceral functions via
multiple neural feedback systems, mapping the peripheral-
neural circuits associated with AD using chemogenetic or
optogenetic techniques could expand our understanding of the
underlying mechanisms of acupuncture’s benefits in AD. Third,
the efficacy of acupuncture in AD cannot be validated based
on the current evidence. Since AD is insidious, progressive,
difficult to reverse, and had several nongenetic risk factors, the
preventive effects of acupuncture for AD should be examined
in future studies. Animal models that show AD-like pathologies
caused by nongenetic risk factors, such as aging, diabetes,
hypercholesterolemia, hyperhomocysteinemia, gastrointestinal
microbiota, etc., could be adopted to study the preventive effects
of acupuncture.
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