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Background. Breast cancer is the most common type of cancer among females with a high mortality rate. It is essential to classify
the estrogen receptor based breast cancer subtypes into correct subclasses, so that the right treatments can be applied to lower
the mortality rate. Using gene signatures derived from gene interaction networks to classify breast cancers has proven to be more
reproducible and can achieve higher classification performance. However, the interactions in the gene interaction network usually
contain many false-positive interactions that do not have any biological meanings. Therefore, it is a challenge to incorporate the
reliability assessment of interactions when deriving gene signatures from gene interaction networks. How to effectively extract
gene signatures from available resources is critical to the success of cancer classification. Methods. We propose a novel method
to measure and extract the reliable (biologically true or valid) interactions from gene interaction networks and incorporate the
extracted reliable gene interactions into our proposed RRHGE algorithm to identify significant gene signatures from microarray
gene expression data for classifying ER+ and ER− breast cancer samples. Results. The evaluation on real breast cancer samples
showed that our RRHGE algorithm achieved higher classification accuracy than the existing approaches.

1. Introduction

The diagnosis or prognosis of cancer is believed as one of the
most significant research areas in the bioinformatics field.
Traditionally, cancer classification is solely based on clinical
evidence and requires pathological expertise for biological
interpretation.Amajor challenge in clinical cancer research is
the accurate classification of cancers for improving prognosis
and treatment.With the rapid development of high-through-
put technologies, researchers and biologists have generated a
massive amount of data at different levels, such as gene ex-
pression profiles using microarrays [1], protein-protein inter-
actions (PPI) [2, 3], gene ontology terms [4], and pathways
[5]. These biological data make it possible for biologists and
researchers to find solutions to various biological questions of
interest, such as the diagnosis of breast cancer by identifying
cancer-associated genes.

Due to the increasing use of microarray technology that
obtains expression levels of all genes simultaneously, a set of
gene expression markers (also known as gene signatures) can
be used to diagnose breast cancer in a comprehensivemanner

[6]. However, existing gene signatures do show variable per-
formances across datasets which makes the classification
results unstable [7]. Due to the heterogeneous nature of exist-
ing gene signatures, many patients have been classified into
the wrong breast cancer subtype and treated with unneces-
sary adjuvant therapy (chemo or radiation therapy). To solve
this problem, various microarray data based breast cancer
classification methods have been proposed that use statistical
and machine-learning methods for the molecular classifica-
tion of breast cancer [7–10]. Van deVijver et al. [11] developed
the 70-gene signature (Mammaprint) that classifies breast
cancer patients into good or poor prognosis groups. Wang
et al. [12] developed a 76-gene signature that consists of 60
genes for the ER+ (estrogen receptor-positive) group and 16
genes for the ER− (estrogen receptor-negative) group in order
to classify and to predict the distant metastasis of breast can-
cer. It was observed that the gene signatures generated in
these studies were not robust and heavily depended on the
chosen training set [13]. In order to derive the gene signatures
from themicroarray data and to accurately uncover themole-
cular forms of breast cancer, plus use the gene signatures for
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various clinical purposes, the robustness and biological
meaning of gene signatures are equally essential [7].

Chuang et al. [14] indicate that a disease like cancer origi-
nates from the driver genes that progressively change the
expressions of greater amplitude in genes that participate (or
interacts) with the driver gene (also calledmutations). For the
classification of breast cancer, it is therefore good to incor-
porate the gene network based approach for the following
reasons: (1) the gene networks provide models of the molec-
ular mechanisms underlying breast cancer; (2) the detected
subnetworks from a gene network are comparativelymore re-
producible across different breast cancer cohorts than tradi-
tional individual genes selected without consideration of net-
work related information; and (3) the gene network based
approach achieves higher accuracy in classifying breast can-
cer subtypes [14].

Various network based approaches have been proposed
for microarray data analysis. Gill et al. [15] constructed the
condition-dependent networks fromdifferential gene expres-
sion with no prior interaction information used (such as PPI
or gene regulatory information), which limits the biological
validation of their results [7]. Chuang et al. [14] proposed the
network based approach that detects differentially expressed
subnetworks from the existing PPI data by making use of the
local subnetworks aggregation. A network based algorithm
(ITI) has been proposed by Garcia et al. [7] that identifies the
subnetwork based gene signatures generalizable overmultiple
and heterogeneous microarray datasets by making use of the
PPI data incorporated with the gene expression datasets.

These existing network based approaches address the bio-
logical question of interest to some extent. However, these ap-
proaches have some issues associated with them, for example:
(1) the classifier performance is largely affected by the dataset
size [7]; (2) the curse of dimensionality issue (too few samples
(in the order of hundreds) for too many genes (in the order
of tens of thousands)) is not considered carefully and still
needs to be resolved [7]; and, most importantly, (3) the exist-
ing PPI datasets such as DIP [16] and HPRD [17] contain
many false-positive interactions (i.e., interactions identified
by experiments but actually never happen) [18]. Therefore,
the existing approaches that use PPI datasets in discovering
knowledge or biological facts (such as breast cancer classi-
fication, distant metastasis prediction) may be distorted or
biased.

The HRGE algorithm [19] tried to address the above
issues by identifying hub gene subnetworks and figuring out
gene signatures to classify ER+ and ER− breast cancer. How-
ever, for HRGE, the reliability weights are empirical when
they are incorporated into the algorithm to construct gene
signatures. Therefore, the classification results are not stable
for some cases. A stable and robust statistic model is required
to determine the reliability weights. Furthermore, no inde-
pendent testing datasets were used when the effectiveness of
the HRGE algorithmwas evaluated, and no biological valida-
tions were conducted as well.

The identification and the extraction of reliable protein
interactions from the original experimental PPI datasets is
becoming one of the most significant and challenging tasks
when using the PPI data for biological analyses. Therefore, to

resolve the above issues when classifying cancers, it is essen-
tial to develop a novel network based breast cancer classifier
whichmaximises the reliable information for the interactions
in the network and is able to provide the optimal classification
performance across datasets.

In this paper, we propose a novel subnetwork based breast
cancer classification approach to distinguish two subtypes of
breast cancer, that is, ER+ and ER−. To increase the sample
size of the study and to lessen the dependence on a single
training set, we integrated multiple datasets. We used six
training gene expression sets on the basis of the histologic
grade and the estrogen receptor status, in order to derive the
subnetwork based gene signatures, and used two testing gene
expression sets for evaluating the performance of gene sign-
atures. We propose a statistical model to determine the reli-
ability weights, which are then incorporated with the gene
expressions to form reliable gene expressions. The reliable
gene expressions then extracts the subnetworks (isolated net-
works) and the associated hub-genes (a gene that has a maxi-
mum number of interactions in a subnetwork) for the gene
signature construction that can be used for the ER+/ER–
breast cancer classification paradigm. We call our algorithm
robust reliability based hub gene expression (RRHGE) algo-
rithm. The evaluation of our approach and the experimental
comparisons with other existing approaches demonstrated
that RRHGE significantly increased the classification perfor-
mance. Further, in addition to the statistical evaluations, thor-
ough biological evaluations were also conducted to show the
effectiveness and stability of the proposed algorithm.

This paper is organized as follows. The training and test-
ing sets used in this study are defined in Section 2. The pro-
posed RRHGE algorithm is defined in Section 3. Statistical
validation with patient classification results and biological
validation are presented in Section 4. Finally, we conclude
this paper in Section 5.

2. Materials

Wedownloaded six PPI datasets (BIOGRID, INTACT,MINT,
DIP, BIND, and HPRD) and five breast cancer microarray
gene expression datasets (GSE7390, GSE6532, GSE21653,
GSE11121, and van de Vijver) and mapped the proteins to
the genes in the microarray gene expression dataset to con-
struct the gene interaction network.We integrated four of the
microarray gene expression datasets, namely, GSE7390,
GSE6532, GSE21653, and GSE11121, to increase the dataset
size, while the fifthmicroarray dataset, namely, van de Vijver,
was used as independent testing dataset. Six training sets were
then generated from the integrated dataset for the extraction
of the subnetwork based gene signatures, which is a set of
genes that show stability not only on a specific dataset but also
across multiple datasets that have distinct platforms. Two
testing sets (the Desmedt (GSE7390) [20] and van de Vijver
[11]) were also used for evaluating the algorithm’s perfor-
mance.The details are presented in the following subsections.

2.1. Breast Cancer Gene Expression Datasets. We used five
publicly available breast cancer microarray gene expression
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Table 1: Microarray datasets used in this study.

∗Desmedt et al. [20]
(GSE7390)∗∗

van de Vijver et al.
[11]∗∗

∗Loi et al. [21]
(GSE6532)

∗Sabatier et al.
[22]

(GSE21653)

∗Schmidt et al. [23]
(GSE11121)

Platform HG-U133A Agilent human
genome

HG-U133A,
HG-U133B

HG-
U133Plus2.0 HG-U133A

Samples 198 295 327 255 200
ER

ER+ (no. of samples) 134 226 263 150 156
ER− (no. of samples) 64 69 45 102 44

Tumour grade
Grade 1 (no. of samples) 30 — 52 44 29
Grade 2 (no. of samples) 83 — 158 88 136
Grade 3 (no. of samples) 83 — 57 116 35

Metastasis Free Survival
Yes (no. of samples) 62 101 70 81 46
No (no. of samples) 136 194 224 160 154

Age (in Years)
≤40 (no. of samples) 42 — 19 49 —
41–70 (no. of samples) 156 — 241 171 —
>70 (no. of samples) 0 — 55 34 —
Average (in Years) 46 — 59 54 —

Total Samples 1253 ( 929 (ER+) and 324 (ER−))
Total samples selected in
our Study (on the basis of
histologic grade and
receptor status)

958 (703 (ER+) and 255 (ER−))

Patients with missing histologic grade and estrogen receptor status based information are excluded from the training sets. ∗The datasets used in our training
sets; ∗∗The testing sets.

datasets by considering the factors in the dataset, that is,
estrogen-receptor status (ER+ and ER−), histologic grade
(Grade 1, Grade 2, and Grade 3), overall survival (OS), and
distant metastasis free survival (DMFS). In our study, 703
ER+ samples and 255 ER− samples were used for experi-
mental analysis (selected on the basis of availability of above
criterion), with a total of 958 samples. The detailed informa-
tion regarding the size of the samples is shown in Table 1.

Themicroarray gene expression datasets for breast cancer
were downloaded from the National Center for Biotechnol-
ogy Information (NCBI) Gene Expression Omnibus (GEO)
[24] on April 1, 2012; then, gene expression values of each
dataset were normalised (or rescaled) using the formula:

𝑔

𝑖

𝑛
=

𝑔

𝑖

𝑛
− 𝑔

min(𝑖)

𝑔

max(𝑖)
− 𝑔

min(𝑖) ,
(1)

where𝑔𝑖
𝑛
defines the gene expression value of the 𝑖th feature in

the sample 𝑛, 𝑔

min(𝑖) and 𝑔

max(𝑖) define the minimum and
maximum gene expression values for the 𝑖th feature in a data-
set, respectively.This normalizationmapped the gene expres-
sion values generated from different protocols into a uniform
framework, so that the impact of the different protocols on
the data integration can be reduced. Compared with the orig-
inal data, the normalized gene expressions did not show any
significant differences among study objects.The datasets were

converted from probe expression to gene expression, as
described by Reyal et al. [25]. The probes that begin with
“AFFX” are then deleted because there are no associated genes
for these probes.

2.2. Transformation of PPIDatasets. Protein interactions play
important roles in a number of biological processes where the
physiological interactions of several proteins are indulged in
the construction of biological pathways, such as signal trans-
duction pathways or metabolic pathways. We incorporated
six PPI datasets into our study, namely, Biological General
Repository for Interaction Datasets (BIOGRID) [26],
INTACT [27], the Molecular Interaction Database (MINT)
[28], Database of Interacting Proteins (DIP) [16], the Bio-
molecular Interaction Network Database (BIND) [29], and
Human Protein Reference Database (HPRD) [17]. The genes
in the microarray dataset were then used to construct the
gene interaction network from these PPI datasets using the
Universal Protein Resource Database [30]. The self-inter-
actions and the duplicate edges within the constructed gene
interaction network were removed, as they did not have any
significant meaning in terms of interaction with other genes.
The resulting gene interaction network from the above
mentioned six PPI datasets contains 13,012 unique genes with
69,914 unique interactions among them. All the protein inter-
action datasets were downloaded on April 19, 2013.
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The PPI datasets contain a large number of protein inter-
actions and are considered a rich information source from
which biological knowledge and facts can be discovered, such
as classifying ER+/ER− breast cancer subclasses or classifying
patients according to their treatment outcome. However, the
analyses of high-throughput protein interaction data signifies
that protein interactions identified by experiments usually
contain false-positive interactions (the interactions takes
place in the experimental dataset but never happen in real
biological processes or cells). It is believed that nearly 30–50%
of interactions identified by experiments were biologically
relevant, with few overlaps among protein interaction data-
sets from various resources [18]. As a consequence, discov-
ered biological knowledge or inferred facts from the protein
interaction database may be biased.Therefore, the identifica-
tion and extraction of reliable protein interactions from the
original published protein interaction datasets are considered
an important yet challenging issue. With this attention, the
quality of the protein interaction datasets can significantly
improve and as a result strengthen the confidence of the dis-
covered biological knowledge and facts. Since gene interac-
tion networks are constructed from PPI networks, we com-
bine three distinct reliability metrics to form a weighted reli-
ability metric (𝜇) to measure the reliability of gene interac-
tions. In this paper, the details are presented in Section 3.1.

2.3. Training and Testing Sets. To resolve the “curse of dimen-
sionality issue,” we used five breast cancer gene expression
datasets across four unique platforms in order to increase the
sample size and also to balance the other factors, as men-
tioned in Table 1. The integrated dataset was constructed
by merging four microarray datasets, namely, GSE7390,
GSE6532, GSE21653, and GSE11121, which contained 958
samples. Six training sets were then constructed from the
integrated dataset by initially dividing the integrated dataset
on the basis of estrogen receptor status, that is, ER+ and ER−.
Then, we divided the ER+ and ER− set on the basis of his-
tologic grade, that is, Grade 1, Grade 2, and Grade 3, which
led to three training sets for each estrogen receptor status,
thereby, generating six training sets that were used for deriv-
ing the estrogen-receptor based gene signatures.

Sotiriou et al. [8] observed that breast cancer datasets
based on histologic grades had distinct gene expression pro-
files. In our study, the generation of six training sets on the
basis of estrogen receptor status and the histologic grade re-
duced the bias in the datasets and increased the correlation of
gene expressions within them. The six training sets used in
our algorithm constructed effective gene signatures for two
estrogen-receptor subtypes of breast cancer, as presented in
Section 3. The subnetwork based gene signatures generated
from the training sets were then tested on two testing sets (the
Desmedt dataset and the van de Vijver dataset). The results
are presented in Section 4.

3. Algorithm

Our main focus was to extract the gene subnetworks that
showed highly correlated gene expressions with the estrogen

receptor status. For this the reliable gene expression metric
was established to target real gene interactions that occur in
biological processes and which are related to ER+/ER− breast
cancers. By using the generated reliable gene expressions, the
subnetwork based gene signatures that were extracted can
classify ER+/ER− breast cancer patients. All the statistical
validation was performed using 𝑅 Statistical Toolbox [31].
Details of our algorithm are presented in the following sub-
sections.

3.1. Reliability Metrics. For an interaction between any two
genes, we combined three reliability measures to assess reli-
ability in terms of three distinct factors, that is, data sources
(e.g., HPRD), experimental methods (e.g., two hybrids), and
level-based interaction partners (e.g., level-2 interaction part-
ners of a gene). The corresponding reliability measures are
named 𝑅

1
, 𝑅
2
, and 𝑅

3
(data sources, experimental methods

and interaction partners, resp.).These reliabilitymeasures are
defined below.

3.1.1. Data Source-Based Reliability (𝑅
1
). Our first reliability

measure is concerned with data sources that contain protein-
protein interactions and from which protein interactions are
mapped to the interaction of genes. In our study, we consid-
ered data sources, such as those defined in Section 2.2. The
basic aim of 𝑅

1
is to evaluate the weight of gene interactions

across data sources. For an interaction 𝑦 between any two
genes (𝑎, 𝑏), 𝑅

1
is calculated by counting the number of data

sources that contain 𝑦; that is,

𝑅

(𝑦)

1
=

𝑆

∑

𝑛=1

𝐷

(𝑦)

𝑛
, (2)

where

𝐷

(𝑦)

𝑛
= {

1, if data source 𝑛 contains interaction 𝑦,

0, otherwise.
(3)

Here, 𝑆 defines the number of data sources. The rationale for
this definition is the more data sources the interaction is reg-
enerated in, the reliable it is. Therefore, the higher the 𝑅

1
IS,

the more reliable the gene interaction is.

3.1.2. Experimental Method-Based Reliability (𝑅
2
). The sec-

ond reliability measure evaluates the reliability of an interac-
tion on the basis of the experimental methods.The basic idea
is the same as 𝑅

1
; however, this time we consider how many

experimentalmethods (e.g., affinity-chromatography, in vivo,
in vitro) identified a particular interaction. Therefore, 𝑅

2
is

defined as the reliability measure which evaluates the reliabil-
ity of any interaction𝑦between (𝑎, 𝑏) by counting the number
of experimental methods that identified 𝑦; that is,

𝑅

(𝑦)

2
=

𝑁

∑

𝑛=1

𝐸

(𝑦)

𝑛
, (4)
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where

𝐸

(𝑦)

𝑛
=

{

{

{

{

{

1, if experimental method 𝑛

identified interaction 𝑦,

0, otherwise.
(5)

Here, 𝑁 defines the number of experimental methods. The
higher the 𝑅

2
of an interaction is, the more reliable the gene

interaction is.

3.1.3. Interaction Level-Based Reliability (𝑅
3
). The third relia-

bilitymeasure evaluates the reliability by considering the gene
partners of two directly interacting genes. In a gene inter-
action network, if any two interacting genes have a higher
number of level-2 neighbours (if any gene 𝑎 is interactingwith
gene 𝑏, then 𝑏 is level-1 neighbour of 𝑎, and the interaction
partners of 𝑏 are level-2 neighbours of 𝑎), they are considered
more reliable among those with a lower number of level-2
neighbours [32, 33].The principle behind this reliability mea-
sure is that the interacting gene pairs that interact with the
genes, but which have no further interactions, are more likely
to be an unreliable or false-positive interaction. However, if
they have further interactions, they are seen as reliable inter-
actions because the biological processes performed their
functions in the group of interactions that is more complex
compared to others.

Therefore, 𝑅

3
is defined as the reliability measure that

evaluates the reliability of any interaction 𝑦 between (𝑎, 𝑏) by
counting the number of their level-2 neighbours; that is,

𝑅

(𝑦)

3
=

𝑀

∑

𝑛=1

[𝐼

𝑎

𝑛
+ 𝐼

𝑏

𝑛
] , (6)

where

𝐼

𝑎

𝑛
= {

1, if gene 𝑛 is level-2 neighbour of gene 𝑎,

0, otherwise.
(7)

Here, 𝑀 defines the total number of genes in the interaction
network. For any interaction 𝑦, 𝑅

3
is can be evaluated, where

the higher the value of 𝑅
3
, the more reliable the gene inter-

action is and vice-versa.

3.1.4. Weighted Reliability Measure. After evaluating the reli-
ability measure based on data sources (𝑅

1
), experimental

methods (𝑅
2
), and level-based interaction partners (𝑅

3
), we

performed two major steps. First, each of the reliability mea-
sures was normalised (by using the formula similar to (1))
across gene interactions, where the normalized reliabilities
are within the range [0, 1].The essentiality of normalisation is
to propose a global scale of reliability that defines the reliabil-
ity strength of each reliability measure within that scale. For
simplicity, we still denote the normalised reliabilities as 𝑅

1
,

𝑅

2
, and 𝑅

3
, which were then used to construct multivariate

linear regression model to form the weighted reliability
measure (𝜇) defined as

𝜇

(𝑦)

= 𝛽

0
+

3

∑

𝑛=1

𝛽

𝑛
𝑅

(𝑦)

𝑛
, (8)

where 𝜇

(𝑦) defines the weighted reliability measure for 𝑦th
interaction,𝛽

0
defines the constant, and𝛽

𝑛
defines the regres-

sion coefficient for the 𝑛th reliability measure (i.e., 𝑅(𝑦)
𝑛

vari-
able). Here, 𝑅(𝑦)

𝑛
is a promoting factor if 𝛽

𝑛
> 0, and 𝑅

(𝑦)

𝑛
is a

supressing factor if 𝛽
𝑛
< 0. A complete model with a 𝑃 value

less than or equal to 0.05 was considered to be statistically
significant.

3.2. Gene Expression Metrics. For each of the 𝑘 training sets,
the gene expression values of each gene are summarized by
calculating the generalized mean of gene expressions (𝐺)
across the samples, which is defined as

𝐺

(𝑎)

=
√

1

𝑛

𝑛

∑

𝑖=1

[𝑔

𝑎

𝑖
]

2

,

(9)

where 𝑛 is the total number of samples, and 𝑔

𝑎

𝑖
defines the

gene expression value of gene 𝑎 in the 𝑖th sample. Next, each
gene in our gene interaction network is assigned a summa-
rized value from each training set using (9), thus leading to a
total of 𝑘 gene interaction networks (from 𝑘 training sets).
Finally, in each gene interaction network, each interaction 𝑦

between (𝑎, 𝑏) is then assigned a merged gene expression (𝜎)
value from their interacting genes, which is defined as

𝜎

(𝑦)

=

2 ∗ 𝐺

(𝑎)

∗ 𝐺

(𝑏)

𝐺

(𝑎)
+ 𝐺

(𝑏)

.

(10)

Since the gene interactions are not reliable and contain many
false-positive interactions that do not take place in real
biological processes (see Section 2.2), therefore, we need to
combine the 𝜎 values and the reliability measure 𝜇 to accu-
rately identify the reliable subnetwork based on differentially
expressed genes.

3.3. Reliable Gene Expression Metrics. To construct the gene
network that signifies the reliability of each gene interaction
with their associated gene expressions, we incorporated the
proposed reliability measure (𝜇) with the merged gene
expression value (𝜎) of gene interactions and called it reliable
gene expression (𝜃). As the 𝜇 measure assesses the reliability
of each gene interaction on the basis of three vital criteria, the
𝜎 measure assesses the integrated gene expression of each
gene interaction.

However, before defining the 𝜃 metric, we need to define
the correlation between𝜇 and𝜎 to evaluatewhether or not the
𝜇 and 𝜎 of any interaction 𝑦 between (𝑎, 𝑏) are positively cor-
related. We evaluate the correlation coefficient (𝛿) as

𝛿

(𝑦)

=

(𝜇

(𝑦)

− 𝜇) (𝜎

(𝑦)

− 𝜎)

√

(𝜇

(𝑦)
− 𝜇)

2

(𝜎

(𝑦)
− 𝜎)

2

, (11)

where 𝜇 and 𝜎 represent the 𝜇 and 𝜎 mean of all the inter-
actions in a training set, respectively.

With this measure (11), the relationship between 𝜇 and 𝜎

can be evaluated, that is, whether it is positively correlated
(𝛿(𝑦) = 1), negatively correlated (𝛿(𝑦) = −1), or not correlated
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Figure 1: The eight subnetworks for any training set 𝑑. In each
subnetwork, the symbol “⨂” shows the hub-gene/s, which has the
highest number of interactions among other genes. In subnetwork
𝑆

6
, two hub-genes are identified, as they both have the maximal and

equal number of interactions; that is, each gene has 2 interactions.

at all (𝛿(𝑦) = 0). We are interested in extracting the positively
correlated terms as they are more strongly related to patterns
that can construct gene signatures that qualitatively classify
the ER+/ER− subtypes of breast cancer. In other words, for a
gene interaction𝑦, if the relationship strength of their 𝜇 and𝜎

shows 𝛿

(𝑦)

= 1, then a gene interaction has more chances of
being biologically true and related to the phenotype.

Once the positively correlated interactions are extracted
for each of the six training sets, the 𝜃 can then be evaluated.
The 𝜃 of any interaction 𝑦 can be evaluated by performing
multivariate linear regression analysis of 𝜇 and 𝜎, which is
represented as

𝜃

(𝑦)

= 𝛽

0
+ 𝛽

1
(𝜇

(𝑦)

) + 𝛽

2
(𝜎

(𝑦)

) , (12)

where,𝛽
1
and𝛽

2
represents the regression coefficients for𝜇(𝑦)

and 𝜎

(𝑦), respectively. Once evaluated, the significant gene
interactions (with𝑃 value< 0.05) are extracted for each train-
ing set. These are then used to construct the gene signatures
to classify the samples based on the ER+/ER− status. Details
are presented in the following subsections.

3.4. Robust Reliability Based Hub Gene Expression Algorithm
(RRHGE). Significant positively correlated reliable gene
interactions are used to construct the discriminative subnet-
works for each training set by using the Cytoscape [34].The 𝜃

values of the interactions in the discriminative subnetworks
are then taken for the hub-gene evaluation, where the hub-
gene is the gene in the subnetwork that contains maximal
interactions amongst other genes. For each training set, it
may be possible that several subnetworks exist, with each sub-
network used for the hub-gene evaluation. Figure 1 illustrates
this concept.

For each of the 𝑘 training sets, once the subnetwork based
hub-genes are identified, two major steps are performed.
First, the subnetwork score (𝜆) is calculated for each subnet-
work in a training set by using (13); that is,

(𝜆)

𝑂
𝑛

= ∑

𝑦∈𝑌
𝑛

𝜃

(𝑦)

, (13)

where, 𝑂
𝑛
(𝑛 = 1, 2 . . . , 𝑁) is any subnetwork, and 𝑌

𝑛
is the

set of all gene interactions in 𝑂

𝑛
. A subnetwork with a

maximum subnetwork score (𝜆) is chosen and retained for
further analysis. A maximum 𝜆 based subnetwork is chosen
because that subnetwork shows highly connected reliable
gene interactions amongst other subnetworks for a given
training set and is believed to indulge in essential real biolog-
ical processes that relate to cancers. By using this step, only the
subnetwork with the maximum 𝜆 is chosen, and other sub-
networks are ignored. However, other subnetworks might
contain essential genes which have the strength to be effective
and stable gene signatures.Therefore, to identify those signifi-
cant genes, the following operations are performed,which use
hub-gene topology.

For each training set, hub-genes with their interactors for
each subnetwork are identified (as shown in Figure 1). Then,
the hub-gene score (𝜒) is evaluated as

(𝜒)

𝑠
𝑛

=

1









𝐻

𝑛









∑

ℎ∈𝐻
𝑛

𝜃

(ℎ)

, (14)

whereℎ is an interaction between any genewith the hub-gene,
and |𝐻

𝑛
| stands for the number of gene interactions that occur

for the hub-gene in 𝑂

𝑛
. In other words, for a given subnet-

work, the hub-score is the average 𝜃 of the genes that interact
with the hub-gene. In this way, the hub-score for each sub-
network in a training set can be evaluated.

The associated hub-gene score (𝜒) of the chosen subnet-
workwith themaximum subnetwork score (𝜆) is then used as
a threshold for extracting significant gene interactions. This
can be done by comparing the𝜒 value of a chosen subnetwork
with all of the other 𝜒 from other subnetworks in a given
training set. If any of the other subnetworks have 𝜒 greater
than the 𝜒 of the chosen subnetwork, their hub-gene with
their interactors is chosen. The reason for selecting the hub-
gene as the benchmark is that a hub-gene has the maximum
number of interactions in a given subnetwork, with high
probability these interactions will act as driver genes for can-
cers that indulge in several essential biological functions and
processes [35]. Chang et al. [36] discovered that hub-genes are
significantly related tometastasis-related genes. Also, Jonsson
and Bates [37] showed that cancer-associated genes, which
are translated from human proteins, show an increase in the
number of interactors they interact with and also show them
working as the central hubs. Therefore, hub-gene topology is
used to extract the significant genes from the subnetworks
(other than the chosen subnetwork) of a given training set.

Finally, for each training set, the subnetwork list, that is, a
subnetwork chosen from (13) and the hub-genes with their
interactors chosen from (14), is retained to extract the gene
signature to classify ER+ and ER− breast cancer subtypes.
Algorithm 1 shows the pseudocode of these steps.

3.5. Classification Process and Performance Assessment. First,
the common genes are extracted from the subnetwork lists of
ER+ training sets. Operations are similar for the ER− training
sets. After that, duplicates were removed between the com-
mon genes of ER+ and ER− subnetwork lists. Finally, the
RRHGE gene signature was constructed that consists of ER+
subnetwork lists, called ER+ gene signature (for ER+ subtype)
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// Let 𝑅
𝐺𝑆

defines the set of subnetwork based-gene signature, 𝐻
𝑆
𝑛

denotes the hub-gene with their
interactors in subnetwork 𝑆

𝑛
and 𝐷

𝑘
defines the 𝑘th training set.

FOR 𝐷

𝑘
(𝑘 = 1, 2, . . . , 𝐾)

{

Initialize: 𝑅
𝐺𝑆

= 0

//Step 1. Evaluate 𝑆𝑆 for all subnetworks and identify the top 𝑆𝑆 based subnetwork.
{

FOR each subnetwork 𝑆

𝑛
from the list of available subnetworks in 𝐷

𝑘

{

COMPUTE (𝑆𝑆)

𝑆
𝑛

}

ENDFOR
IF (𝑆𝑆)

𝑆
1

≥ (𝑆𝑆)

𝑆
2

. . . ≥ (𝑆𝑆)

𝑆
𝑛

THEN 𝑅

𝐺𝑆
= 𝑅

𝐺𝑆
∪ {𝑆

1
}

AND remove 𝑆

1
from the list of available subnetworks in 𝐷

𝑘

}

//Step 2. Evaluate 𝐻𝑆 for all subnetworks and identify the significant hub-genes with their interactors.
{

COMPUTE (𝐻𝑆)

𝑅
𝐺𝑆

FOR each subnetwork 𝑆

𝑛
from the list of available subnetworks in 𝐷

𝑘

{

COMPUTE (𝐻𝑆)

𝑆
𝑛

{

IF (𝐻𝑆)

𝑆
𝑛

≥ (𝐻𝑆)

𝑅
𝐺𝑆

THEN 𝑅

𝐺𝑆
= 𝑅

𝐺𝑆
∪ {𝐻

𝑆
𝑛

}

}

}

ENDFOR
}

}

RETURN 𝑅

𝐺𝑆

END

Algorithm 1: Pseudocode for the RRHGE algorithm.

andER− subnetwork lists, called ER− gene signature (for ER−

subtype).
The RRHGE gene signature, which consists of ER+ and

ER− gene signatures, is then used to classify ER+/ER− sam-
ples in the testing sets by transforming each sample 𝑗 into ER+
score (𝑆

+
) and ER− score (𝑆

−
) using

𝑆

+
(𝑗) = ∑

𝑔∈𝑋

𝑒 (𝑔, 𝑗)

|𝑋|

,

𝑆

−
(𝑗) = ∑

𝑘∈𝑌

𝑒 (𝑘, 𝑗)

|𝑌|

,

(15)

where 𝑋 = {genes of the ER+ gene signature}, 𝑌 = {genes of
the ER− gene signature}, | ∙ | stands for the number of set ele-
ments, and 𝑒(𝑔, 𝑗) is the expression of gene 𝑔 in sample 𝑗.
With these two scores each sample 𝑗 can bemapped as a point
in a two-dimensional feature spaceR2, then, the classification
was done by three-nearest neighbour (3NN) classifier with 𝐿

1

distance [38].
Since, microarray datasets usually contain unequal ratio

between number of ER+ and ER− samples; therefore accu-
racy is not a good criteria to measure classification perfor-
mance of an algorithm in the testing datasets. Rather, we used

a classification performance measure, called matthews coef-
ficient correlation (MCC) for comparison of different algo-
rithms [39]. If TP represents the number of true positives,
TN represents the number of true negatives, FP represents
the number of false positives, and FN represents the number
of false negatives, then the MCC can be evaluated as

MCC =

(TP × TN) − (FP × FN)

√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)

.

(16)

In the above equation, if any of the four sums is 0 then the
denominator is set to 1, since this results in an MCC equal to
zero. In general, MCC value of 1 reflects perfect prediction,−1
reflects false prediction, and 0 reflects random prediction.
MCC is a recommendedmeasure for evaluating classification
performance in comparison with other measures [38, 40].

4. Results

As indicated in Section 2.2, our gene interaction network con
tained 13,012 unique genes with 69,914 unique interactions
between them, generated from six data sources. For evaluat-
ing the reliability of the gene interaction network, the
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Table 2: RRHGE gene signature size.

Training
set ER+ ER−

Subnetwork list
(no. of subnetworks)

Subnetwork list
(no. of subnetworks)

Grade 1 45 31
Grade 2 35 37
Grade 3 39 34
Final gene
signature set 326 145

Our gene signature set consists of 471 genes that compose 326 genes for the
ER+ subtype and 145 genes for the ER− subtype.

Table 3: Regression coefficients of 𝜇 (𝛽
1
) and 𝜎 (𝛽

2
) in each of the

six training sets, respectively.

Training set 𝛽

0

∗

𝛽

1
𝛽

2
𝑃 value

ER+ (Grade 1) −8.06𝐸 − 16 0.4601 0.7066 <0.001
ER+ (Grade 2) 3.64𝐸 − 15 0.4878 0.6846 <0.001
ER+ (Grade 3) 9.81𝐸 − 16 0.4650 0.7094 <0.001
ER− (Grade 1) 1.49𝐸 − 15 0.4273 0.7274 <0.001
ER− (Grade 2) −2.68𝐸 − 15 0.4484 0.7199 <0.001
ER− (Grade 3) 1.20𝐸 − 15 0.4673 0.7078 <0.001
∗Here, 𝛽

0
in each training set represents very small value and so assigned 𝛽

0

as zero.

weighted reliability measure (𝜇) was constructed (see (8)).
The “stats” package of the 𝑅-project [31] has been used to
evaluate the regression coefficients of 𝜇; that is,

𝜇

(𝑦)

= 0.7138 (𝑅

(𝑦)

1
) + 0.2912 (𝑅

(𝑦)

2
) + 0.3072 (𝑅

(𝑦)

3
) .

(17)

Here, 𝛽
0
is very small, that is, −4.83𝐸−15, and so we assigned

𝛽

0
as zero. The complete model was significant (𝑃 value <

0.001).With thismeasure (17), the higher the 𝜇

(𝑦) value is, the
higher the reliability of the interaction is.

Next, the integrated microarray dataset of 1,253 samples
was constructed (see Table 1).The samples with repetitions or
a missing histologic grade and estrogen receptor status based
informationwere excluded. 958 samples remained, consisting
of 703 ER+ samples and 255 ER− samples. Six training sets
were then constructed from the integrated dataset, that is,
three for ER+ and three for ER− (i.e., Grade 1, Grade 2, and
Grade 3, resp.), which generated six gene interaction net-
works with their merged gene expression (𝜎) value (see
Section 3.2 for details).

Further, the 𝜇 and 𝜎 were incorporated to construct
reliable gene expression (𝜃) (see (12)) for each of the six train-
ing sets, by using multivariate linear regression model with
their regression coefficients as shown in Table 3.

Therefore, by applying RRHGE algorithm, the final gene
signature set consists of 471 genes, that is, 326 distinct genes
for the ER+ subtype (called ER+ gene signature) and 145 for
the ER− subtype (called ER− gene signature) (see Table 2),
which can classify the samples as either ER+ or ER−, as
defined in Section 3.5. The complete algorithm workflow
is shown in Figure 2. The Supplementary Table S1 (shown

in Supplementary Material available at http://dx.doi.org/
10.1155/2014/362141) lists the genes in our RRHGE gene
signature.

The classification results on the two testing datasets, in
addition to a comparison with previously established algo-
rithms, are detailed in the following subsections.

4.1. Classification Performance. To test the classification per-
formance of the gene signatures, we applied themon two test-
ing sets, that is, Desmedt and van de Vijver datasets.We com-
pared the RRHGE algorithm based on gene signature with
RRHGE-H (i.e., gene signatures extracted from the six train-
ing sets by considering only hub-genes), RRHGE-HI (i.e., by
considering only hub-genes with their interactions in each of
the six training sets), RRHGE-TSN (i.e., by considering only
top subnetwork in each of the six training sets), and also with
five other previously existing algorithms, these are: the 70-
gene signature (Mammaprint) [11], the 76-gene signature [12],
the Genomic Grade Index (GGI) [8], the Interactome-Trans-
criptome Integration (ITI) [7], and the Hub-based Reliable
Gene Expression (HRGE) [19]. Table 4 shows the detailed
classification results of RRHGE, along with RRHGE-H,
RRHGE-HI, RRHGE-TSN, and other existing algorithms, and
Figure 3 shows the MCC comparison of algorithms in
Desmedt and van de Vijver datasets, respectively. The results
show that the RRHGE approach was able to achieve better
results andwas superior if considering only hub-genes in each
of the six subnetworks, if considering hub-genes along with
interactions in each of the six subnetworks, or if considering
only top-subnetwork in each of the six subnetworks. Also,
RRHGE is superior to other existing algorithms.

Specifically, the results show that our RRHGE approach
achievedMCC of 0.87 and 0.70 in the testing sets of Desmedt
and van de Vijver, respectively. On the Desmedt dataset,
RRHGE gave better MCC as compared to RRHGE-H which
gave 0.53, RRHGE-HI which gave 0.54, RRHGE-TSN which
gave 0.80, HRGE which gave 0.51, ITI which gave 0.27, GGI
which gave 0.12, 76 g which gave −0.02, and 70 g which gave
−0.14. Amongst the existing algorithms, HRGE showed the
second best MCC after RRHGE on Desmedt dataset. Similar
results can be observed from the van de Vijver dataset, which
demonstrated theRRHGE is still superior to other algorithms
based on MCC. However, on the van de Vijver dataset, 76 g
showed the second bestMCCafterRRHGE.This suggests that
the classification performance of other existing gene signa-
tures is heavily dependent on datasets and other factors, such
as microarray platforms.We believe the dependency on data-
sets can be reduced and the classification performance can be
strengthened by increasing the training compendia and in-
corporating multiple platforms across multiple datasets.

In the testing sets of Desmedt and van de Vijver, the
HRGE, ITI, GGI, 70 g, and 76 g MCC patterns varied signifi-
cantly. In other words, these algorithms were not stable
enough to obtain similar classification results in distinct data-
sets, which indicates that these algorithms were biased
towards the dataset used for classification analysis. However,
the RRHGE subnetwork based algorithm showed stable clas-
sification performance in both testing datasets by achieving
the highest MCC amongst other representative algorithms.

http://dx.doi.org/10.1155/2014/362141
http://dx.doi.org/10.1155/2014/362141
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Gene expression matrix 
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Genes

(Section 2.3)
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datasets (Grade   1,     2, and 3)
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datasets, respectively.
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Calculate 𝜇 of each
interaction in each
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(Section3.1)

Calculate 𝜎 of each
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dataset (Section 3.2)

Calculate 𝜃 of each
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of 471 genes (326 for ER+ and

145 for ER− subtypes)
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Classifcation results of each
testing dataset by using our
gene signature with 3NN.

(Section4)

each training

Figure 2: The proposed algorithm workflow. In our study, six training sets were used to generate the robust RRHGE gene signature, and two
testing sets were used to classify the ER+/ER− breast cancer samples. The RRHGE gene signature set consists of 471 genes (326 for ER+ and
145 for ER− subtype).

We also noticed that the RRHGE-TSN shows little
lower classification performance compared with RRHGE (see
Table 4). Therefore, if the computational costs is a concern,
then RRHGE-TSN can serve the optimal classifier, since it
requires only the top subnetwork. However, if classification
performance is of the prime concern, which is the initial aim
of our study, then RRHGE serves as the best classifier.

Since ER+ subtype generally shows higher survival rate of
patients compared to ER−, so we called it a good prognosis
group.However, ER− subtype shows lesser survival rate and is
also more aggressive compared to ER+, so we called it a poor
prognosis group [41, 42]. Now, in order to determine if the
RRHGE gene signature is able to separate the ER+ (good pro-
gnosis) patients group and ER− (poor prognosis) patients
group using the distant metastasis free survival rate (DMFS)
and overall survival rate (OS) information in the microarray
dataset, we performed Kaplan-Meier survival analysis.

The “survival” package of the𝑅-project [31] has been used
to perform the survival analysis between the ER+ and ER−

patient groups for the Desmedt dataset, which generated the
DMFS and OS survival curves of RRHGE, as shown in
Figure 4.

We first performed the Kaplan-Meier survival analysis for
distant metastasis free survival ER+ and ER− patient groups.
The log-rank statistical test gave 𝑃 value of 3.15𝐸 − 08, which
was statistically significant (i.e., 𝑃 < 0.001) and showed good
separation between the two patient groups (Figure 4(a)).
Similarly, the Kaplan-Meier survival analysis of overall sur-
vival for ER+ and ER− patient groups showed a 𝑃 value of
1.47𝐸 − 05, suggesting good separation between the two
patient groups (Figure 4(b)). These results validate that the
RRHGE gene signature is effective in separating patients into
two prognosis groups on the basis of the DMFS rate and the
OS rate, which can determine the patient’s expectancy level
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Table 4: Classification results of the RRHGE gene signature and other existing gene signatures on two testing sets, for example, (A) the
Desmedt dataset and (B) the van de Vijver dataset.

Algorithm 𝑁 TP FN TN FP SN SP ACC MCC

(A) Desmedt

GGI 190 84 45 29 32 0.651 0.475 0.595 0.121
70 g 190 53 76 27 34 0.411 0.443 0.421 −0.137
76 g 190 78 51 23 38 0.605 0.377 0.532 −0.018
ITI 190 95 34 33 28 0.736 0.541 0.674 0.271

HRGE 190 115 14 36 25 0.891 0.590 0.795 0.511
RRHGE-H 190 103 26 46 15 0.798 0.754 0.784 0.532
RRHGE-HI 190 100 29 48 13 0.775 0.787 0.779 0.535
RRHGE-TSN 190 119 10 54 7 0.922 0.885 0.911 0.798

RRHGE 190 123 6 56 5 0.953 0.918 0.942 0.868

(B) van de Vijver

GGI 150 77 37 17 19 0.675 0.472 0.627 0.131
70 g 150 71 43 19 17 0.623 0.528 0.600 0.131
76 g 150 72 42 20 16 0.632 0.556 0.613 0.162
ITI 150 59 55 19 17 0.518 0.528 0.520 0.039

HRGE 150 70 44 20 16 0.614 0.556 0.600 0.146
RRHGE-H 146 92 22 14 18 0.807 0.438 0.726 0.235
RRHGE-HI 150 94 20 22 14 0.825 0.611 0.773 0.414
RRHGE-TSN 150 101 13 26 10 0.886 0.722 0.847 0.592

RRHGE 150 105 9 28 8 0.921 0.778 0.887 0.692
Here, N defines the total number of samples, TP defines true positive (ER+ samples predicted as ER+), TN defines true negative (ER− samples predicted as
ER−), FP defines false positive (ER− samples predicted as ER+), FN defines false negative (ER+ samples predicted as ER−), SE defines sensitivity, SP defines
specificity, ACC defines accuracy, and MCC defines Matthews coefficient correlation. For simplicity, we represent the Genomic Grade Index as GGI, 70 gene
signature as 70 g, 76 gene signature as 76 g, Interactome-Transcriptome Integration as ITI, and Hub-based Reliable Gene Expression as HRGE.. The RRHGE
subnetwork based gene signature provides superior performance in both (A) Desmedt and (B) van de Vijver dataset.
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Figure 3: Bar charts represent the MCCs of various classification
algorithms on Desmedt and van de Vijver datasets, respectively.

for the event (distant metastasis or death). Therefore, we can
identify the patients group that may require more or less
aggressive treatment strategy.

To illustrate the behavioural pattern of ER+ and ER−

gene signatures of RRHGE on the Desmedt dataset, heatmaps
are drawn that show the differential expressions of genes
in ER+ samples and ER− samples. Although the genes in
a gene signature group seem correlated with two estrogen-
receptor based subtypes, no single gene shows uniformity of
expressions across samples (see Supplementary Figure S1).

This illustrates the significance of the gene signatures as a
multigene classification method.

Using the heatmaps, distinct gene expression patterns can
be visualised for the ER+ and ER− breast cancer samples.
From Supplementary Figure S1, it is true to say the RRHGE
gene signature is highly instructive in distinguishing the
behavioural patterns of ER+ and ER− breast cancer subtypes.

4.2. Signature Stabilitywith ExistingGene Signatures. As indi-
cated by Garcia et al. [7], the gene signatures of van de Vijver
andWang show threemutual genes among them,which com-
prise less than 5% of all the genes in their signatures. We per-
formed the gene signature stability analysis of RRHGE with
other existing algorithms based gene signatures, as men-
tioned in Section 4.1.When comparedwith the ITI gene sign-
ature, 175 genes were found in common, corresponding to
nearly 37% of genes. Compared with the 70 gene signature,
only 3 genes were found in common andwith the 76 gene sig-
nature, only 2 genes were found in common. In addition, the
186-gene “invasiveness” gene signature (IGS) [43] was com-
pared with the RRHGE gene signature, and 10 genes were
found in common. These comparison results are shown in
Table 5. These small overlaps of genes signified that datasets
were biased, and possibly the genes in the gene signature were
not biologically relevant due to the algorithm’s limitations.

We discovered that these gene signatures extracted from
the subnetworks were able to achieve better results than the
gene signatures extracted from the gene lists, that is, non-
subnetwork based gene signatures. As ITI is a subnetwork
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Figure 4: Kaplan-Meier survival graphs for ER+ and ER− patient groups in the Desmedt dataset, using the RRHGE gene signature (similar
results achieved for van de Vijver dataset (data not shown)). A log-rank test was performed to evaluate the 𝑃 value, which signifies that the
lower the 𝑃 value is, the better the separation between the two prognosis groups is. (a) Incorporating the DMFS rate to distinguish between
ER+ or good prognosis groups (lower risk of distant metastasis) and ER− or poor prognosis groups (higher risk of distant metastasis). (b)
Incorporating the OS rate that distinguishes ER+ or good prognosis groups (lower risk of death) and ER− or poor prognosis groups (higher
risk of death). Both survival analysis graphs show good separation between the two prognosis groups, respectively.

Table 5: Number of overlapped genes of the RRHGE gene signature
with ITI, 76 g, 70 g, and IGS.

RRHGE overlapped genes (number (percentage))
ITI 175 (37.16%)
76 g 03 (00.64%)
70 g 05 (01.06%)
IGS 10 (02.12%)
The ITI gene signature shows the highest number of overlapping genes with
the RRHGE gene signature, as compared to other gene signatures.

based approach, we found that more than 35% of these genes
were in common with RRHGE. This is significantly greater
than the gene lists based gene signatures. This signifies that
subnetwork based gene signatures are able to achieve higher
classification performance (Table 4) and also shows higher
numbers of overlapped genes amongst other gene list based
gene signatures (Table 5). However, the overlap amongst sub-
network based gene signatures can be largely increased by
incorporating significantly larger numbers of training sets
with multiple platform types. Table 5 shows the number of
genes in the RRHGE gene signature that overlapped with
other gene signatures.

4.3. Biological Analysis of RRHGEGene Signature. To identify
the significant enriched gene ontology (GO) terms and path-
ways associated with the ER+ and ER− breast cancer sub-
types, the enriched biological process gene ontology terms [4]
and the KEGG pathways [5] were computed for each gene in

our gene signature using DAVID (the Database for Annota-
tion, Visualization, and Integrated Discovery) [44]. For each
gene, the DAVID output the enriched biological process GO
terms and the pathways associated with it by providing the 𝑃

values thatwere computedwith hyper geometric distribution.
Therefore, for all genes in the gene signature, their enriched
GO terms and pathways can be calculated with their 𝑃 values
in order to biologically validate the results.

First, we performed GO analysis. The Supplementary
Table S2 shows the enriched GO terms for the RRHGE gene
signature. From Table S2, it can be seen that the biological
process GO terms of our subnetwork based gene signatures
were correlated with the processes that were seen to be dis-
rupted in cancers such as apoptosis, cell death, DNA dam-
age response, insulin stimulus response, cell proliferation,
nuclear mRNA splicing via spliceosome, cell cycle regulation,
andmany others.This demonstrates that the biologicalmean-
ing of the gene signature is significant and highly associated
with the cancers. The genes associated with these significant
enriched GO terms are also shown in Supplementary Table
S2.

Next, we performed pathway analysis. The Supplemen-
tary Table S3 shows the enriched pathways for the RRHGE
gene signature. From Table S3, it can be seen that the path-
ways associated with the genes in the RRHGE gene signature
were correlatedwith cancers, such asATMsignaling pathway,
p53 signaling, focal adhesion class pathway, cellular aging and
immortality, and many others. The genes associated with
these significant enriched pathways are also shown in Sup-
plementary Table S3.
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Many of the genes in the RRHGE gene signature are
already defined as well-known oncogenes, such as AR,
BRCA1, CDK2, andCCND1, besides others, whose differential
expression has been associated with the subtypes of breast
cancer. For other genes not previously reported as oncogenes,
these could be newly discovered genes that may act as breast
cancer driver genes and may promote cancer aggressiveness
by distant metastasis.

5. Discussions and Conclusions

In this study, we proposed a reliable gene expression metrics
(𝜃) to measure and extract the reliable gene interactions from
gene interaction networks in terms of real biological pro-
cesses and incorporated the extracted reliable gene interac-
tions into our proposed algorithm: robust reliability based
hub gene expression algorithm (RRHGE). The RRHGE algo-
rithmuses hub-gene topology to identify significant genes for
classifying ER+ and ER− breast cancer samples effectively.
The resultant RRHGE gene signature consists of 471 genes,
that is, 326 genes for ER+ and 145 genes for ER− subtype.
From this study, we observed that the subnetwork based gene
signatures are more reproducible across the datasets and are
able to provide higher classification performance amongst the
non-subnetwork based gene signatures.

The subnetwork based gene signature ofRRHGEwas stat-
istically validated on the basis of MCC performance measure
by comparing RRHGE-H, RRHGE-HI, RRHGE-TSN, and
four other existing algorithms. The classification results
(Table 4) demonstrated that ourRRHGE based gene signature
was able to accurately characterize a high number of ER+ and
ER− samples in the testing sets. In otherwords, our gene sign-
ature was highly effective in characterizing the ER+/ER−

breast cancer subtypes without depending on any specific
dataset or on any other factors. The gene signature of our
RRHGE algorithm was also validated biologically using GO
and pathway analysis, and the results demonstrated that the
significant enriched GO terms and pathways of the genes in
our gene signature were associated with the processes shown
to be disrupted in cancers.

We observed that if gene interactions in the network are
reliable, then classification performance will significantly in-
crease, compared with cases where the reliability criterion is
not considered. As a matter of fact, this provides us with a
possible research direction to improve the reliability metrics
by incorporating highly biologically related information. In
addition, it is worthwhile investigating how the classification
performance behaves if we integrate other data types, such as
the DNA copy number variation.
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