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Abstract: Agriculture is facing increasing challenges with regard to achieving sustainable growth in
productivity without negatively impacting the environment. The use of bioinoculants is emerging as
a sustainable solution for agriculture, especially bioinoculants based on diazotrophic bacteria. Brazil
is at the forefront of studies intended to identify beneficial diazotrophic bacteria, as well as in the
molecular characterization of this association on both the bacterial and plant sides. Here we highlight
the main advances in molecular studies to understand the benefits brought to plants by diazotrophic
bacteria. Different molecular pathways in plants are regulated both genetically and epigenetically,
providing better plant performance. Among them, we discuss the involvement of genes related to
nitrogen metabolism, cell wall formation, antioxidant metabolism, and regulation of phytohormones
that can coordinate plant responses to environmental factors. Another important aspect in this regard
is how the plant recognizes the microorganism as beneficial. A better understanding of plant–bacteria–
environment interactions can assist in the future formulation of more efficient bioinoculants, which
could in turn contribute to more sustainable agriculture practices.
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1. Introduction

Nitrogen is considered an essential macronutrient and primordial element for plants;
it is present in the constitution of the most important biomolecules, such as ATP, NADH,
NADPH, chlorophyll, proteins, amino acids, and numerous enzymes [1,2]. However,
biologically available nitrogen is often in short supply for plants, thus limiting plant growth
and primary production [3]. In this way, modern agricultural practices are very dependent
on this mineral to maximize crop production. Furthermore, fertilization with this nutrient
has been essential for agricultural production in keeping pace with the growth of the
human population [4,5]. Nonetheless, nitrogen emissions (such as ammonia, nitrogen
oxide, and nitrous oxide) contribute to global climate change and can cause serious health
problems [6]. Currently, 107 million tons of nitrate are used as fertilizer in agriculture
worldwide [7]. The Asia-Pacific region is the largest consumer, followed by the USA and
Brazil, which is fourth among all countries, using about 4.55 million tons of nitrate. It is
worth noting that the four countries that consume the most nitrogen fertilizer are the ones
that have the highest percentage of crop production globally. However, Brazil ranks third
in crop production, ahead of the USA. Although nitrogen fertilizer is required for most
crops, improving agricultural N management focuses on synchronizing N demand and
supply across crops, as well as improving crop N use efficiency. Overall, the efficiency
of nitrogen use by plants is low; it is believed that 67% of all applied N is unaccounted
for, and is ultimately lost in the soil system or emitted into the atmosphere [8]. Faced
with this scenario, the world needs new alternatives to minimize the negative effects of
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chemical fertilizers on the environment and to reduce agriculture production costs without
changing productivity.

The use of beneficial microorganisms, such as diazotrophic bacteria, has emerged as a
sustainable alternative for agriculture. These bacteria can convert available atmospheric
N2 into ammonia through a process known as “Biological Nitrogen Fixation” (BNF); the ni-
trogen is then taken up by plants for their metabolic functioning [9]. According to the FAO
index, it is estimated that in 2018 34 million tons of nitrogen were fixed in the world, with
the two countries that contribute the most being the USA (29.62%) and Brazil (27.82%) [10].
However, the establishment of a beneficial plant–bacteria interaction depends on factors
such as plant species and genotype, bacterial strains, and environmental factors [11–13].
Diazotrophic bacteria species are phylogenetically diverse, having the ability to develop
different types of root associations with several plant species. In the best-studied associa-
tion, symbiosis and development of root nodule structures occur, with the bacteria being
an endosymbiont [14]. In the other type of associations, bacteria are usually classified
as non-nodular and can live inside plant tissues (named endophytic), be associated with
roots (named associative), or be free-living in the rhizosphere [15]. The nitrogen-fixing
nodulating bacteria are mainly of rhizobia genera, with association restricted to leguminous
plants; these form nodules in the root, where the BNF occurs [14]. The main studies of
non-nodular diazotrophic bacteria have identified the association of non-legume plants
with the genera Azospirillum, Azorhizobium, Azoarcus, Bacillus, Burkholderia, Citrobacter, En-
terobacter, Gluconacetobacter, Herbaspirillum, Klebsiella and Pseudomonas [16]. Remarkably,
all of these bacterial species are gram-negative, except for the genus Bacillus, which has
gram-positive representatives such as Bacillus subtilis. These endophytic and associative
diazotrophic bacteria are considered plant growth–promoting rhizobacteria (PGPR), as
they improve plant performance by enhancing the availability of nutrients and improve
soil fertility, mainly through BNF and phosphate solubilization [17–19]. In addition, they
produce plant growth regulators and are involved in the modulation of phytohormone
and defense responses [20–22], production of antioxidants, osmotic adjustment, and plant
tolerance against biotic and abiotic stresses [23,24]. A large number of important crops in
agriculture are non-nodulating grasses, such as maize, rice, wheat, sorghum, and sugar-
cane, showing the importance of studies and production of bioinoculant non-nodulating
diazotrophic bacteria.

It is worth mentioning that the Brazilian group of researchers coordinated by Johanna
Döbereiner was a pioneer in the identification of diazotrophic bacteria in non-legume
plants [25]. Due to this study, in 1997, Johanna Döbereiner was nominated by the Brazilian
Academy of Sciences for the Nobel Prize in Chemistry, bringing Brazilian research to world-
wide recognition. In addition, since the 1950s Brazil has been gaining prominence with
the advancement of knowledge about biological nitrogen fixation. Brazilian researchers
have observed that interaction with diazotrophic bacteria allows sugarcane plantations to
be cultivated with less use of nitrogen fertilizer with no loss in yield [26]. Thus, Brazil is a
pioneer and international reference in studies on these bacteria and their use as bioinoc-
ulants [26]. The application of bioinoculants in agriculture can reduce chemical fertilizer
use, as most of these are nitrogen-based, generating potential savings of billions of dollars
per year for Brazilian agribusiness [27]. There are several types of bioinoculants containing
living microorganisms that represent an eco-friendly alternative to the use of chemical
fertilizers and pesticides in agriculture [28]. Used as biofertilizers and biocontrol agents,
bioinoculants are predominantly based on bacteria and fungi that can promote plant growth
and health. Bioinoculants with diazotrophic bacteria in their formulation can be used as
both biocontrol and/or biofertilizers. Currently, there is an extensive list of diazotropes
that are recommended as bioinoculants in Brazil; these can be applied both in legumes
and in other crops, such as rice, wheat, maize, and eucalyptus [29]. About 85% of soybean
plantations in Brazil rely on the application of bioinoculants [27], which are capable of
fixing approximately 300 kg of N ha-1 with an efficiency of use close to 100% [30]. In
addition, the N left in soybean crop residues can contribute to successive crops such as
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corn and wheat. The application of bioinoculants in the cultivation of grasses in Brazil is
noteworthy as well [31]. Following advances in the use of bioinoculants, the search for
patents on this topic has grown significantly. As of 2020, 76 patent applications had been
made in Brazil for agricultural inoculant formulations, although only 16 were granted [32].
However, considering only patents using endophytic bacteria, an acceptance percentage of
around 50% in the number of patents applied for can be observed.

Studies in this area have increased greatly, with the intent of developing more sustain-
able agricultural practices. Figure 1 summarizes the economic potential and the benefits for
plants when using diazotrophic bacteria as bioinoculants. For this special issue, we carry
out an overview of the research in the area, focusing on advances in knowledge about the
molecular mechanisms that regulate plant interaction with non-nodulating diazotrophic
bacteria and the benefits to agriculture from this association.
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Figure 1. The impact of diazotrophic bacteria for more sustainable agriculture practices. Diazotrophic
bacteria can bring great benefits to plants, including biological nitrogen fixation, plant growth promo-
tion, tolerance to stresses, and biological control, as well as positive economic and environmental
impacts. The mechanisms involve modulation of plant gene expression in key metabolic and physio-
logical pathways. The use of bioinoculants can contribute to more sustainable agriculture, including
economic potential, by reducing the costs associated with the use of nitrogen fertilizers. Brazil is one
of the countries that is leading biotechnological research in the area of bioinoculants, represented
by the growing number of patent applications for formulations of bioinoculants. Created with
BioRender.com accessed on 31 August 2022.

2. Plant Microbiomes and Prospection of Diazotrophic Bacteria

Plants are sessile organisms that have highly distinct microenvironments in their
rhizosphere, surface tissues, and internal tissues, all of which harbor complex communities
that include a wide diversity of microorganisms. These are known as plant microbiota,
and the microbiota genomes that are closely associated with plants are collectively called
the plant microbiome [33,34]. Recently, many significant steps have been taken towards
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understanding several aspects of the diversity and dynamics of plant microbiomes and the
benefits provided by these microorganisms, which include diazotrophic bacteria [35–38].

Deeper knowledge of DNA composition and the development of molecular biol-
ogy techniques, including next-generation sequencing methodologies, have established
a revolution in bacterial identification. Currently, modern analysis of plant microbiomes
integrates omics data for both the host and the microorganisms [39]. The emergence of
metagenomics, based on the description of all DNA sequences in environmental sam-
ples [40], has revealed the genomic and taxonomic landscape of microbial communities that
live in specific ecological niches in the rhizosphere [33,41]. These metagenomic sequencing
analyses generate large amounts of data that require further analysis to obtain significant
results [42]. Such analysis can elucidate the presence of functional redundancy or over-
lapping genomic characteristics in most PGPR, allowing the discovery of new genera and
species [43].

One of the most widely recognized advances is the high-throughput sequencing of
the smaller subunit of ribosomal RNA, the 16S rRNA gene, which for the first time made
it possible to establish a hierarchical taxonomic system based on an efficient molecular
marker [44]. This amplicon corresponds to a highly conserved genomic region present
in all bacterial cells which is essential for knowledge of the evolutionary relationships
between the rhizospheric microbiota [17,45–47]. In parallel, the nuclear ribosomal internal
transcribed spacer (ITS) region has been used as the main microbial marker gene for
fungi [48].

In addition, several of the methodologies that contribute to bacterial genomic char-
acterization are based on characteristic variations in genomic restriction sites, such as the
occurrence of insertions and deletions, repetitions of DNA sequences or micro-satellites,
single nucleotide polymorphisms, or other sequence variations distributed in bacterial
genomes, which can determine a profile of DNA bands [49]. These banding patterns or
DNA fingerprints are then used to compare isolates in order to assess the intraspecific
diversity present in the plant microbiome [19,50]. Most DNA fingerprinting techniques are
based on the presence or absence of restriction sites, while others are based on the homolo-
gies of short oligonucleotide primers [51]. Several DNA fingerprinting methodologies have
been developed and improved since the 1970s, and many continue to be used today [49].

Many studies based on plant–microbe interactions have deepened our understanding
of microbial interactions in the context of promoting benefits and discovering the factors
that shape microbial diversity [18,19,52,53]. Studies have pointed out that the microbial
population is generally higher in the rhizosphere than in the soil due to the secretion of
root exudates that contain secondary metabolites, which are energy sources for microor-
ganisms [54,55]. One line of studies of plant microbiomes is mainly based on the isolation,
characterization, and prospection of new PGPR, followed by evaluation of the performance
of these microorganisms in plant development to produce novel bioinoculants [17,50].
Interestingly, bioinoculants can be applied to soil and crop seeds either as a single inoculant
or in combination as a microbial consortium, thereby maximizing their effect. Thus, the
manipulation of microbiomes represents away to increase plant growth and productivity
without the consequent environmental pollution associated with indiscriminate use of
chemical fertilizers.

Prospection of Diazotrophic Bacteria

Research focusing on the interaction between sugarcane and diazotrophic bacteria
revealed that its microbial ecosystem is self-sustaining and capable of maintaining nitrogen
fixation even under field conditions [36,56–60]. Among the diazotrophic bacterial gen-
era, Beijerinckia, Gluconacetobacter, Azospirillum, and Herbaspirillum [61–63] are the most
prominent and have been the focus of many isolation and cultivation approaches. A
comprehensive picture of the structure of bacterial and fungal communities associated
with sugarcane has been described, identifying 23,811 bacterial operational taxonomic
units (OTUs) through amplicon sequencing of the 16S rRNA gene [64]. In this study,
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the authors identified bacterial genera containing PGPR, including Azospirillum, Bacillus,
Beijerinckia, Bradyrhizobium, Erwinia, Enterobacter, Herbaspirillum, and Gluconoacetobacter,
which might potentially contribute to nutrient acquisition. A recent study focusing on
evaluating Bradyrhizobium sp. community density in two commercial sugarcane cultivars
confirmed the natural presence of diverse Bradyrhizobium spp. in these root systems [46].
This study combined DNA fingerprinting and 16S rRNA sequence analysis, revealing
high genetic variability. The sugarcane microbiome was exploited using the community-
based culture collection (CBC) approach to select microbial groups based on community
profiles targeting neglected microbial groups, thereby assembling a synthetic microbial
community [65]. In the next step, maize was used as a model to probe the synthetic inocu-
lant; as a result, inoculated plants were able to increase their biomass by 3.4 times compared
to uninoculated plants [65].

Moreover, many investigations dedicated to studying N2-fixing microbiomes have
focused on sequencing and identifying the nifH gene to isolate and characterize the dia-
zotrophic community in sugarcane genotypes [36,59,60,66]. The nifH gene was amplified
in nine of thirty samples from the four sugarcane species assayed, providing evidence
for genetic variation in diazotrophic communities among different sugarcane species [36].
In parallel, nifH gene Illumina MiSeq sequencing revealed a significant difference in the
diazotrophic communities of all five Saccharum cultivars sugarcane species, with most
being located in the root [60].

Similar investigations have been performed in maize [50,52,67–69], rice [47,70,71],
wheat [72], mung bean (Vigna radiata) [17], cowpea bean (Vigna unguiculata L. Walp) [53,73],
juçara palm (Euterpe edulis Mart.) [18], and tomato (Solanum lycopersicum) [19]. Recently
published studies focusing on legumes, such as mung bean and cowpea bean, have focused
on accessing the bacterial community in the nodules as their main objective [17,53,73].
Overall, sequencing of the 16S rRNA gene has shown a high diversity of plant-diazotrophic
bacteria association, a finding that supports the development of new bioinoculants.

In addition to plant genotype, several studies suggest that there is a decisive refine-
ment of the bacterial community in the rhizoplane in close contact with the plant host on the
root surface and at the emergence points of the lateral roots [38,68,70,74]. Biofilm formation
or specific adhesion mechanisms may be key factors in this enrichment step, essentially
modifying the root microbiome structure. In a novel study, rice plants engineered with
CRISPR/Cas9 to modify a flavone biosynthetic pathway generated apigenin-enriched rice
plants that extruded apigenin into the rhizosphere [70]. Consequently, the increased produc-
tion of this flavone stimulated biofilm formation in diazotrophic soil bacteria, improving the
colonization of diazotrophic bacteria in rice plant tissues and promoting BNF [70]. Interest-
ingly, a recent study carried out in nitrogen-depleted fields in Oaxaca, Mexico demonstrated
that maize plants have developed an extensive network of mucilage-secreting aerial roots
that harbor a microbiome rich in N2-fixing species [68]. The maize mucilage microbiome
was explored through global genome sequencing and comparative bioinformatic analysis,
showing that these genomes have high phylogenetic diversity.

It is worth noting that many bioinoculants on the market use a set of beneficial
bacteria. Aiming at better efficiency in the use of diazotrophic bacteria in the formulation
of bioinoculants, the identification of native plant microbiota is extremely important for
both the bioprospecting of new strains and for a better understanding of the coexistence
dynamics of the bacteria present in the bioinoculants and the crop microbial community.
Thus, the 16S rRNA gene sequencing technique has been widely used to identify non-
nodulating bacteria, as illustrated in Figure 2. However, the role of the rhizospheric
microbiome in promoting plant growth is not yet fully understood.
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Figure 2. Molecular regulatory models identified in plant–diazotrophic bacteria association. The
main studies involve the recognition via 16S rRNA of the plant microbiome and the regulation of
plant genes involved in nitrogen metabolism, phytohormone regulation, antioxidant metabolism,
cell wall, and plant receptors involved in recognition of diazotrophic bacteria. Certain pathways
lead to the promotion of growth and tolerance to biotic and abiotic stresses. Blue arrows: expres-
sion is up-regulated; Red arrows: expression is down-regulated; Gray arrow: flow of the pathway.
ACC: 1-aminocyclopropane-1-carboxylic acid, AdoMet: adenosylmethionine, AFB2: Auxin signaling
F-box 2, AFB4: Auxin Signaling F-Box 4, APX: ascorbate peroxidase, AUX/IAA31: Indole-3-Acetic
Acid Inducible 31, CAT: Catalase, CES: cellulose synthase, CYP: cytochrome P450s, ERF: ethy-
lene response elongation factor, ET: ethylene, ETR: Ethylene Receptors, FLS2: Flagellin-Sensing 2,
GH3: Gretchen Hagen 3, GS: glutamine synthetase, ILL/ILR: IAA-Leucine Resistant (IRL)-Like,
LAC: Laccase, N: nitrogen, NBS-LLR: Nucleotide-Binding Sites and Leucine-Rich Repeats, NR: nitrate
reductase, NiR: nitrite reductase, rRNA: ribosomal RNA, SAUR: Small auxin-up RNA, UGT: UDP
glucosyltransferases, WAK: Wall-Associated Kinases. Created with BioRender.com accessed on
31 August 2022.

3. Molecular Mechanisms Involved in the Association of Plant and Non-Nodulating
Diazotrophic Bacteria

Many studies have already shown that diazotrophic bacteria can promote plant growth
and resilience to various environmental stresses [17,18,23,24,75]. However, few studies
have described the genetic and biochemical mechanisms involved in promoting benefits
to plants during bacterial interaction. Cell biology and genomic approaches such as
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transcriptomics, proteomics, metabolomics, genetics, and epigenetics are making a great
contribution to the understanding of the complex interactions that occur between plants
and PGPR. Brazilian researchers have been pioneers in elucidating the regulatory networks
involved in the promotion of plant-growth by non-nodulating diazotrophic bacteria as well
as the mechanisms associated with increased tolerance to abiotic and biotic stresses. These
important data are reviewed in the following topics.

3.1. Modulation of Nitrogen Metabolism

An important plant pathway that is differentially regulated by plant association with
diazotrophic bacteria is nitrogen metabolism, which is involved in plant growth and devel-
opment. Plants can obtain nitrogen from the soil in the form of nitrate and ammonium and
via BNF through association with diazotrophic bacteria [16,76]. An interesting question to
be addressed is whether the contribution of diazotrophic bacteria to better plant develop-
ment involves nitrogen nutrition by directly providing ammonia, by improving plant N
uptake from soil, by modulating the plant nitrogen metabolism genes, or through more
than one of these routes.

Studies have shown that diazotrophic bacteria can upregulate important genes in-
volved in nitrogen metabolism such as NR, NiR, and GS, which encode nitrate reductase,
nitrite reductase, and glutamine synthetase, respectively, and collectively increase the
activity of these enzymes in plants [11,21,76–79]. As illustrated in Figure 2, the modulation
of nitrogen metabolism results in higher N storage in the vacuole compartment, leading to
better plant growth and development. For instance, NR and NiR are the key regulatory
enzymes of the nitrate assimilation pathway, reducing nitrogen absorbed as nitrate (NO3

−)
to nitrite (NO2

−), which is in turn reduced to ammonium (NH4
+), leading to plant N as-

similation [80,81]. A recent study has shown that maize plants inoculated with A. brasilense
sp245 or H. seropedicae HRC54 have higher expression of NR and NiR genes, respectively,
when compared to non-inoculated plants [82]. Sugarcane plants inoculated with Enter-
obacter roggenkampii ED5, as well as wheat, maize, and cucumber plants inoculated with
Paenibacillus beijingensis BJ-18, have shown higher expression of NR genes, indicating that
these bacteria might stimulate nitrate reductase activity in these plants [76,83].

Ammonium is mainly assimilated with the glutamine synthetase (GS) and glutamate
synthase (GOGAT) cycle or with the glutamate dehydrogenase (GDH) enzyme [84]. GS fixes
ammonium on a glutamate (Glu) molecule to form glutamine (Gln). This Gln subsequently
reacts with 2-oxoglutarate to form Glu, this step being catalyzed by the GOGAT. Previous
studies have shown that two ESTs (expressed sequence tags) encoding a cytosolic form
of GS1 are up-regulated by diazotrophic bacteria in wheat roots [85], while in sugarcane
plants GS2 has been observed only in inoculated plants [86]. Wheat, maize, and cucumber
plants inoculated with P. beijingensis BJ-18 show up-regulation of GS and GOGAT genes [76].
Furthermore, it has been observed that diazotrophic bacteria can increase the enzymatic
activity of GS in wheat, maize, sugarcane, and cucumber and can increase the relative
concentrations of glutamine, glutamate, and other amino acids [11,76,77,87,88].

Important genes that encode nitrate transporters have been identified as being differ-
entially regulated in plants inoculated with diazotrophic bacteria. It is supposed that dia-
zotrophic bacteria can stimulate plant growth through improved nitrogen uptake from soil,
and as such this class of transporters is likely to play an essential role in plant–microbe inter-
action [89]. The genes encoding low and high-affinity nitrate transporter proteins NRT1.11
and NRT3.1 were transcriptionally induced in maize plants inoculated with A. brasilense
sp245 and H. seropedicae HRC54, respectively [82], while NRT2.1 (low affinity) and NRT1.1
(dual affinity) were repressed in maize roots inoculated with H. seropedicae [90]. Wheat,
maize, and cucumber plants inoculated with P. beijingensis BJ-18 and rice inoculated with
A. brasilense or H. seropedicae showed up-regulation of several genes in the NRT
family [76,89,91]. Thus, it has been proposed that the modulation of nitrogen metabolism
genes by diazotrophic inoculation in plants can promote greater uptake of N from the soil,
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greater N assimilation, and/or increased storage of the reduced ammonium in the vacuole
compartment, leading to better plant growth and development [11,82,90].

However, the success of this association may be dependent on the plant and bacteria
genotypes as well as the N content present in the soil [76,79,83]. Several studies have
shown that inoculation with diazotrophic bacteria may not influence nitrogen metabolism,
although a greater accumulation of nutrients, growth, and development of plants can
be observed [11,77,88,92]. These data suggest that the benefits of inoculating plants with
diazotrophic bacteria could be mediated through different mechanisms, such as modulation
of the plant nitrogen metabolism, the direct production of phytohormones, and/or the
modulation of endogenous plant genes involved with phytohormones and defense, as
discussed in the topics below.

3.2. Phytohormone Regulation

Considering that most of non-nodulating endophytic and associative diazotrophic
bacteria produce plant hormones, another relevant question to be addressed is how the asso-
ciation of diazotrophic bacteria can modulate phytohormone production and consequently
affect the entire performance of the plant. The phytohormones produced by diazotrophic
bacteria can act as flexible signaling molecules, directly influencing plants’ gene expression,
metabolism, and other physiological processes of plant growth and development [24,93,94].
In addition, bacterial colonization can modulate hormonal production by the host plant.
Phytohormones can coordinate plant responses to environmental factors, leading to higher
tolerance to biotic and abiotic stresses [24,94,95]. Figure 2 shows examples of phytohor-
mone regulation leading to drought tolerance and pathogenic bacteria resistance stimulated
by the diazotrophic plant–bacterial association.

Auxin is a major regulator of plant growth, development, and stress response [95,96].
Studies have shown that auxin is an important regulator of association between plant and
diazotrophic bacteria [97,98]. Indole-3-acetic acid (IAA) is the main auxin in plants; certain
endophytic bacteria can produce IAA and alter auxin levels [99]. Rice plants inoculated and
then submitted to drought stress showed higher tolerance to stress, increased root growth
and development, higher expression of the IAA gene, and higher concentration of IAA
hormone [94]. Roots of rice inoculated with H. seropedicae showed that auxin-responsive
genes were repressed, while maize inoculated with A. brasilense showed a significant
increase in Auxin transporter-like protein 1 [93,100]. Remarkably, analysis of sugarcane
genotypes with contrasting BNF efficiencies showed differences in auxin biosynthesis, auxin
transport, and auxin signaling, as the auxin pathway was activated more in roots of the
genotype that associated best with diazotrophic bacteria (i.e., high BNF) [79]. For instance,
higher mRNA levels of transcription factor NAC1 were observed in a high-BNF sugarcane
genotype. Furthermore, in maize inoculated with H. seropedicae, miR164, which regulates
NAC1 levels, was repressed in comparison with non-inoculated plants [101]. As NAC1
is induced by auxin, leading to promotion of lateral root development [102,103], these
data suggest that NAC1-miR164 might participate in a mechanism by which diazotrophic
bacteria promote root development.

In addition, RNA-seq analysis of sugarcane plants inoculated with G. diazotrophicus
and submitted to drought showed that all DEGs (differential expressed genes) annotated in
roots as members of the auxin pathway were repressed, including genes for auxin biosyn-
thesis/homeostasis (CYP, UGT, and ILL/ILR), signaling (AFB4, AFB2, and AUX/IAA31),
and response (GH3 and SAUR) [24]. This result suggests that sugarcane plants inoculated
with G. diazotrophicus modulate these genes to help the plant tolerate water stress, again
showing the benefits of inoculation. All of these studies together suggest that diazotrophic
bacteria can modulate the auxin pathway both genetically and epigenetically, leading to
promotion of plant growth, especially root growth, which depends on the association of
the plant genotype with these bacteria.

Gibberellins (GA), which play an important role in plant growth promotion, can be
produced by diazotrophic bacteria [104]. These hormones are naturally present in plants
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and regulate seed germination, root growth, root hair abundance, stem elongation, and
leaf expansion [105,106]. The application of gibberellins has been reported to improve rice
performance under saline stress as well as to reduce heavy metal stress [107,108]. Rice
plants inoculated with G. diazotrophicus and submitted to drought showed higher tolerance
to stress, increased root growth and development, higher expression of the GA gene, and
higher concentration of GA1 and GA3 hormone [94]. RNA-seq analysis of maize inoculated
with A. brasilense sp245 or H. seropedicae HRC54 showed that DEGs involved in GA signal
transduction and response were induced in plants inoculated with both bacteria [82].
In other studies, it has been observed that genes involved in gibberellin synthesis were
induced in maize plants inoculated with A. brasilense or H. seropedicae [100,109]. These data
suggest that GA might contribute to the regulation of developmental adaptations in plants
in response to beneficial bacteria stimulus.

Ethylene (ET) is another important phytohormone associated with plant–bacteria
interaction. In plants, 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase is essential
in the ethylene biosynthetic pathway. Many diazotrophic bacteria are able to degrade
ACC through the enzyme ACC deaminase and then use the degradation products as a
nitrogen source [110,111]. For instance, H. seropedicae encodes ACC deaminase, which likely
modulates ethylene production [93,112]. At optimal levels, ethylene is involved in plant
development and natural tissue senescence and abscission; however, when overproduced
it can decrease plant performance [113,114]. A dual RNA-seq analysis of wheat roots
colonized by A. brasilense showed a decrease in the expression of ACO, which encodes for
ACC oxidase that then catalyzes the conversion of ACC to ethylene, suggesting a decreased
amount of ethylene production in inoculated wheat roots [85]. In another study, it was
observed that ACC oxidase mRNA levels were downregulated; ethylene production was
reduced approximately three-fold in rice roots colonized by H. seropedicae [115]. Similarly,
in rice–A. brasilense interactions ethylene synthesis was repressed [89]. Multiple studies
have suggested that the repression of ethylene is necessary to allow for plant–diazotrophic
bacteria association [85,89,91]. In addition, decreased ethylene levels allow plants to be
more resistant to a wide variety of environmental stresses [99], suggesting a great positive
influence on inoculation with diazotrophic bacteria. A. brasilense colonization in wheat
might suppress the inhibition of root cell elongation promoted by ethylene as reflected
in the improvement of root systems of colonized plants [85]. The ethylene biosynthesis
pathway was repressed in rice roots associated with A. brasilense and H. seropedicae [91]. In
addition, ethylene responses in rice are controlled by both plant and bacterial genotypes,
suggesting that this genetic combination might be involved in determining successful
plant–bacteria association [116]. In the EST database, certain genes in the ethylene response
pathway were differentially expressed in response to inoculation with G. diazotrophicus
or H. rubrisubalbicans [117,118]. Sugarcane showed strong and specific induction of the
expression of an ethylene receptor (ScER1) that is a negative regulator of the signaling
pathway [119]. In contrast, a drastic repression of ScER1was observed in a pathogenic
interaction, suggesting that ScER1 might discriminate between beneficial and pathogenic
bacteria in the activation (or not) of defense responses [119]. This observation leads to
another important question: how do plants orchestrate the hormonal responses that activate
their defenses against pathogens and discriminate them from beneficial bacteria?

Biotic stresses are capable of causing severe damage to food production, leading to
considerable pre- and post-harvest losses. In this context, many PGPRs trigger important
mechanisms in biotic stress resistance, aiding in plant bioprotection [120–123]. The bacterial
species B. subtilis exhibits direct and indirect biocontrol mechanisms to suppress disease
and provide resistance to pathogen-caused pests, including signaling by phytohormones
such as ethylene [120,122–125] (Figure 2). ET induces the transcription of genes encoding
other pathogenesis-related proteins (PR), such as cellulase, chitinases, peroxidase, and
chalcone synthase [126,127]. Bacteria such as Acetobacter sp., Azobacter sp., Azospirillum sp.,
Pseudomonas sp., and Bacillus sp., in addition to promoting plant growth, act as induced
systemic resistance (ISR) voters in inoculated plants [120,128]. ISR activation by B. subtilis
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induced jasmonate (JA) synthesis, ET, and NPR1 (Non-Expressor of Pathogenesis-related
genes 1) gene regulation in plants [120,129]. Cotton seeds (Gossypium hirsutum cv Deltapine
Acala 90) treated with B. subtilis UFLA285 promoted resistance against damping-off disease,
caused by Rhizoctonia solani, via JA/ET signaling [130]. Similar results were observed
previously in Arabidopsis inoculated with B. subtilis FB17, which showed overexpression of
PDF1.2 in the simultaneous presence of B. amyloliquefaciens FZB42 [131] and the pathogen
R. solani, suggesting synergistic activation of the JA/ET pathway [132]. Thus, pathogen
restriction and disease progression in plants can occur as a function of inoculation with
PGPRs that activate the SA/ET-dependent ISR and NPR1 mechanisms [133]. Another
example is the production of ACC deaminase by Pseudomonas migulae 8R6 in inoculated
grape plants, which assists plants in regulating the levels of the stress-related hormone
ethylene against Flavescence dorée phytoplasma, a disease that causes damage to grape
crops [120,134]. In general, the biological impact of PGPR inoculation occurs via ISR
induction mediated by signaling molecules such as jasmonic acid and ethylene.

Similar to ethylene, abscisic acid (ABA) is a hormone produced by plants in response
to different types of stress [135–137]. RNA-seq analysis of sugarcane plants inoculated with
G. diazotrophicus and submitted to drought revealed repression of ABA biosynthesis in roots,
and the inoculated plants were more drought tolerant than non-inoculated plants [24]. In
maize, RNA-seq analysis showed repression of all DEGs involved in ABA biosynthetic
process in the inoculated plants [82]. Thus, diazotrophic bacteria have been reported to
increase the tolerance of plants to abiotic stress, thereby decreasing stress-related ABA
accumulation.

All of these results together show that endophytic and associative diazotrophic bacteria
modulate diverse phytohormone pathways, with the efficiency of association resulting
in differences in phytohormone regulation. In addition, due to the vital importance of
phytohormones in plant metabolism and development, the manipulation of this pathway
contributes to plant adaptation to different environmental stimulus, including resistance
against certain pathogens, thus classifying this application as biological control.

3.3. Antioxidant Metabolism

One of the most widely studied response mechanisms to biotic and abiotic stimulus is
the reduction in the accumulation of reactive oxygen species (ROS) in plant tissues [138,139].
An increase in ROS accumulation results in severe loss of crop productivity, affecting several
cellular functions by damaging nucleic acids and oxidizing proteins [140]. Studies have
revealed that diazotrophic bacteria can modulate the activity of antioxidant enzymes
that detoxify ROS, mainly in plant leaves, conferring resistance to oxidative and abiotic
stresses [20,22,23,141–144].

Different studies have tried to understand how the negative effects of oxidative
stress are mitigated by modulation of antioxidant metabolism in plants inoculated with
diazotrophic bacteria. Foliar spraying of maize with A. brasilense led to up-regulation
of genes related to oxidative stress in leaves, such as APX1, APX2, CAT1, SOD2, and
SOD4 [22]. However, the highest expression was observed when foliar spraying was
combined with the application of bacterial metabolites [141]. In soybean, the application of
biological inoculants containing Azospirillum or their metabolites promoted plant growth
and induced tolerance to oxidative stresses [142]. In three sugarcane cultivars inoculated
with a consortium of five N2-fixing strains, high levels of ROS were neutralized by an
increase in the activity of the antioxidant enzymes SOD and APX in young plants [145].

A correlation between modulation of antioxidant metabolism and tolerance to stresses
in inoculated plants have been investigated. A beneficial bacterial consortium containing
Bradyrhizobium spp., A. brasilense strains, and microbial secondary metabolites was found to
mitigate oxidative damage in soybean cultivated under moderate drought by reducing leaf
hydrogen peroxide content, proline and lipid peroxidation, and the enzyme activities of
SOD, CAT, and APX [20]. On the other hand, red rice plants inoculated with G. diazotroph-
icus PAL5 and subjected to severe drought stress revealed a significant increase in SOD,



Int. J. Mol. Sci. 2022, 23, 11301 11 of 22

CAT, and APX activity as compared to non-inoculated plants, which was due to positive
regulation of the expression of superoxide dismutase (sodA), glutathione reductase (gor),
and catalase (katE) [23]. Similarly, the presence of A. brasilense stimulated more activity by
antioxidant enzymes in tree species such as Cecropia pachystachya, Cariniana estrellensis, and
soybean, triggering increased drought stress tolerance [146,147]. Under salt stress, maize
plants inoculated with A. brasilense Ab-V6, R. tropici, and co-inoculation with both bacteria
showed up-regulation in leaves of genes related to antioxidant activity, such as APX1, CAT1,
SOD2, and SOD4 [141]. Furthermore, Glycyrrhiza uralensis plants associated with Bacillus
sp. G2 under saline stress showed a drastic decrease in superoxide and hydrogen peroxide
radical content through an increase in the activity of the antioxidant metabolism composed
by the enzymes SOD, POD, CAT, and APX [148]. Taken together, these studies suggest that
certain diazotrophic bacteria species can alleviate the negative oxidative effects of drought
and saline stress, and may represent an efficient biotechnological tool to increase plant
growth under saline stress (Figure 2).

Furthermore, diazotrophic bacteria can act as biological controls via modulation of
oxidative metabolism (Figure 2). For instance, inoculation of grape plants with B. subtilis
(PTA-271) induced an oxidative burst, promoted the accumulation of phytoalexin metabo-
lites, and regulated defense-related gene expression in both shoots and roots, including
transcription factors (ACCsyn, GST, CHS, CHI) and PR proteins (PR1, PR2, PR3, PR5,
and PR6) [120,149]. Similar results have been observed in rice plants inoculated with
Bacillus sp. (L81) and Aeromonas sp. (AMG272); both strains promoted 90% protection
against the pathogen Xanthomonas campestris by modulating APX and glutathione reductase
(GR) and by inducing the activity of chitinases and ß-1,3-Glucanases [150]. Aeromonas sp.
(AMG272) is a dizotrophic bacteria isolated from the rhizosphere of rice plants. In tomato,
inoculation with Streptomyces isolates (strains IC10 and Y28) triggered defense against
Fusarium oxysporum f. sp. lycopersici race 3 (FOL), the causal agent of Tomato Fusarium
Wilt (FWT) through the induction of antioxidant enzymes involved in plant resistance
against pathogens [151].

3.4. Modulation of Cell Wall Composition

The plant cell wall is highly dynamic, being remodeled during growth and devel-
opment while contributing as the main mechanism for perception of biotic and abiotic
stresses [152–154]. Moreover, the cell wall determines the size and shape of cells, regulates
cell volume and turgor-driven expansion, and plays an important role in the functional spe-
cialization of tissues and organs [155]. Environmental stimuli can alter cell wall structural
components, leading to an increase in the composition of receptors, proteins, carbohydrates,
and lignin, which can activate signaling to maintain cell wall integrity and the plant de-
fense system [154,156]. Therefore, various processes participating in the establishment of
plant–diazotrophic bacteria association might involve regulation of cell wall pathways.

The association with endophytic diazotrophic bacteria begins with the attraction of
bacteria to the host roots, followed by the bacteria attachment on the root surfaces, and
finally the colonization of the emergence points of the lateral roots [157–161]. Previous
studies have reported that a wide diversity of diazotrophic bacteria, such as H. seropedicae
Z67, H. rubrisubalbicans, and A. brasilense, produce cell wall-degrading enzymes, including
cellulases or pectinases [157,162]. These studies suggest that proteins of diazotrophic
endophytic bacteria can directly lead to the modification of the plant cell wall to facilitate
bacterial association and colonization of internal tissues.

In addition, bacterial association could modulate plant gene expression related to cell
wall formation. Notably, efforts are being made to assess the role of cell wall formation
pathways in interactions between grasses and endophytic diazotrophic bacteria [82,156].
Modifications in plant cell wall architecture and composition could have a role in plant
growth, as bacterial association can lead to an increase in plant biomass, promoting plant
development and changes in root architecture [11,163–165]. Inoculation with H. seropedicae
SmR1 induced the expression of a gene encoding a β-D-xylosidase and repressed a gene
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encoding a polygalacturonase, suggesting cell wall remodeling in rice roots [166]. Addition-
ally, the same study demonstrated a positive regulation of genes that encode for proteins
similar to expansin11. In addition to promoting the elongation [167,168] and initiation [169]
of root hairs, expansion promotes the loosening of plant cell walls, which has an effect
on cell enlargement and various developmental processes in which cell wall modification
occurs. Likewise, inoculation of Arabidopsis with the endophyte B. phytofirmans PsJN led to
increased plant growth and changes in the cell wall [170].

Remarkably, studies indicate that the modulation of certain cell wall metabolism
pathways can be differentially regulated by the diazotrophic bacteria genotype and/or plant
genotype. In maize, RNA-seq analysis showed that H. seropedicae HRC54 induced most of
the identified DEGs involved in cell cycle progression and cell wall formation, suggesting
that this endophytic bacterium activated cell divisions and DNA replication [82]. In
contrast, genes encoding callose synthase enzymes were only induced in plants inoculated
with A. brasilense, showing an opposite expression profile during association with H.
seropedicae [82]. Remarkably, cellulose synthase (CESA) genes such as CESA2, CESA5,
CESA9, and CESA4 were more expressed in roots of sugarcane genotype in which BNF
is more efficient, suggesting that these bacteria can modulate cellulose biosynthesis [156]
(Figure 2). Furthermore, the same expression profile in two BNF-contrasting genotypes has
been observed in sugarcane plants inoculated with diazotrophic bacteria G. diazotrophicus
PAL5 [156].

In addition to genetic mechanisms, diazotrophic bacteria can trigger specific epigenetic
modifications that regulate development [171] and cell wall lignification [101,172]. Epige-
netic studies on sugarcane plants have revealed the differential expression of miR408 in
response to either diazotrophic bacteria, G. diazotrophicus PAL5, or the pathogenic bacteria
Acidovorax avenae [172]. MiR408 was induced in response to beneficial association and
repressed upon pathogenic infection, regulating the expression of mRNA encoding laccase,
a multicopper enzyme involved in lignin biosynthesis [172]. The same expression pattern
was found in maize plants inoculated with H. seropedicae [101]. Additionally, an increase in
the expression of miR397, which targets laccase genes, has been reported in maize during as-
sociation with H. seropedicae [101]. Interestingly, a higher increase in lignin biosynthesis was
observed in Chunee sugarcane roots after inoculation with G. diazotrophicus as compared to
SP70-1143 roots [156], indicating that endophytic diazotrophic bacteria does not activate
the early defense response against bacterial colonization in grasses, thereby decreasing
plant lignin synthesis [101,172]. Thus, the repression of laccase triggers a repression of
lignin biosynthesis, and consequently facilitates inoculation of beneficial bacteria (Figure 2).

3.5. Modulation of Plant–Microorganism Recognition Pathways

In the association between plants and beneficial diazotrophic bacteria, the plants need
mechanisms to recognize and distinguish the signals of beneficial bacteria from pathogens
in order to induce appropriate responses to each situation. During the establishment of
plant–bacteria interaction, endophytic diazotrophic bacteria explore tissues within the root
and colonize intercellular spaces and xylem vessels [157,173]. The entry of endophytes into
plant tissues involves the activation of the plant defense system [15,156,174–176]. However,
there is a paradox, because while the plant normally defends itself against microorganisms,
it needs to identify beneficial bacteria and allow them to associate with and eventually
colonize its tissues. Overall, most described mechanisms dedicated to plant defense are
focused on responses to pathogenic organisms, whereas mechanisms associated with
beneficial endophytes avoid plant defenses to achieve harmonious interaction [175]. Recent
evidence suggests that beneficial bacteria alter plant defense responses during colonization,
reinforcing the idea that fine-tuning of receptors in the plant’s defense mechanisms, which
is a poorly understood topic, separates benefit-associated molecular patterns from damage-
associated molecular patterns (DAMPs) [177]. Depending on the stimulus, these pattern
recognition receptors (PRRs) are activated or not, and the host plant responds to facilitate
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an endophytic symbiotic relationship or to prevent colonization of invading pathogenic
microorganisms [178].

The process of recognition and colonization by diazotrophic bacteria includes several
key regulators, such as plant genes and receptors [166]. The recognition and transduction
of extracellular signals into the cells are essentially mediated by plant receptors that belong
to the family of Receptor-like Kinases (RLK), including Leucine Rich Repeat containing
Receptor-like Kinases (LRR-RLKs), Lectin Receptor-like Kinases (LecRLKs), Lys-motif
receptors (LysM), and Wall-associated Kinases (WAK) [15,179]. RLK and Receptor-like
proteins play crucial roles in plant immunity [180]. The main receptors involved in the
recognition of bacteria are highlighted in Figure 2. Considering that the success of plant–
bacterial interaction is largely governed by these membrane-located immune receptors,
a central question is whether the diazotrophic bacteria in plants specifically trigger ex-
pression patterns of some of these plant receptors [82,164,166,173,181]. A leucine-rich
repeat-containing receptor-like kinase (SHR5) was the first plant receptor identified as
responsive to association with non-nodulating diazotrophic bacteria. In sugarcane, SHR5
expression was significantly down-regulated by inoculation with the diazotrophic bacteria
G. diazotrophicus, H. seropedicae, H. rubrisubalbicans, and A. brasilense, while inoculation
with pathogenic bacteria (Agrobacterium tumefaciens A281 and Leifsonia xyli subsp. xyli),
pathogenic virus (Mosaic virus), and pathogenic fungus (Puccinia melanocephala) showed no
significant difference in SHR5 mRNA expression [181]. In rice, lectin-like receptor kinase
7 and SHR5 were significantly repressed in the presence of H. seropedicae [106]. RNA-seq
analysis of maize plants inoculated with two diazotrophic bacteria revealed that the vast
majority of signaling receptors classified as RLK were induced in plants inoculated with A.
brasilense, while many members of this receptor family, including SHR5, were repressed
by H. seropedicae [166]. In addition, certain DEGs were simultaneously repressed in both
diazotrophic datasets, such as b120 with S-locus lectin domain of bacterial PRRs, wak5
with epidermal growth factor (EGF) repeats, and the cytoplasmic receptor rpp13 [166].
Corroborating this evidence, inoculation of rice plants with A. brasilense led to the induction
of LYK8 and AGC kinase expression. Furthermore, SHR5 was differentially expressed at
both time points studied [89]. These results indicate that the ability of diazotrophic bacteria
to suppress the host’s immune response may be a determinant of whether they are able to
colonize and benefit plants.

A second interesting issue to be addressed is whether these differences in BNF ef-
ficiency may be a consequence of the efficiency of bacterial colonization within plant
tissues, which could have a direct relationship with the regulation of expression of specific
genes for recognition and/or defense of the plant. A recent study has demonstrated that
the regulation of plant receptors known to be involved in plant–bacteria diazotrophic
recognition, including NBS-LRR, FLS2, WAK, and SHR5, are more expressed in low-
BNF sugarcane genotype (Chunee) than in the high-BNF genotype (SP70-1143) inocu-
lated with G. diazotrophicus PAL5 [79]. This evidence suggests that such regulation may
be crucial for efficient recognition of diazotrophic bacteria and the establishment of a
beneficial association.

4. Conclusions and Future Perspective

An important sustainable agricultural strategy to maintain productivity and reduce
the application of chemical fertilizers, especially nitrogen fertilizers, is to explore the use
of beneficial microorganisms in agricultural systems. In this context, modulation of plant
microbiota and application of bioinoculants containing diazotrophic bacteria are the major
approaches being studied.

Brazil is at the forefront in studies to identify beneficial diazotrophic bacteria as well as
in the molecular characterization of this association on both the bacterial and plant sides. In
particular, Brazil is a pioneers in the studies leading to application of diazotrophic bacteria
as bioinoculants, as a large number of microorganisms naturally present in Brazilian soils
have been isolated and identified for prospective use in agricultural systems [50]. Studies
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of Brazilian groups have been the basis for many other groups, as represented in Figure 3
by the number of citations of scientific publications involving molecular data on the plant–
diazotrophic bacteria association.
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The use of bioinoculants as replacements for chemical fertilizers is critical to sustain-
ability. However, there is a concern that new agriculture practices ensure our environment
remains both productive and healthy. Issues of efficacy and biosafety must be addressed,
as bacterial species potentially harmful to mammals, including humans, have been isolated
from plant rhizospheres [182]. A panel of tests, as well as an evaluation system, the Envi-
ronmental and Human Safety Index (EHSI), have been proposed to assess the biosafety of
bacterial strains used as bioinoculants [183]. It is worth noting that many of PGPRs, such as
Azospirillum and Azotobacter, have already been classified as non-pathogenic (Risk Group
1/BSL1) [184].

Advances in the molecular studies in the area of plant–diazotrophic bacteria associa-
tion have revealed that different molecular pathways in plants are regulated both genetically
and epigenetically, providing better plant performance. In addition to modulation of the
plant nitrogen metabolism, highlighted in this review, diazotrophic bacteria can contribute
to the solubilization of phosphate [184]. Therefore, the application of bioinoculants could
replace other fertilizers commonly used in agriculture as well. The promotion of plant
growth by bioinoculants might be mediated through modulation of nutrient acquisition or
phytohormone production. In this scenario, diazotrophic bacteria could help plants to be-
come better adapted to the environmental changes, promoting greater tolerance to different
abiotic and biotic stresses. However, there are gaps not yet filled in our understanding of
plant–bacterial interaction and in ways to improve the efficiency of bioinoculants. A better
understanding of gene regulation “in real time” in both plants and associated diazotrophic
bacteria represents a powerful molecular tool to identify key genes and/pathways that
could be manipulated, which could in turn optimize the use of bioinoculants. It is important
to decipher the molecular and metabolic players involved in plant recognition of bacteria
as beneficial microorganisms and distinguishing them from pathogens. Another aspect is
how the environment contributes to regulating of the efficiency of a beneficial association.
In addition, a broader study of the competition between beneficial microorganisms should
be explored in order to improve bioinoculant formulations with different bacterial species.

In closing, the optimization of the use of bioinoculants in agriculture needs to translate
the knowledge generated in the laboratory to application in the field. It is necessary to
understand this intimate biological interaction from both sides, both plants and bacteria, as
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well as how it is affected by climate, soil, plant cultivars, and crop management. In addition,
broad scientific dissemination is needed to spread this practice and make agriculture
more sustainable.
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