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Background: In epidemiological studies, it has been proven that the occurrence of
type 2 diabetes mellitus (T2DM) is related to an increased risk of infectious diseases.
However, it is still unclear whether the relationship is casual.

Methods: We employed a two-sample Mendelian randomization (MR) to clarify the
causal effect of T2DM on high-frequency infectious diseases: sepsis, skin and soft tissue
infections (SSTIs), urinary tract infections (UTIs), pneumonia, and genito-urinary infection
(GUI) in pregnancy. And then, we analyzed the genome-wide association study (GWAS)
meta-analysis of European-descent individuals and conducted T2DM-related single-
nucleotide polymorphisms (SNPs) as instrumental variables (IVs) that were associated
with genome-wide significance (p < 5 × 10−8). MR estimates were obtained using
the inverse variance-weighted (IVW), the MR-Egger regression, the simple mode (SM),
weighted median, and weighted mode.

Results: The UK Biobank (UKB) cohort (n > 500,000) provided data for GWASs on
infectious diseases. MR analysis showed little evidence of a causal relationship of T2DM
with five mentioned infections’ (sepsis, SSTI, UTI, pneumonia, and GUI in pregnancy)
susceptibility [odds ratio (OR) = 0.99999, p = 0.916; OR = 0.99986, p = 0.233;
OR = 0.99973, p = 0.224; OR = 0.99997, p = 0.686; OR, 1.00002, p = 0.766].
Sensitivity analysis showed similar results, indicating the robustness of causality. There
were no heterogeneity and pleiotropic bias.

Conclusion: T2DM would not be causally associated with high-frequency infectious
diseases (including sepsis, SSTI, UTI, pneumonia, and GUI in pregnancy).

Keywords: T2DM, sepsis, infections, single-nucleotide polymorphisms, instrumental variable, Mendelian
randomization study
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INTRODUCTION

Infections are responsible for more than 20% of deaths
worldwide, with approximately 245,000 sepsis cases in the
United Kingdom in 2017 (Rudd et al., 2020). Infections share risk
factors with a non-communicable disease or are triggers for them,
making it difficult to disentangle their underlying causes (Parks
et al., 2012; Remais et al., 2013; Leung et al., 2017).

One such non-communicable disease is type 2 diabetes
mellitus (T2DM), a condition affecting close to 465 million
people across the globe (Boulton, 2020). In the United Kingdom,
the prevalence of diabetes has doubled over the last three decades
(Pierce et al., 2009; McGuire et al., 2016). While undoubtedly
associated with sepsis and other infections, it is not aligned in
all studies (Valdez et al., 1999; Bertoni et al., 2001; Shah and
Hux, 2003; Thomsen et al., 2004, 2005; Gregg et al., 2014).
However, these findings were subject to confounding and reverse
causation bias. Confounding commonly occurs in observational
epidemiology when the exposure and the outcome are influenced
by a third variable, rather than in their causal pathway. Reverse
causation occurs when the outcome influences the exposure.
Therefore, traditional epidemiological studies are ill-suited to
explore whether there are relationships between T2DM and
infections even with statistical adjustments (Lawlor et al., 2004).

Mendelian randomization (MR) is becoming an analytic
method that applies genetic proxies as instrumental variables
(IVs) and finds stronger evidence for the causal effect of
outcomes through an intermediate trait effectively avoiding
confounding and reverse causality (Sekula et al., 2016). Given
that diabetes or high glucose levels can be prevented by lifestyle
changes or medications, if there is a causal relationship between
infections and T2DM, this may be a potential strategy for
the prevention of infections in T2DM patients. Therefore,
we performed a two-sample MR analysis based on statistics
from genome-wide association study (GWAS) data to assess
whether T2DM was causally associated with the risk of infections
(Dimou and Tsilidis, 2018).

MATERIALS AND METHODS

Data Sources and Single-Nucleotide
Polymorphism Identification
Genetic Association Datasets for Type 2 Diabetes
Mellitus Susceptibility
In order to analyze the results, we used a recent meta-
analysis of GWAS for T2DM, which compared 62,892 T2DM
patients and 596,424 controls of European ancestry with a total
of 16 million gene variants, from three contributing studies,
including the full cohort release of the UK Biobank (UKB),
Diabetes Genetics Replication and Meta-analysis (DIAGRAM),
and Genetic Epidemiology Research on Aging (GERA) (Xue
et al., 2018). This study identified 139 common variants, and four
rare variants are related to T2DM. The role of rare variants in the
occurrence of common diseases remains controversial (Gibson,
2012). The latest study showed that the contribution of rare
variants to T2DM heritability may be limited (Fuchsberger et al.,

2016). Therefore, there are only 139 common and independent
variants (p < 5 × 10−8) included in our analysis. During
automatic analysis, two single-nucleotide polymorphisms (SNPs)
(rs13234269 and rs11591741) of T2DM were removed for being
palindromic with intermediate allele frequencies. As a result, we
analyzed 137 SNPs as the IVs. There was no evidence of gender
or age heterogeneity in the UKB. To test whether there was a
weak bias of the IV, i.e., genetic variation selected as an IV was
weakly correlated with exposure, we calculated the F statistic
[F = R2(n−k−1)/k(1−R2], where R2 is the exposure variance
explained by the chosen IV; n, sample size; and k, number of
IVs). If the F statistic is much larger than 10 for an instrument–
exposure association, the likelihood of a weak instrument variable
bias was small (Staiger and Stock, 1997).

Genetic Association Datasets for Infections
Five high-frequency infections related to T2DM were included:
sepsis, skin and soft tissue infections (SSTIs), urinary tract
infections (UTIs), pneumonia, and genito-urinary infection
(GUI) in pregnancy (Miller et al., 2013; Butler-Laporte et al.,
2020). To identify whether genetic variants are associated with
common infectious diseases, we employed the UKB cohort
with genome-wide genotyped data. Then, we derived these
summarized data from GWAS analysis in the latest version of
infections genetics program in the UKB. To find out genetic
variants associated with infections, we used the UKB cohort,
which consists of more than 500,000 volunteer participants in the
United Kingdom with genome-wide genotyped data.

Mendelian Randomization Analysis
Because of the lack of comprehensive data in a single cohort
(Wensley et al., 2011), we performed a two-sample MR analysis
using the two-sample MR software package in R (version 4.0.3)
(Burgess et al., 2013; Yavorska and Burgess, 2017) to determine
the causal associations between T2DM and common infections.
Three important hypotheses need to be demonstrated to ensure
that the IVs in MR analysis are valid (Burgess et al., 2015):
(1) the SNPs used as IVs can robustly predict T2DM; (2) the
SNPs are not associated with potential confounders affecting
T2DM and five common infections; and (3) the SNPs influence
infections only through their effects on T2DM, but not through
any other causal pathways (Figure 1). In this two-sample MR, we
employed five methods, including the inverse variance-weighted
(IVW), the MR-Egger (MR-Egger) regression, the simple mode
(SM), weighted median, and weighted mode (Burgess and
Thompson, 2015). Based on the dominance of each MR method,
five approaches were conducted to complement each other.
In two-sample MR, the IVW method acting as a fixed-effect
meta-analysis was usually used. Then, a sensitivity analysis was
performed by the weighted mode, the weighted median, the SM,
and MR-Egger methods to examine the stability of the causal
inference (Burgess et al., 2017; Hartwig et al., 2017). First, the
“leave one out” analysis was employed to determine whether
causal inference was robustly related to a single SNP. Second,
the SNPs were included if they were not significant linkage
disequilibrium (LD; r2 < 0.001) with each other. According
to several estimates of different methods, we finally select the
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FIGURE 1 | Overview of hypotheses in MR design. Three different assumptions are represented by three paths. Assumption 1: SNPs robustly predict T2DM.
Assumption 2: No potential confounders affect infections (sepsis, skin and soft tissue infections, urinary tract infections, pneumonia, and genito-urinary infection in
pregnancy). Assumption 3: SNPs impact the abovementioned infections only through T2DM. MR, Mendelian randomization; SNPs, single-nucleotide polymorphisms;
T2DM, type 2 diabetes mellitus. Red cross mark in assumption 2 means that genetic variants are not related to known or unknown confounder factors and in
assumption 3 it means that genetic variants would have an influence on the outcome (infections) only through exposure (T2DM), not through other pathways.

results of the principal MR method as the following rules: (1) the
results of the IVW method were chosen, when there is no
directional pleiotropy shown in the MR estimation (Q statistic,
p-value > 0.05; MR-Egger intercept, p-value > 0.05). (2) The
results of the IVW method were chosen, when p-value > 0.05
for the Q test and directional pleiotropy (MR-Egger intercept,
p-value < 0.05). (3) The results of the IVW method were chosen,
when p-value < 0.05 for the Q test and directional pleiotropy was
detected (MR-Egger intercept, p-value < 0.05). An analysis using
a web-based application was conducted1 (Brion et al., 2013) to
calculate the statistical power of the MR. Estimation of detectable
odds ratio (OR) was obtained after specifying a power of 80% and
a significance of 5%.

RESULTS

Instrumental Selection for Type 2
Diabetes Mellitus
One hundred thirty-nine genetic variants were obtained as the
IVs according to their GWAS (p < 5 × 10−8). Finally, we
conducted 137 SNPs of T2DM as the IVs after eliminating
two SNPs (rs13234269 and rs11591741) for being palindromic
with intermediate allele frequencies. Detailed information about
137 SNPs is shown in Supplementary Table 1. F statistic
for the instrument–exposure association was 17.17, which is
much greater than 10, indicating that the likelihood of a weak
instrument variable bias is small.

1https://shiny.cnsgenomics.com/mRnd/

Mendelian Randomization Analysis
Between Type 2 Diabetes Mellitus and
Sepsis Risk
The IVW method showed no obvious heterogeneity (p = 0.785)
between T2DM and sepsis and that there was no association
between them (OR = 0.99999; 95% CI, 0.99982–1.00016;
p = 0.916). The MR-Egger regression analysis provided little
evidence to support the association between T2DM and sepsis
(OR = 1.00023; 95% CI 0.99985–1.00061; p = 0.246). Pleiotropy
for T2DM was not observed in the MR-Egger regression analysis
(intercept=−1.829× 10−5; p= 0.181). Causal association using
five different methodological approaches (IVW, MR-Egger, SM,
weighted median, and weighted mode) could be found in Table 1.
The forest plot showed the OR and a horizontal line representing
the sepsis risk of T2DM-related SNPs with 95% CIs (Figure 2).
Furthermore, the results of “leave one out” demonstrated that
no individual SNPs has any remarkable impact on the overall
results by eliminating 137 SNPs one at a time (Supplementary
Figure 1). Detailed information about 137 SNPs in sepsis is
shown in Supplementary Table 1.

Mendelian Randomization Analysis
Between Type 2 Diabetes Mellitus and
Skin and Soft Tissue Infection Risk
The MR analysis was conducted by using 137 SNPs. We found
that there is no causal link between T2DM and SSTI risk
according to the results of IVW method (OR = 0.99986; 95%
CI, 0.99962–1.00009; p = 0.233), without obvious heterogeneity
(p = 0.678). Moreover, the potential pleiotropy for these 137
SNPs was not observed in the MR-Egger regression analysis
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TABLE 1 | The association between T2DM and infections of odds ratios using different methodological approaches.

Methods Sepsis SSTI UTI Pneumonia GUI in pregnancy

OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P

IVW 0.99999
(0.99982,
1.00016)

0.91647 0.99986
(0.99962,
1.00009)

0.23336 0.99973
(0.99929,
1.00017)

0.22371 0.99997
(0.99982,
1.00012)

0.68562 1.00002
(0.99989,
1.00014)

0.76559

MR-Egger 1.00023
(0.99985,
1.00061)

0.24594 1.00021
(0.99967,
1.00076)

0.44507 0.99924
(0.99823,
1.00026)

0.14683 1.00002
(0.99968,
1.00037)

0.88231 0.99990
(0.99963,
1.00018)

0.50136

SM 0.99994
(0.99928,
1.00060)

0.85391 0.99934
(0.99833,
1.00035)

0.20001 0.99975
(0.99819,
1.00138)

0.75606 1.00023
(0.99972,
1.00074)

0.38341 0.99983
(0.99938,
1.00027)

0.44773

Weighted
median

1.00006
(0.99974,
1.00039)

0.71720 0.99965
(0.99923,
1.00006)

0.09744 0.99942
(0.99871,
1.00013)

0.11114 0.99996
(0.99968,
1.00024)

0.75989 1.00006
(0.99984,
1.00028)

0.57957

Weighted mode 1.00004
(0.99968,
1.00039)

0.84494 0.99975
(0.99919,
1.00030)

0.37131 0.99922
(0.99833,
1.00011)

0.08985 1.00004
(0.99974,
1.00034)

0.78805 0.99996
(0.99973,
1.00020)

0.75146

T2DM, type 2 diabetes mellitus; SSTI, skin and soft tissue infections; UTI, urinary tract infection; GUI, genito-urinary infection; IVW, the inverse variance-weighted method;
MR-Egger, the Mendelian randomization-Egger method; SM, simple mode; OR, odds ratio; CI, confidence interval; p, p-value; SE, standard error.

(intercept = −2.784 × 10−5; p = 0.157). Causal association
with T2DM and SSTI could be found in Table 1. The forest
plot of the SSTI risk is shown in Figure 3. To assess the
stability of MR analysis results, we further conducted the
sensitivity analysis through a leave-one-out method. The results
from sensitivity analysis are shown in Supplementary Figure 2.
Detailed information on 137 SNPs in SSTI is shown in
Supplementary Table 1.

Mendelian Randomization Analysis
Between Type 2 Diabetes Mellitus and
Urinary Tract Infection Risk
The results from IVW method were p-value = 0.224,
OR = 0.99973, and 95% CI = 0.99929–1.00017 (Table 1).
According to these results, T2DM was not causally linked to
UTI risk. Moreover, there was no observed heterogeneity in this
analysis (p = 0.557). Also, there is no potential pleiotropy for
these SNPs according to the results of the MR-Egger method
(intercept = 3.749 × 10−5; p = 0.303). The forest plot of the
UTI risk is shown in Figure 4. To evaluate the robustness of
MR results about T2DM and UTI, a sensitivity analysis was also
performed for MR studies between T2DM and UTI through the
leave-one-out method. The sensitivity analysis results are shown
in Supplementary Figure 3, and detailed information about 137
SNPs can be found in Supplementary Table 1.

Mendelian Randomization Analysis
Between Type 2 Diabetes Mellitus and
Pneumonia Risk
The IVW results (OR = 0.99997; 95% CI, 0.99982–
1.00012; p = 0.686) indicated that T2DM would not be
causally associated with pneumonia risk, without obvious
heterogeneity (p = 0.667). In addition, the MR-Egger regression
(OR = 1.000; 95% CI, 1.000–1.000; p = 0.882) and intercept

(intercept=−4.416× 10−6; p= 0.720) demonstrated that there
was no significant pleiotropy of the MR study between T2DM
and pneumonia (Table 1). According to the forest plot, there
was no causal association between T2DM and pneumonia risk
(Figure 5). The sensitive analysis using leave-one-out approach
could be obtained in Supplementary Figure 4. Supplementary
Table 1 shows SNP-related details.

Mendelian Randomization Analysis
Between Type 2 Diabetes Mellitus and
Genito-Urinary Infection Risk in
Pregnancy
We conducted an MR analysis between T2DM and GUI in
pregnancy using R package Two Sample MR. IVW result
(OR = 1.00002; 95% CI, 0.99989–1.00014; p = 0.766) indicated
that T2DM was not causally linked to GUI risk in pregnancy,
without specifying heterogeneity (p = 0.125). According to the
MR-Egger result (OR = 0.99990; 95% CI, 0.99963–1.00018;
p= 0.501 and intercept= 8.848× 10−6; p= 0.374), there was no
significant pleiotropy in the MR study between T2DM and GUI
(Table 1). The forest plot against GUI risk of pregnancy is shown
in Figure 6. The sensitive analysis using leave-one-out approach
showed that no individual SNPs has any remarkable impact
on the overall results by eliminating 137 SNPs one at a time
(Supplementary Figure 5). Detailed information about SNPs is
obtained in Supplementary Table 1. After >80% power with 5%
significance was specified, the estimation of the detectable effect
sizes of sepsis, SSTI, UTI, pneumonia, and GUI in pregnancy was
0.99999, 0.99986, 0.99973, 0.99997, and 1.00002, respectively.

DISCUSSION

Type 2 diabetes mellitus has been related to the
increase of incidence and mortality of infectious diseases
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FIGURE 2 | Forest plot: the associations between T2DM-related SNPs and sepsis risk. T2DM, type 2 diabetes mellitus; SNPs, single-nucleotide polymorphisms;
OR, odds ratio; CIs, confidence intervals.

(Benfield et al., 2007; de Miguel-Yanes et al., 2015; Wang et al.,
2019). To clarify this association, we conducted a two-sample
MR analysis to investigate whether causal effects existed between
T2DM and the risk of related infections. The results of our
findings support the notion that T2DM alone might not be
responsible for the reported positive association with T2DM
and infectious diseases (sepsis, SSTI, UTI, pneumonia, and
GUI in pregnancy). These discoveries were reliable for some
sensitivity analyses.

Our findings were consistent with those reported in earlier
researches (Moss et al., 2000; Gong et al., 2005; Esper et al.,
2009; Donath et al., 2019). A prospective study demonstrated

that diabetes mellitus was a negative predictor of septic shock
complicated with acute respiratory distress syndrome (ARDS)
(Moss et al., 2000). The incidence of ARDS in patients with
diabetes was significantly lower than that in patients without
diabetes (25% vs. 47%; OR, 50.33, 95% CI, 0.12–0.90). These
results and our MR analysis seem to suggest that there
was little evidence to support the genetic role of T2DM in
infection development.

More importantly, patients with T2DM usually have
higher blood glucose levels than that in healthy people,
which may enable them to better tolerate the effects of
acute hyperglycemia when inflammation will be occurring.
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FIGURE 3 | Forest plot: the associations between T2DM-related SNPs and SSTI risk. T2DM, type 2 diabetes mellitus; SSTI, skin and soft tissue infections; SNPs,
single-nucleotide polymorphisms; OR, odds ratio; CIs, confidence intervals.

On the contrary, when non-T2DM patients with acute
diseases have acute hyperglycemia, the level of circulating
inflammatory cytokines increases significantly and induces more
inflammatory responses (Yu et al., 2003), which may increase
infection risk.

Another possibility is that the susceptibility variations of
T2DM are often related to both higher blood glucose levels

and low insulin levels. This may lead to vertical pleiotropy.
In this case, genetic variants are related to blood glucose and
insulin levels on the same biological pathway from T2DM
to common infections. Thus, this condition does not violate
the MR assumptions. Furthermore, we conducted the MR-
Egger regression, which did not show the probability of
pleiotropic effects.
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FIGURE 4 | Forest plot: the associations between T2DM-related SNPs and UTI risk. T2DM, type 2 diabetes mellitus; UTI, urinary tract infection; SNPs,
single-nucleotide polymorphisms; OR, odds ratio; CIs, confidence intervals.

Finally, the influence of T2DM itself on infection risk, if any,
may be smaller than we thought. The routine epidemiological
analysis might have overestimated the real association, possibly
due to the influence of uncontrolled factors involving reverse
causation or common risk factors.

Our findings indicated that T2DM may not play a major role
in the susceptibility of developing common infections. However,

from a public health point of view, controlling these common
risk factors is undoubtedly important to prevent these two kinds
of diseases, because T2DM and common infections have some
established changeable risk factors such as obesity and smoking
(Haskins et al., 2014; Calfee et al., 2015; Frydrych et al., 2018).

There are several advantages of our several MR analyses in this
article. Firstly, we used the large-scale T2DM GWAS summary
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FIGURE 5 | Forest plot: the associations between T2DM-related SNPs and pneumonia risk. T2DM, type 2 diabetes mellitus; SNPs, single-nucleotide
polymorphisms; OR, odds ratio; CIs, confidence intervals.

dataset and five common infections GWAS summary dataset.
MR can reduce the impact on population stratification through
a large dataset. In addition, we used the five MR methods in
this study, which can increase the robustness of the MR results
and prevent reverse causal bias. Several pleiotropic analyses were
also conducted, which could reduce the pleiotropic influence on
the MR results. We further performed the sensitivity analysis by

using the leave-one-out method, which can ensure the stability
of the MR results.

Some limitations need to be noticed. First, a potential
limitation of our study is that some IVs may overlap across
infectious diseases. Theoretically, the exposure and outcome
studies used in two-sample MR analysis should not involve
overlapping participants. However, in practice, the original

Frontiers in Genetics | www.frontiersin.org 8 August 2021 | Volume 12 | Article 720874

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-720874 August 24, 2021 Time: 17:30 # 9

Wang et al. T2DM and Infections: Mendelian Randomization

FIGURE 6 | Forest plot: the associations between T2DM-related SNPs and GUI risk in pregnancy. T2DM, type 2 diabetes mellitus; GUI, genito-urinary infection;
SNPs, single-nucleotide polymorphisms; OR, odds ratio; CIs, confidence intervals.

GWAS studies mixed some samples. Therefore, we used
strong instruments (i.e., F statistic much greater than 10) to
minimize the bias caused by overlapping (Pierce and Burgess,
2013). Second, to dissect the causal relationships more clearly,
employing the causal effects of glycemic traits (notably fasting
glucose and insulin, the homeostatic model assessment for insulin
resistance and beta-cell function, and HbA1c) on the infectious
disease would be more helpful. Unfortunately, we currently lack

suitable data to make this assessment more meticulous. Third,
despite our best efforts to resolve confounding effects or potential
pleiotropic, the possibility still exists. It is worth noting that
some of the variants in our study are associated with insulin-
related traits rather than glucose, which may result in horizontal
pleiotropy. Our MR results may be distorted by the existence
of potential horizontal pleiotropy. Instead of using T2DM-
susceptible variants, the use of variants associated with glucose
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levels, such as glucose transporters, may better address this
limitation. Fourth, the genetic variants were not related to tested
and undetermined confounders, which may affect both T2DM
and infections. However, due to the limitations of the method,
unmeasured confounding factors or other causal pathways may
still impact our results. Fifth, these findings are based on the
population of Europe, so it is difficult to represent the general
conclusions of other ethnic and regional populations. Thus,
future research needs more regional groups and a larger sample
size to verify the observed connections.

CONCLUSION

Using T2DM-related SNPs as IVs from GWAS data, this MR
study found no strong evidence to support the causal associations
between T2DM and five common infection risks in the European
population. In addition, randomized controlled trials (RCTs)
about the association between T2DM and infections in the long-
term outcomes are needed.
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