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Coagulation Abnormalities and Thrombosis in 
Patients Infected With SARS-CoV-2 and Other 
Pandemic Viruses
Nigel Mackman, Silvio Antoniak, Alisa S. Wolberg, Raj Kasthuri, Nigel S. Key

ABSTRACT: The world is amid a pandemic caused by severe acute respiratory syndrome-coronavirus 2. Severe acute respiratory 
syndrome-coronavirus causes serious respiratory tract infections that can lead to viral pneumonia, acute respiratory distress 
syndrome, and death. Some patients with coronavirus disease 2019 (COVID-19) have an activated coagulation system 
characterized by elevated plasma levels of d-dimer—a biomarker of fibrin degradation. Importantly, high levels of d-dimer on 
hospital admission are associated with increased risk of mortality. Venous thromboembolism is more common than arterial 
thromboembolism in hospitalized COVID-19 patients. Pulmonary thrombosis and microvascular thrombosis are observed 
in autopsy studies, and this may contribute to the severe hypoxia observed in COVID-19 patients. It is likely that multiple 
systems contribute to thrombosis in COVID-19 patients, such as activation of coagulation, platelet activation, hypofibrinolysis, 
endothelial cell dysfunction, inflammation, neutrophil extracellular traps, and complement. Targeting these different pathways 
may reduce thrombosis and improve lung function in COVID-19 patients.
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PANDEMIC RESPIRATORY VIRUSES
In the last century, several new viruses have emerged, 
including different strains of influenza virus A virus 
(IAV), severe acute respiratory syndrome-coronavirus 
(SARS-CoV), Middle East respiratory syndrome-coro-
navirus (MERS-CoV), and most recently, SARS-CoV-2, 
that have caused epidemics and pandemics. IAV trans-
mission from zoonotic reservoirs into humans has 
caused the last 4 influenza pandemics: 1918 H1N1 
Spanish flu, 1957 H2N2 Asian flu, 1968 H3N2 Hong 
Kong flu, and 2009 H1N1.1–3 The SARS-CoV epi-
demic occurred between 2002 and 2004 and infected 
≈8000 people with at least 774 deaths worldwide.4–6 
MERS-CoV appeared in 2012 and infected ≈2500 
people with over ≈850 deaths, and cases still occur.7–9 
In December 2019, SARS-CoV-2 emerged in China 
and quickly spread throughout the world. As of June 
17, 2020, there have been over 8.2 million diagnosed 

cases of coronavirus disease 2019 (COVID-19) with 
>445 000 deaths worldwide (Johns Hopkins Corona-
virus Resource Center, https://coronavirus.jhu.edu/
map.html).

Influenza viruses and coronaviruses are enveloped 
viruses with a single-stranded RNA genome (either 
a positive- or negative-sense RNA). Influenza viruses 
enter cells via endocytosis that requires binding and 
proteolytic cleavage of hemagglutinin on epithelial 
cells.10,11 SARS-CoV, MERS-CoV, and SARS-CoV-2 all 
belong to the coronavirus family. They are called coro-
naviruses because they have large spike proteins on 
the capsid surface that create a crown-like shape. Entry 
of coronaviruses into host cells involves binding of the 
spike proteins with host receptors, followed by proteo-
lytic cleavage of the spike protein to expose the S2 
fusion domain with subsequent membrane fusion.12,13 
MERS-CoV uses DPP4 (dipeptidyl peptidase 4) as 
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a cellular receptor, whereas SARS-CoV and SARS-
CoV-2 use ACE2 (angiotensin-converting enzyme 2) 
as entry receptors.14–18 Importantly, SARS-CoV-2 has a 
stronger binding to ACE2 compared with SARS-CoV.19 
ACE2 is predominantly expressed in epithelial cells of 
subsegmental bronchial branches.20 Interestingly, one 
study found low levels of ACE2 in alveolar epithelial 
cells and endothelial cells in uninfected control lungs 
but an increased expression of ACE2 in both cell types 
in the lungs of COVID-19 patients.21 In a physiologi-
cal setting, ACE2 cleaves and inactivates angiotensin I 
and angiotensin II and, therefore, plays a critical role in 
regulating the renin-angiotensin system.22 Differences 
in tissue expression of these receptors and activat-
ing proteases may contribute to unique aspects of the 
pathophysiology of each virus.

ACUTE RESPIRATORY DISTRESS 
SYNDROME ASSOCIATED WITH 
PANDEMIC RESPIRATORY VIRUSES
Super pandemic viruses, such as IAV H1N1, SARS-CoV, 
MERS-CoV, and SARS-CoV-2, cause serious respiratory 
tract infections that can lead to viral pneumonia and acute 
respiratory distress syndrome (ARDS).23–25 ARDS is a 
type of respiratory failure characterized by widespread 
local and systemic inflammation.26 Both viral infection of 
cells and the host response to infection damage the epi-
thelial-endothelial cell barrier that separates the alveoli 
from capillaries. This injury compromises the lung’s abil-
ity to exchange oxygen and carbon dioxide.26 Lung still-
ness, fluid-filled alveoli, and a rise in carbon dioxide levels 
lead to hypoxemia and respiratory distress.27 The primary 
treatment for ARDS is mechanical ventilation and sup-
portive treatment in an intensive care unit.28 IAV patients 
with classic ARDS that requires mechanical ventilation 
have decreased lung compliance with elevated plateau 
pressures.29 One study reported that 46 (23%) of 199 
patients hospitalized with SARS developed ARDS, and 
these patients had a mortality rate of 37% at 28 days.30 
Similarly, 20% of hospitalized COVID-19 patients in New 
York required mechanical ventilation.31 Surprisingly, some 
COVID-19 patients with ARDS have well-preserved lung 
mechanics despite severe hypoxia.32,33 This has led to 
the suggestion that microvascular thrombosis rather than 
decreased lung compliance contributes to the impaired 
oxygenation in COVID-19 patients.

CYTOKINE STORM IS ASSOCIATED WITH 
PANDEMIC RESPIRATORY VIRUSES
Infection with pandemic respiratory viruses can lead to 
an overproduction of numerous cytokines that is termed 
the cytokine storm.34–36 This hyperinflammatory response 
contributes to disease severity and death. TNFα (tumor 
necrosis factor-alpha), IL (interleukin)-1β, and IL-6 
orchestrate the inflammatory response.34,37 Both IAV 
and SARS-CoV infection are associated with a cytokine 
storm.38,39 Davey et al40 reported the results of 2 inter-
national cohort studies that measured the association of 
25 plasma biomarkers with disease progression in 837 

Nonstandard Abbreviations and Acronyms

ACE2 angiotensin-converting enzyme 2
ARDS acute respiratory distress syndrome
AT antithrombin
COVID-19 coronavirus disease 2019
CRP C-reactive protein
DIC disseminated intravascular coagulation
DPP4 dipeptidyl peptidase 4
FVIII factor VIII
FXI factor XI
FXII factor XII
IAV influenza A virus
ICAM-1 intercellular adhesion molecule 1
IL interleukin
IMPROVE  Intermediate or Prophylactic Dose 

Anticoagulation for Venous or Arte-
rial Thromboembolism in Severe 
COVID-19

MERS-CoV  Middle East respiratory 
syndrome-coronavirus

MPO myeloperoxidase
NET neutrophil extracellular trap
PAI-1 plasminogen activator inhibitor 1
PE pulmonary embolism
PT prothrombin time
SARS-CoV  severe acute respiratory 

syndrome-coronavirus
TF tissue factor
TLR3 toll-like receptor 3
TNFα tumor necrosis factor-alpha
VCAM-1 vascular cell adhesion molecule 1
VTE venous thromboembolism
VWF von Willebrand factor

Highlights

• Coronavirus disease 2019 (COVID-19) patients 
have an increased risk of arterial and venous 
thrombosis.

• Elevated levels of D-dimer are associated with 
increased thrombosis and mortality.

• Multiple pathways likely contribute to thrombosis in 
COVID-19 patients.
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IAV(H1N1)pdm09 patients. Seven biomarkers, including 
IL-6, were associated with disease progression in out-
patients and inpatients, whereas 5 biomarkers, including 
TNFα and IL-8, were associated with disease progres-
sion among hospitalized patients. Critically ill patients 
with IAV(H1N1)pdm09 also exhibited higher levels of 
IL-6 compared with patients with bacterial pneumo-
nia.41 A recent study suggested that monocytes and 
macrophages play a key role in the hyperinflammatory 
response in COVID-19 patients.42 Indeed, severe SARS-
CoV-2 infection is associated with increased circulat-
ing levels of various inflammatory mediators, including 
IL-6 and CRP (C-reactive protein).43–47 We observed 
increased levels of CRP in severe IAV H1N1 patients.48 
Zhou et al47 observed a serial increase in IL-6 in nonsur-
viving patients but not in surviving patients. Accordingly, 
a pilot study analyzed the effect of the IL-6 receptor 
antagonist tocilizumab on survival of 129 hospitalized 
COVID-19 patients with moderate or severe viral pneu-
monia. Tocilizumab significantly reduced the number 
of life-support interventions and deaths compared with 
the control group (https://www.clinicaltrialsarena.com/
news/french-early-trial-tocilizumab-covid-19/). This pre-
liminary study led the Food and Drug Administration to 
approve a phase 3 trial of tocilizumab for the treatment 
of severe COVID-19 patients (https://www.clinicaltrials.
gov; unique identifier: NCT04361552), with additional 
tocilizumab clinical trials underway. However, it remains 
unclear whether IL-6 targeting alone will be adequate to 
improve outcomes caused by a plethora of cytokines. In 
addition, it is unclear whether tocilizumab will mitigate the 
thrombotic propensity in COVID-19 patients, although 
the expected reduction of IL-6–dependent CRP expres-
sion has been observed.49,50

THROMBOSIS ASSOCIATED WITH 
PANDEMIC RESPIRATORY VIRUSES
Critically ill patients exhibit a rate of venous thrombo-
embolism (VTE; deep vein thrombosis or pulmonary 
embolism [PE]), of VTE 5% to 10% despite thrombopro-
phylaxis.51 VTE, pulmonary microvascular thrombosis, and 
arterial thrombosis have been associated with IAV and 
pandemic coronavirus infections. One study of hospital-
ized H1N1 patients observed 7 (5.9%) thrombotic vas-
cular events (4 venous and 3 arterial) in 119 patients.52 
Another study observed a higher rate of VTE (44%) in 
hospitalized H1N1 patients (n=36) with severe ARDS 
compared with 29% in non-H1N1 patients with ARDS.24 
Thrombotic complications have also been observed in 
SARS-CoV patients.53 A study from a single hospital in 
Singapore reported that one-third of SARS-CoV patients 
experienced VTE despite the use of low-molecular-
weight heparin at doses to achieve anti-Xa levels of 
0.5 to 1.0 IU/mL54; however, no additional details of the 

VTE events were provided. Arterial ischemic stroke was 
observed in a small number of SARS-CoV patients.54 
Surprisingly, perhaps, there are no reports of thrombosis 
in MERS-CoV patients.

Recently, several studies have reported VTE rates 
ranging from 0.9% to 6.5% for noncritically ill hospital-
ized COVID-19 patients and 8% to 69% in COVID-19 
patients in the intensive care unit (Table 1).55–64 Rates of 
PE were between 16.7% and 35% in severely ill COVID-
19 patients, and rates of deep vein thrombosis were 
between 0% and 46.1% for nonseverely ill COVID-19 
patients (Table 1). Rates of arterial thrombotic events 
were between 2.8% and 3.8%.57,62 There are several 
factors that could explain the wide variation in throm-
bosis rates in the different studies that include differ-
ences in clinical practice, such as if venous ultrasound 
is performed as a screening strategy or if thrombopro-
phylaxis is routinely used, reporting of symptomatic ver-
sus asymptomatic VTE, and also differences in patient 
populations. Notably, however, several groups have 
reported that VTE may occur despite standard thrombo-
prophylaxis (Table 1), which is like what was observed in 
SARS-CoV infection. Although initial reports suggested 
that COVID-19 patients had higher rates of thrombosis 
compared with patients with other types of pneumonia, 
a recent study found that the rate of VTE in COVID-19 
patients was 2% compared with 3.6% in patients with 
non–COVID-19 community-associated pneumonia.65 
Furthermore, it is important to note that a recent study 
reported a VTE rate of 4.8% and a rate of overall bleed-
ing of 4.8% in COVID-19 patients.62 Another study of 
353 COVID-19 patients in Boston found that the cumu-
lative incidence of thrombotic events was 10.2% and 
major or fatal bleeding of 20.8% in hospitalized COVID-
19 patients (J. Zwicker, unpublished data, 2020). At 
present, the optimal antithrombotic prophylactic strategy 
for patients with COVID-19 is unclear. A new clinical 
trial (IMPROVE [Intermediate or Prophylactic Dose Anti-
coagulation for Venous or Arterial Thromboembolism in 
Severe COVID-19]; https://www.clinicaltrials.gov; unique 
identifier: NCT04367831) will hopefully shed light on 
this question.

Several studies have reported pathological find-
ings from autopsies of patients infected with pandemic 
coronaviruses. Pulmonary thromboemboli within the 
main pulmonary artery or segmental pulmonary arter-
ies, thrombi in small vessels, and fibrin within pulmo-
nary vessels were observed in SARS-CoV patients.66–68 
A recent series of studies have described the findings 
of autopsies of COVID-19 patients.33,69–71 Fibrin-rich 
thrombi were found in small vessels and capillaries in 
the lung, as well as foci of hemorrhages.33,70 Interest-
ingly, CD61+ megakaryocytes were observed within 
alveolar capillaries.70 Some fibrin and platelets within 
small vessels were also associated with neutrophils. 
Intra-alveolar fibrin deposition was observed in a subset 
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of severe COVID-19 patients consistent with a loss of 
vascular integrity.69 One autopsy study found that 7 of 
12 (58%) COVID-19 patients had a deep vein thrombo-
sis that was not suspected antemortem, and PE was the 
direct cause of death in 4 of these patients.72 A recent 
study performed autopsies on 7 COVID-19 patients 
and compared the findings to 7 H1N1 patients.21 There 
was widespread thrombosis and microangiopathy in the 
lungs of COVID-19 patients, and capillary microthrombi 
were 9× more prevalent than in H1N1, which suggested 
a different pathological process.21

PANDEMIC RESPIRATORY VIRUSES 
ACTIVATE THE COAGULATION SYSTEM
The innate immune response is activated in response 
to invading pathogens to counteract the infection. This 
is generally accompanied by activation of coagulation 
that, in part, serves to localize the infection.73,74 How-
ever, excessive and widespread activation of coagula-
tion can lead to disseminated intravascular coagulation 
(DIC), defined as fulminant activation of coagulation, 
consumption of coagulation factors, and bleeding.75,76 
Classic DIC caused by bacterial sepsis is associated 
with prolonged activated partial thromboplastin time, 
prothrombin time (PT), thrombocytopenia, elevated 
d-dimer, and microangiopathic thrombosis in multiple 
organs.75,76 d-dimer is a product of plasmin-mediated 
degradation of cross-linked fibrin.

Elevated plasma d-dimer is associated with a higher 
risk of disease progression in hospitalized IAV(H1N1)

pdm09-infected patients.40 Two other studies of patients 
with probable IAV H1N1 infection found that d-dimer 
predicted disease progression.77,78 Elevated plasma lev-
els of d-dimer have also been reported in SARS-CoV–
infected patients.79 d-dimer has attracted attention as a 
prognostic marker in COVID-19 patients.43,44,46,47,60,80–82 
As expected, COVID-19 patients with VTE had higher 
d-dimer levels than non-VTE patients.55 A series of 
articles from China reported higher d-dimer levels in 
severely affected patients compared with those with a 
nonsevere disease and higher d-dimer levels in non-
survivors compared with survivors (Table 2).43–47,80 Simi-
larly, studies from France and Italy found high d-dimer 
levels in COVID-19 patients in the intensive care unit 
(Table 2).60,81 Two studies found that a higher d-dimer 
level on admission was associated with increased mortal-
ity.47,64 One study used 2.0 μg/mL as a cutoff for d-dimer 
and found a mortality rate of 0.37% (1 of 267 COVID-19 
patients, <2.0 μg/mL) versus 17.9% (12 of 67 COVID-
19 patients, ≥2.0 μg/mL).64 In contrast, a study from 
France observed a less impressive separation of mortal-
ity rates based on the same d-dimer cutoff (10.4% [8 of 
77 COVID-19 patients], <2.0 μg/mL versus 18.3% [17 
of 93 COVID-19 patients], ≥2.0 μg/mL) and suggested 
that the Chinese study had selection bias.83

Thrombocytopenia was observed in 45% to 55% 
of SARS-CoV patients, but overt DIC was rarely 
observed.53,79,84 Thrombocytopenia was also found to be 
evident in a subset of MERS-CoV patients.85–88 Similarly, 
thrombocytopenia and an elevated PT was observed in 
2 fatal cases of MERS-CoV patients, consistent with a 
diagnosis of DIC.86 Many COVID-19 patients have mild 

Table 1. Incidence of Thrombosis in COVID-19

Country No. of Patients ICU Non-ICU AC VTE, % PE, % DVT, % ATE, % IS, % Reference

The Netherlands 184 +  Y 37 35 0.5 3.8 2.7 87

China 81 +  N … … 25 … … 88

France 26* +  Y 69 23 69 … … 59

The Netherlands 74 +  Y 25 … … … … 61

The United States 144 +  Y 7.6 … … … … 62

France 107 +  Y … 20.6 … … … 58

France 150 +  Y … 16.7 … … … 60

China 45 +  N 6.7 … … … … 65

The United States 400 + + Y 4.8 … … 2.8 … 62

The Netherlands 124  + Y 6.5 … … … … 61

The United States 166  + Y 3.1 … … … … 62

China 143  + N … … 46.1 … … 64

Italy 388  + Y … … 0 … … 63

Spain 156†  + Y … … 14.7‡ … … 56

China 211  + N 0.9 … … … … 65

AC indicates anticoagulant; ATE, arterial thromboembolism; COVID-19, coronavirus disease 2019; DVT, deep vein thrombosis; ICU, intensive care unit; IS, ischemic 
stroke; N, no; PE, pulmonary embolism; VTE venous thromboembolism; and Y, yes.

*Complete duplex ultrasound standard of care.
†d-dimer >1000 ng/mL.
‡Asymptomatic.
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thrombocytopenia (100−150×109/L) at most and do 
not exhibit an increase in PT or decrease in AT (anti-
thrombin) levels.33,43–46,60,80–82,89 These results sug-
gested the absence of a consumptive coagulopathy 
in most patients. However, several studies found that 
nonsurviving patients had slightly prolonged PT and a 
further decrease in platelet count.46,47,80 Interestingly, 
patients with severe SARS-CoV-2 infection also have 
elevated levels of fibrinogen ranging from 1.3 to 2.0× 
above the normal range (2–4 g/L; Table 3).60,80–82 We 
observed increased levels of fibrinogen in severe IAV 
H1N1 patients.48 Ranucci et al81 showed an associa-
tion between IL-6 and fibrinogen levels. In addition, FVIII 
(factor VIII) and VWF (von Willebrand Factor) levels were 
increased in COVID-19 patients by 2- to 2.3-fold and 
3- to 4.1-fold above the normal range, respectively.60,82

Taken together, these results indicate that most 
COVID-19 patients have an activated coagulation system 
that is associated with increased levels of d-dimer; how-
ever, it is unlike classic DIC since there is little change in 
PT and the thrombocytopenia is generally mild. Elevated 
levels of FVIII and fibrinogen likely contribute to the pro-
thrombotic state in COVID-19 patients. Elevated FVIII 
and VWF may reflect activated/infected endothelium, 
whereas elevated fibrinogen likely reflects enhanced 
production by hepatocytes as part of the host’s acute 
phase responses driven by IL-6. In the later stages of 
disease, nonsurviving COVID-19 patients may develop 
classic DIC with prolongation of the PT, moderate-to-
severe thrombocytopenia (platelet count, <50×109/L), 
and decreased fibrinogen (<1.0 g/L).

MOUSE MODELS OF PANDEMIC VIRUS 
INFECTION
Several mouse models have been developed to study 
the pathological changes in the lung associated with 
infection with IAV H1N1, SARS-CoV, and MERS-CoV. 
One study reported that over 3500 genes were differen-
tially regulated in the lungs of mice following SARS-CoV 
infection.90 Importantly, mice infected with 1918 and 
2009 IAV H1N1 strains exhibited similar transcriptional 

signatures, which suggested a common mechanism of 
lung injury.90 Infection with IAV H1N1, SARS-CoV, and 
MERS-CoV is associated with lung hemorrhages.90–92 
Infection of mice with different coronavirus mouse hepa-
titis virus strains also caused severe pneumonia and 
lung hemorrhage.93 However, thrombosis has also been 
observed in the lungs of mice expressing human DPP4 
infected with MERS-CoV.94

POSSIBLE MECHANISMS DRIVING 
THROMBOSIS IN PANDEMIC VIRUS 
INFECTION
At this time, we can only speculate about the mecha-
nisms of thrombosis in COVID-19 patients based on the 
available plasma biomarkers and clinical presentation. 
Several recent comments/reviews have described the 
coagulation abnormalities and thrombosis occurring in 
COVID-19 patients.95–99 There is clear evidence for acti-
vation of different cell types, such as lung epithelial cells, 
macrophages, neutrophils, endothelial cells, and plate-
lets, as well as different systems, such as coagulation, 
inflammation, and complement, in the lungs of COVID-
19 patients (Figure). We will briefly summarize some of 
these pathways and refer to reviews that cover some of 
the pathways in more detail.

TF Pathway
Aberrant TF (tissue factor) expression is associated 
with most forms of thrombosis.100 Importantly, TF is a 
key mediator of activation of coagulation in different 
forms of ARDS.101–104 Viral infection of a variety of cell 

Table 2. d-Dimer Levels in Patients With COVID-19

All Patients Nonsevere Severe Nonsurvivors P Value Reference

0.5 (0.3–1.3), n=41 0.5 (0.3–0.8), n=28 2.4 (0.6–14.4), n=13  0.042 43

0.5 (0.4–1.8), n=21 0.3 (0.3–0.4), n=10 2.6 (0.6–18.7), n=11  0.029 44

0.6 (0.4–1.5), n=183 0.6 (0.3–1.3), n=162 2.1 (0.8–5.3), n=21  <0.001 80

0.8 (0.4–3.2), n=191 0.6 (0.3–1.0), n=137  5.2 (1.5–21.1), n=54 <0.001 47

1.1 (1.0–1.2), n=214 0.6 (0.3–1.3), n=161  4.6 (1.3–21.6), n=113 0.029 46

  2.2 (1.1–20.0), n=150   60

  5.5 (2.5–6.5), n=16   81

  4.8 (1.2–16.9), n=24   82

Less than 0.5 mg/L median (IQR). COVID-19 indicates coronavirus disease 2019; and IQR, interquartile range.

Table 3. Fibrinogen Levels in Severe COVID-19 Patients

Healthy Severe Reference

2–4 5.1 (3.7–5.7), n=21 80

2–4 7.0 (6.1–7.7), n=150 60

2–4 7.9 (5.8–9.3), n=16 81

2.6 (1.6–3.5) 6.8 (2.3–13.4), n=24 82

Normal range, 2–4 g/L. COVID-19 indicates coronavirus disease 2019.
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types, including lung epithelial cells, endothelial cells, and 
monocytes induces TF expression.74,91,105 In addition, TF 
expression in endothelial cells is induced by activation of 
TLR3 (toll-like receptor 3)—a pattern-recognition recep-
tor that detects single-stranded RNA.106,107 Interestingly, 
TLR3 was shown to protect mice from SARS-CoV infec-
tion.108 Cytokines produced during the cytokine storm 
(TNFα, IL-1β, and IL-6) induce TF expression in endo-
thelial cells, and IL-6 induces TF expression in mono-
nuclear cells.109–111 Angiotensin II can also induce TF 
expression in vascular smooth muscle cells and endothe-
lial cells.112,113 Herpes simplex virus infection of endothe-
lial cells increases TF expression.114 Similarly, one would 
expect that SARS-CoV-2 infection of the endothelium 
would increase TF expression and microvascular throm-
bosis. Therefore, there are a variety of mechanisms for 
increasing TF expression in different cell types in the 
lung during viral infections. We found that plasma lev-
els of extracellular vesicle TF activity were increased in 
severe influenza virus patients and were associated with 
mortality.48 Increased TF is also observed after infection 
of mice with IAV H1N1, SARS-CoV, and MERS-CoV90,91 

(T. Sheahan, unpublished data). We found that IAV H1N1 
infection of mice increases TF expression in lung epithe-
lial cells and activates coagulation.91 Furthermore, both a 
genetic reduction of TF in epithelial cells and administra-
tion of anticoagulants to wild-type mice was associated 
with increased alveolar hemorrhage.91,115 This suggests 
that TF-dependent activation of coagulation is part of the 
host innate immune response to viral infection that helps 
protect against intrapulmonary hemorrhage. However, a 
complication of this response is thrombosis. Therefore, it 
seems likely that TF plays a central role in thrombosis in 
COVID-19 patients. Two recent articles have discussed 
the role of TF in thrombosis in COVID-19 patients.116,117

Contact Activation Pathway
Activation of the contact system leads to thrombin 
generation and upregulation of the kallikrein-kinin sys-
tem.118 Kallikrein induces the generation of bradykinin, 
which increases vascular permeability. In addition, bra-
dykinin interacts with the renin-angiotensin system and 
increases inflammation, fibrinolysis, and complement 

Figure. Potential pathways that drive thrombosis in coronavirus disease 2019 (COVID-19) patients.
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infects lung epithelial cells and endothelial cells (ECs), which leads to 
the recruitment of a variety of immune cells, such as macrophages and neutrophils. Activated macrophages and ECs contribute to the 
cytokine storm. EC activation also increases vascular permeability (VP). Neutrophils release neutrophil extracellular traps (NETs). Activated 
platelets likely contribute to thrombosis and NET formation. TF (tissue factor) expression is likely to be increased in activated epithelial cells, 
macrophages, and ECs and will activate the coagulation system. Similarly, FXIIa (factor XIIa) can increase coagulation. SARS-CoV-2 infection 
also activates the fibrinolytic system and may increase PAI-1 (plasminogen activator inhibitor 1), which would reduce fibrin degradation. Finally, 
the complement system is activated in COVID-19 patients, and cellular damage would increase the activation of the coagulation system.
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activation.119 The effect of targeting the contact system 
has been studied in animal models of bacterial sepsis. 
An early study showed that administration of an anti-FXII 
(factor XII) antibody C6B7 prevented hypotension and 
extended the life of baboons challenged with Escherichia 
coli but did not prevent DIC.120 In a second study, C6B7 
reduced complement activation, neutrophil activation, 
and the fibrinolytic response (reduced tissue plasmino-
gen activator and plasmin-α2-antiplasmin complexes) 
but increased PAI-1 (plasminogen activator inhibitor 1) 
in septic baboons.121 More recently, the effect of block-
ing the contact pathway using an antibody 3G3 that 
prevents FXIIa activation of FXI (factor XI) was evalu-
ated in a lethal Staphylococcus aureus baboon model.122 
Pretreatment of the baboons with 3G3 reduced the acti-
vation of coagulation, fibrin deposition in tissues, inflam-
mation, neutrophil activation, complement activation, and 
increased survival.122 An anti-FXII antibody 3F7 also 
reduced bradykinin generation and edema in mice.123 
Acquired ACE2 deficiency also leads to more bradykinin 
via an unknown mechanism, which would increase vas-
cular permeability. A recent review discussed the poten-
tial benefits of targeting the contact activation pathway 
in COVID-19 patients.124

Fibrinolysis
The fibrinolytic system is activated in ARDS.104,125,126 
Elevated levels of PAI-1 in ARDS create a hypofibri-
nolytic state that leads to increased fibrin deposition 
within the vasculature and within the alveolar space. 
High plasma PAI-1 levels are associated with mortal-
ity in ARDS patients.127,128 One study reported that the 
plasma PAI-1 level was higher in 16 SARS-CoV patients 
than 19 patients with other infectious pneumonias and 
healthy controls.129 PAI-1 expression was increased in 
SARS-CoV–infected mice, and PAI-1−/− mice exhibited 
increased lung hemorrhage and increased mortality.90 
This study suggested that PAI-1–dependent inhibition of 
fibrinolysis is protective against intrapulmonary hemor-
rhage. A recent review described the fibrinolytic abnor-
malities associated with ARDS and discussed the use of 
thrombolytic drugs to treat COVID-19.130 It was proposed 
that nebulized plasminogen activators could be used to 
degrade fibrin in the alveoli and improve oxygenation in 
COVID-19 patients.130 Indeed, a recent study reported 
that intravenous administration of tissue plasminogen 
activator temporally improved the respiratory status of 3 
patients with severe COVID-19 respiratory failure.131

Platelets
Platelets play an essential role in maintaining vascular 
integrity but also contribute to thrombosis. More recently, 
platelets have been found to participate in the immune 
response to viruses.132 Interestingly, IAV particles were 

observed within platelets from patients with acute influ-
enza infection.133 In addition, IAV engulfment by platelets 
led to TLR7-dependent release of C3 and subsequent 
activation of neutrophils and neutrophil extracellular trap 
(NET) release.133 Therefore, platelets participate in the 
host response to IAV infection. However, platelet acti-
vation during viral infection may also increase the risk 
of thrombosis. One study in COVID-19 patients found 
an association between thrombocytopenia and risk of 
in-hospital mortality.134 A recent review discussed the 
potential role of platelets in thrombosis in COVID-19.135

Activation of the Endothelium
Under normal conditions, the endothelium maintains vas-
cular integrity, limits binding and activation of immune 
cells and platelets, and inhibits coagulation by expres-
sion of anticoagulant proteins. However, during infec-
tion, the endothelium becomes activated, resulting in a 
loss of barrier function, expression of adhesion proteins 
that facilitate the recruitment of immune cells, release 
of VWF that allows binding of platelets, and expression 
of TF that activates the coagulation system. One study 
found that soluble ICAM-1 (intercellular adhesion mol-
ecule 1) and soluble VCAM-1 (vascular cell adhesion 
molecule 1) were associated with disease progression 
among hospitalized IAV(H1N1)pdm09 patients.40 These 
biomarkers indicate that the endothelium is activated 
possibly by circulating inflammatory mediators. Although 
some IAV strains have been shown to replicate in human 
lung microvascular endothelial cells, only avian IAV H5N1 
has been shown to infect lung microvascular endothelial 
cells in vivo.136,137 Importantly, one study found that block-
ing replication of the highly pathogenic IAV strain H5N1 
in the endothelium reduced systemic viral spread and 
mortality without affecting viral replication in the lungs 
of infected mice.3 A recent study found that human cap-
illary organoids derived from induced pluripotent stems 
cells could be infected with SARS-CoV-2, and this 
infection was blocked with recombinant, soluble human 
ACE2.138 Interestingly, deceased COVID-19 patients had 
increased ACE2 expression in endothelial cells in the 
lungs compared with noninfected controls.21 Two studies 
found evidence for direct infection of the endothelium by 
SARS-CoV-2 and diffuse endothelial inflammation in the 
lung, heart, kidney, and liver.21,139 SARS-CoV-2 infection 
of endothelial cells may lead to apoptosis or pyroptosis. 
Recent reviews have discussed the potential role of the 
endothelium in COVID-19.140,141

Neutrophils and NETs
Hematopoietic changes are observed in SARS-CoV 
and MERS-CoV patients.53 For instance, SARS-CoV 
patients often present with neutrophilia, which is associ-
ated with poor outcome.79,84 Other studies have observed 
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neutrophilia in MERS-CoV–infected patients.85–87 
COVID-19 patients generally have increased numbers of 
circulating neutrophils, and an elevated neutrophil count 
has been associated with poor outcome.43–47

Neutrophils play a key role in clearing viruses in the 
lung by phagocytosing viral particles and by releasing 
NETs.142–144 However, activated neutrophils can also dam-
age host cells.145–148 Neutrophils also play a key role in 
immunothrombosis—a term that has been used to describe 
the activation of coagulation that accompanies host innate 
immune defense.149 Importantly, NETs may contribute to 
thrombosis and vascular occlusion.150,151 There are several 
biomarkers used to measure the levels of NETs in plasma, 
including MPO (myeloperoxidase)-DNA complexes and 
citrullinated histone H3.151 However, many of these assays 
have low specificity for NETs.151 One study in IAV H1N1 
and H7N9 patients reported elevated levels of MPO-DNA 
complexes at hospital admission that correlated with dis-
ease severity.152 Similarly, serum from severe COVID-19 
patients contained elevated levels of MPO-DNA com-
plexes and citrullinated histone H3.153 These results sug-
gest that NETs may contribute to impairment of blood flow 
in the lungs of COVID-19 patients.151,154

Complement
The complement system plays a key role in the host 
immune response to viruses by opsonization of viral parti-
cles, recruitment of inflammatory cells, and lysis of infected 
cells.155 However, complement activation can also damage 
host cells. SARS-CoV infection in mice activates the com-
plement system.156 C3−/− mice exhibited reduced recruit-
ment of neutrophils and inflammatory monocytes into the 
lung and less respiratory dysfunction after SARS-CoV 
infection compared with controls.156 Similarly, inhibition 
of the C5a receptor reduced lung injury in hDPP4 mice 
infected with MERS-CoV.157 These results indicate that 
the complement system contributed to the lung pathol-
ogy after SARS-CoV and MERS-CoV infection in mice. 
Importantly, significant deposits of terminal complement 
components have been noted in the lung microvasculature 
of COVID-19 patients.33 Complement system inhibition 
with eculizumab, which binds to C5, might be beneficial for 
COVID-19—a hypothesis that is currently investigated in a 
clinical trial (https://www.clinicaltrials.gov; unique identifier: 
NCT04288713).158 A recent review discussed comple-
ment as a target in COVID-19.159

CONCLUSIONS
Further studies are needed to understand the molecular 
basis of thrombosis in COVID-19 patients and how this 
contributes to morbidity and mortality. Measurement of 
additional circulating biomarkers of different systems, such 
coagulation, fibrinolysis, and complement, as well as mark-
ers of endothelial cell activation, will provide much needed 

information on the pathology of COVID-19. When optimiz-
ing antithrombotic treatment for COVID-19 patients, it is 
important to balance the risk of thrombosis and the risk of 
bleeding, especially as bleeding has been observed in the 
lungs of COVID-19 patients. It will be also interesting to 
know whether any of the proposed treatments for COVID-
19 patients, such as blocking the IL-6 receptor or inhibiting 
complement activation, will reduce thrombosis.
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