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Background: Long non-coding RNAs (lncRNAs) play a key regulatory role in tumor
metabolism. Although hepatocellular carcinoma (HCC) is a metabolic disease, there have
been few systematic reports on the association between lncRNA expression and
metabolism in HCC.

Results: In this study, we screened 557metabolism-related lncRNAs in HCC. A risk score
model based on 13 metabolism-related lncRNA pairs was constructed to predict the
outcome and drug response in HCC. The risk score model presented a better prediction of
the outcomes than that with common clinicopathological characteristics, such as tumor
stage, grade, and status and aneuploidy score in both training and testing cohorts. In
addition, patients in the high-risk group exhibited higher responses to gemcitabine and
epothilone, whereas those in the low-risk group were more sensitive to metformin and
nilotinib.

Conclusion: The metabolism-related lncRNAs-based risk score model and the other
findings of this study may be helpful for HCC prognosis and personalized treatment
prediction.
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INTRODUCTION

Liver cancer remains a global health challenge, and it is the sixth most frequently occurred cancer,
with an increasing incidence worldwide [1, 2]. Hepatocellular carcinoma (HCC) is a very common
form of primary liver cancer, accounting for approximately 90% of cases [2]. Surgical resection
remains the most effective treatment for HCC. However, most patients are diagnosed in the middle
and advanced stages, and less than one-third of patients with HCC are suitable for surgery [3]. In
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addition, the prognosis of patients undergoing surgical resection
remains poor owing to the high recurrence rate; thus,
determination of the underlying molecular mechanisms and
construction of an effective prognostic model are urgently
needed [3].

Similar to all malignant tumors, the growth of HCC is
characterized by uncontrolled and rapid proliferation. Based on
the Warburg effect, the metabolic characteristics of tumor cells are
different from those of normal cells to adapt to their rapid growth
and proliferation [4, 5]. Consequently, HCC cells can take upmore
glucose and tend to depend on aerobic glycolysis, glutamine
uptake, and decomposition to rapidly produce adenosine
triphosphate, thus promoting macromolecule biosynthesis and
maintaining appropriate REDOX homeostasis [4, 5]. These
changes in tumor metabolism are mainly regulated by cell
growth and proliferation signaling pathways, which in turn
regulate the metabolic network through various transcriptional
and post-translational regulatory mechanisms [6].

Increasing evidence indicates that aberrant long non-coding
RNAs (lncRNAs) are closely related to the occurrence and
development of HCC. LncRNAs are a group of endogenous
RNAs with lengths >200 nucleotides that lack a specific complete
open reading frame and protein coding function [7, 8]. To date, at
least 74 lncRNAs have been reported to be deregulated in HCC. For
example, lncRNA-HLUC, lncRNA-H19, and lncRNA-CUDR are
highly expressed in HCC cells compared with those in normal liver
cells [9–12]. At the early stage, the expression level of lncRNA-
MALAT-1 increased up to six times that in normal cells [13]. In
recent years, further analysis has suggested that lncRNAs play
important roles in the regulation of tumor cell metabolism [14].
Moreover, lncRNAs can regulate key steps in glucose, protein, lipid,
and nucleic acid metabolism in tumor cells to form tumor cells in a

hypermetabolic state and provide the necessary energy and material
basis for the survival of tumor cells. Therefore, it is of great clinical
value to understand the relationship between lncRNA expression
andmetabolism inHCC cells and to elucidate the relevantmolecular
mechanisms for the treatment of HCC.

In this study, we screened 557 metabolism-related lncRNAs in
Cancer Genome Atlas (TCGA)-Liver Hepatocellular Carcinoma
cohort, among which 105 were differentially expressed between
the tumor and normal tissues. To facilitate and broaden the
clinical applications in different institutions, we constructed
lncRNA pairs. A 13-lncRNA pair-based risk score model was
built to predict the outcome and drug response in the training and
testing cohorts.

METHODS

Data Sources and Preparation
The transcriptome data and clinical data of patients with HCC
were downloaded from TCGA (https://cancergenome.nih.gov/).
We divided the gene expression data into mRNA and lncRNA
data according to their annotation. A list of 2752 metabolism-
related genes encoding all known human metabolic enzymes and
transporters is shown in Supplementary Table S1 [15]. We
randomly selected 70% of the patients as the training cohort
(n = 252), wheras 30% of those as the testing cohort (n = 108).

Identification of Metabolism-Related
lncRNAs and lncRNA Pairs
We performed Pearson’s correlation analysis of 2752 reported
metabolism-related genes and lncRNAs to identify metabolism-

FIGURE 1 | Identification of differentially expressed metabolism-related lncRNAs in HCC. (A) A flowchart showing the systematic summary of the study. (B) A
heatmap displaying differentially expressed metabolism-related lncRNAs between tumor and normal tissues. (C) A volcano plot showing the significantly upregulated
and downregulated expressions of lncRNAs (false discovery rate ≤ 0.05; |log2FC| ≥ 2).
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related lncRNAs by setting a correlation coefficient of >0.5 at p ≤
0.0001. Differentially expressed metabolism-related lncRNAs
between tumor and normal tissues of HCC were screened out
by setting the threshold false discovery rate ≤0.05 at |log2FC| ≥ 2.
To broaden their application value, we defined lncRNA pairs
using the identified metabolism-related lncRNAs. For instance,
the value of the lncRNA pair lncRNA-A|lncRNA-B is 1 if the
expression of lncRNA-A is greater than that of lncRNA-B and is 0
otherwise.

Data Analysis
All statistical analyses were performed using R programming.
Differentially expressed lncRNAs were identified by the “limma”
package [16]. The least absolute shrinkage and selection operator
(lasso) risk score model was constructed using identified
metabolic lncRNA pairs using the “glmnet” package. The
time-dependent receiver operating characteristic (ROC) curve
was plotted using the “survivalROC” package. Survival analysis
was performed using the Kaplan–Meier method and log-rank
test. In addition, chi-square test was used to compare the
association between the risk groups and clinicopathological
characteristics. The estimation of infiltrating immune cells was

downloaded from http://timer.comp-genomics.org. Gene set
enrichment analysis was performed using h.all.v7.2.entrez.xls
downloaded from http://www.gsea-msigdb.org/gsea/downloads.
jsp [17, 18]. Responses to chemotherapeutic drugs were predicted
using “pRRophetic” package [19]. IC50 was used to evaluate drug
susceptibility. Unpaired two-sided t-test was used to compare two
experimental groups.

RESULTS

Screening of Differentially Expressed
Metabolism-Related Long Non-Coding
RNAs in HCC
A flowchart providing a systematic summary of our study is
shown in Figure 1A. Using correlation analysis, we identified 557
lncRNAs that may be correlated with metabolism-related genes
(correlation coefficient >0.5; p ≤ 0.0001; Supplementary Table
S2). We then performed differential expression analysis of these
metabolism-related lncRNAs between tumor and normal tissues.
As shown in Figures 1B,C and Supplementary Table S3, two

FIGURE 2 | Establishment of the risk score model based on differentially expressed metabolism-related lncRNA pairs. (A) The partial likelihood deviances of
building the risk score model. (B) The solution paths of the risk score model. (C) Univariate analysis of lncRNA pairs involved in the risk score model. (D) Multivariate
analysis of lncRNA pairs involved in the risk score model. The hazard ratio was shown with corresponding 95% confidence intervals (95% CIs).
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downregulated lncRNAs and 103 upregulated lncRNAs in HCC
were observed (false discovery rate ≤0.05; |log2FC|≥2). To
facilitate and broaden the clinical applications in different
institutions, we constructed lncRNA pairs (Supplementary
Table S4). We identified 3543 lncRNA pairs using the value
assignments described above.

Construction and Testing of a Risk Score
Model Using Identified lncRNA Pairs
After identifying 3543 metabolism-related lncRNA pairs, we
performed univariate Cox regression analysis of each lncRNA
pair. Then, 188 lncRNA pairs with p < 0.005 were enrolled as
candidate lncRNA pairs in the following construction of a lasso
regression model (Supplementary Table S5). A lasso regression
model was built using identified lncRNA pairs to predict the
relative risk of patients with HCC. As shown in Figure 2, 13
lncRNA pairs were included in the risk score model. The risk
score was calculated as −0.46*(LMNTD2-AS1|LINC00239)−0.66*
(LMNTD2-AS1|AC099850.4)+0.38*(MELTF-AS1|AL031186.1)-
0.39*(AC011468.1|AC004816.1)+0.40*(AL606489.1|AC006042.1)+
1.05*(AC004816.1|AC010280.2)-0.51*(SERTAD4-AS1|AC013275.1)+

1.19*(AP000593.3|AC111000.4)+0.55*(AC099850.4|AP003352.1)+
0.44*(AP000424.2|LENG8-AS1)+0.70*(AL355574.1|TMPO-AS1)+
0.71*(AC007406.2|AC110285.2)+0.62*LINC02826|AC010280.2),
and the value of an lncRNA pair lncRNA-A|lncRNA-B is described
above. The area under the ROC curve (AUC) of 1 year was 0.860,
whereas that of 3 years increased to 0.875, which may indicate that
the risk score model presented a better ability to predict outcomes
over time (Figure 3A). The point closest to the upper left corner
was the optimal critical cutoff to identify the high-risk and low-risk
groups (cutoff = 2.535, the high-risk group with risk score ≥2.535
or the low-risk group otherwise; Supplementary Table S6). In
general, the risk score model had a very strong ability to predict the
outcome of HCC in the training and validation cohorts (p < 0.001,
Figures 3B,C).

Prognostic Performance of the Risk Score
Model in the Training and Testing Cohorts
In the independent prognostic analyses of the risk score and
clinicopathological characteristics, the risk score was an
independent risk factor for both univariate (hazard ratio [HR]:
2.522 (2.036–3.125), p < 0.001) and multivariate (HR: 2.413

FIGURE 3 | Predictive performance of the risk score model. (A) Time-dependent receiver operating characteristic curve of the risk score. (B, C) Survival curve of
patients with HCC stratified by the risk score model in the training cohort (n = 252) (B) and testing cohort (n = 108) (C).
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FIGURE 4 | Performance of the risk score model and clinicopathological characteristics in the training and testing cohorts. (A, B) Univariate (A) and multivariate (B)
analyses of the risk score model and clinicopathological characteristics in the training cohort. (C) Receiver operating characteristic curve of the risk score model and
clinicopathological characteristics in the training cohort. (D) The risk score and survival distribution of the high- and low-risk groups in the training cohort. (E, F) Univariate
(E) and multivariate (F) analyses of the risk score model and clinicopathological characteristics in the testing cohort. (G) Receiver operating characteristic curve of
the risk score model and clinicopathological characteristics in the testing cohort. (H) The risk score and survival distribution of the high- and low-risk groups in the testing
cohort. The hazard ratio was shown with corresponding 95% confidence intervals (95% CIs).
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(1.904–3.057), p < 0.001) analyses (Figures 4A,B). Furthermore,
the risk score (AUC = 0.860) had a higher prognostic capacity than
that of age (AUC = 0.476), gender (AUC = 0.529), tumor stage
(AUC = 0.670), tumor grade (AUC = 0.512), cancer status (AUC =
0.412), and aneuploidy score (AUC = 0.597) (Figure 4C). Patients
in the high-risk group exhibited higher mortality rates and shorter
survival time in the training cohort (Figure 4D). Moreover, in the
testing cohort, the risk score was also an independent risk factor for
both univariate (hazard ratio [HR]: 1.800 (1.335–2.427), p < 0.001)
and multivariate (HR: 1.698 (1.195–2.413), p = 0.003) analyses
(Figures 4E,F). The risk score (AUC = 0.725) had a higher
prognostic capacity than that other characteristics such as age
(AUC= 0.648), gender (AUC= 0.483), tumor stage (AUC= 0.677),
tumor grade (AUC = 0.483), cancer status (AUC = 0.419), and
aneuploidy score (AUC = 0.720) in the testing cohort (Figure 4G).
And patients in the high-risk group had shorter survival time
(Figure 4H).

Correlation Analyses Between the Risk
Groups and Clinicopathological
Characteristics in the Training and Testing
Cohorts
Correlation analyses between the risk groups and
clinicopathologic features including age, gender, tumor grade,
TNM staging, cancer status, metastasis stage, lymph node stage,
and tumor stage, were performed. Patients in stages III–IV,
grades 3–4, or T3–4 stage had higher risk scores in the
training cohort (Figures 5A,B). While in the testing cohort,
patients in stages III–IV, or T3–4 stage had higher risk scores

in the testing cohort (Figures 5C,D). We then analyzed the
infiltrating immune cells in the tumor microenvironment
between the low- and high-risk groups using various software
(Supplementary Figure S1A and Supplementary Table S7).
Among them, CD4+ Th2 (p < 0.0001), T cell CD4+ memory
(p = 0.0320) and macrophage M0 (p = 0.0230) cells were
positively correlated in the high-risk group (Supplementary
Figures S1B–D).

Enrichment Analysis and Drug Sensitivity
Prediction in the Training and Testing
Cohort
We conducted enrichment analysis between the high- and low-
risk groups using hallmark gene sets in the training cohort. The
G2M checkpoint, E2F targets, MYC targets V1, MTORC1, and
MYC targets V2-related pathways were significantly enriched in
the high-risk group (Figure 6A). Bile acid metabolism, xenobiotic
metabolism, coagulation, oxidative phosphorylation, and fatty
acid metabolism-related pathways were relatively enriched in the
low-risk group (Figure 6B). Using the R package “pRRophetic”,
we predicted the clinical chemotherapeutic response to several
chemotherapy drugs based on the tumor gene expression between
the two groups (Figure 6C and Supplementary Table S8). In the
training cohort, patients in the high-risk group exhibited higher
responses to the chemotherapeutics gemcitabine (p < 0.0001) and
epothilone B (p < 0.0001) (Figures 6D,E), whereas those in the
low-risk group may be more sensitive to metformin (p = 0.0006)
and nilotinib (p = 0.0033) (Figures 6F,G). In the testing cohort,
patients in the high-risk group were also more vulnerable to

FIGURE 5 | Clinicopathological characteristics of HCC stratified by the risk score model in the training and testing cohorts. (A, C) Correlation of clinicopathological
characteristics in the high- and low-risk groups in the training (A) and testing (C) cohorts. (B, D) Correlation of TNM staging and the risk score in the training (B) and
testing (D) cohorts. *, p < 0.05; **, p < 0.01, ***, p < 0.001.
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gemcitabine (p = 0.0032) and epothilone B treatment (p = 0.0054)
(Figures 6H,I). And patients in the low-risk group became more
susceptible to metformin (p = 0.0230) and nilotinib (p = 0.0550)
(Figures 6J,K).

DISCUSSION

lncRNAs regulate different biological processes of cell metabolism
and exhibit significant differential gene expression in liver
metabolic diseases. HULC is an early confirmed lncRNA that is
highly expressed in HCC [20]. It promotes the proliferation of
HCC by upregulating the expression of peroxisome proliferator-
activated receptor α and then activating the promoter of long-chain
acyl-CoA synthase 1 (ACSL1). ACSL1 further promotes the
production of acyl-CoA, thereby inducing abnormal lipid
metabolism [21]. LncRNA-SOX2OT can enhance the metastatic
performance of HCC and promote glucose metabolism [22]. FTx,
MALAT1, and MOTAIR play significant roles in regulating cell
metabolism [23–25]. Although some links between lncRNAs and
cell metabolism have been revealed in HCC, a systematic analysis

has not yet been conducted. In this study, 105 differentially
expressed metabolism-related lncRNAs were identified in HCC.
In addition, to facilitate and broaden clinical applications in
different institutions, lncRNA pairs were constructed. A risk
score model was built using the identified lncRNA pairs. The
incidence and clinicopathological characteristics of HCC, such as
pathological types and tissue types, are significantly different
among different patients. The prognosis of patients in the same
stage is also different. Therefore, there is a need for more awareness
of the prognostic factors of HCC. The model divided patients into
high- and low-risk groups, with statistically significant differences
in survival between the two groups. The risk score had a higher
prognostic capacity than that of age, sex, tumor stage, tumor grade,
cancer status, and aneuploidy score.

Based on the literature search, we found that there were few
reports on the underlying metabolism-related mechanism of most
lncRNAs identified in this study, which are mainly determined as
clinical prognostic factors for various tumors. Zhao et al. identified
AC099850.4 as a top lncRNA of lncRNA-miRNA-mRNA
competing triplets in ovarian cancer [26]. The LINC00239-
based risk score model can predict the prognosis of HCC

FIGURE 6 | Enrichment analyses and drug sensitivity prediction. (A, B) GSEA enrichment plots of the top enriched gene sets of the high-risk (A) and low-risk
groups (B). (C) The differential response to 46 chemotherapy drugs of the two groups. (D, E) Patients in the high-risk group may be sensitive to gemcitabine and
epothilone B in the training cohort. (F, G) Patients in the low-risk group may be susceptible to metformin and nilotinib in the training cohort. (H, I) Patients in the high-risk
groupmay be sensitive to gemcitabine and epothilone B in the testing cohort. (J, K)Patients in the low-risk groupmay be vulnerable tometformin and nilotinib in the
testing cohort. GSEA: Gene set enrichment analysis; NES: Normalized enrichment score; IC50: half maximal inhibitory concentration.
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patients with cirrhosis [27]. Jiang et al. found MELTF-AS1 to be
one of the most significant prognostic immune-related lncRNAs in
clear cell renal cell carcinoma [28]. Wu et al. determined that
AL606489.1, an autophagy-related lncRNA, could predict the
outcome of lung adenocarcinoma [29]. Additionally, TMPO-
AS1 regulates bladder cancer progression via the TMPO-AS1/
miR-98-5p/EBF1 signaling axis [30].

Another innovative finding in this study was that patients in
the high-risk group exhibited higher responses to gemcitabine
and epothilone B, whereas those in the low-risk group may be
more sensitive to metformin and nilotinib. The gemcitabine
regimen enhanced the survival and disease-free survival rate of
patients with HCC in clinical settings, and our findings may
indicate patients who are most likely to benefit from this drug
regimen. Epothilone is a 16-element macrolide, which is a
secondary metabolite produced by myxobacteria [31,32]. The
activity of epothilone B was three orders of magnitude higher
than that of paclitaxel in cytotoxicity tests, and its multidrug
resistance-inhibitory activity was approximately 100 times that of
paclitaxel [32]. In HCC cell lines, epothilone B was found to be
more potent than taxanes and doxorubicin, and thus, a clinical
study examining its potential application in HCC is warranted
[33]. Nilotinib is a BCR-ABL kinase inhibitor approved by the
FDA in 2007 to treat patients with chronic or accelerated
leukemia who are resistant to imatinib. The available evidence
indicates that nilotinib can induce autophagy in HCC cells
in vitro [34]. As shown in Figure 6B, patients in the low-risk
groupmay has high oxidative phosphorylation level. It is reported
that metformin could suppress tumor growth by inhibiting
certain steps in the mitochondrial electron transport chain,
which may explain the reason that patients in the low-risk
were more sensitive to metformin [35]. Using the R package
“pRRophetic” the clinical chemotherapeutic response to the
above chemotherapy drugs was predicted, and the findings will
be useful for clinicians to develop personalized therapies.

Although our findings might be statistically compelling, the
conclusions were only derived based on the information obtained
from the database. We could not experimentally verify the findings
owing to a small number of cases of HCC with primary site
resection in our institute. However, we plan to set up a specimen
bank of HCC and have sought cooperation from other hospitals.
Because this was an exploratory study, the application value of
these findings needs to be further verified by multi-center and
large-sample clinical studies, thereby clinically verifying our
conclusions in the near future. Regarding an experimental
design, the internal and external validity of the study
determines its authenticity and universality of experimental
conclusions. Regarding internal threats to the validity of this
study, there might be a selection bias for patients with HCC in
TCGA from the US population, which mainly included those with
non-alcoholic fatty liver disease-related HCC. HBV-associated
HCC is more common in East Asian countries. Regarding
external threats to the validity of this study, different detection
methods or detection platforms adopted by different institutions
limit the application of the risk score model. Thus, we compared
the values of two lncRNAs for lncRNA pairs and assigned them

values according to their relative sizes, which might facilitate and
broaden the clinical applications in different institutions.

CONCLUSION

By screening differentially expressed metabolism-related lncRNA
pairs in HCC, we constructed a 13-lncRNA pair-based risk score
model. This model presented a better prediction of the outcomes
than that with common clinicopathological characteristics, such as
tumor stage, grade, and status and aneuploidy score. Moreover, the
risk scoremodelmight help guide therapeutic regimens in the future.
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Supplementary Figure S1 | Correlation of infiltrating immune cells and the risk
score. (A) Correlation of infiltrating immune cells and the risk score of patients with
HCC using various software. (B–D) The differentially infiltrating CD4+ Th2, T cell
CD4+ memory, and macrophage M0 in the high- and low-risk groups.

Supplementary Table S1 | 2752 metabolic genes involved in the study.

Supplementary Table S2 | Correlation of metabolic genes and lncRNAs.

Supplementary Table S3 | 105 differentially expressed metabolic related lncRNAs
in HCC.

Supplementary Table S4 | Value of lncRNA pairs of HCC patients.

Supplementary Table S5 | The univariable cox regression analyasis of
lncRNA pairs.

Supplementary Table S6 | The risk score and risk stratification of HCC patients.

Supplementary Table S7 | Correlation of risk score group and infiltrating
immune cells.

Supplementary Table S8 | List of drug sensitivity prediction of the high- and low-
risk groups.
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