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Tripartite motif containing-21 (TRIM21) is a cytosolic ubiquitin ligase and antibody

receptor that provides a last line of defense against invading viruses. It does so by

acting as a sensor that intercepts antibody-coated viruses that have evaded extracellular

neutralization and breached the cell membrane. Upon engagement of the Fc of

antibodies bound to viruses, TRIM21 triggers a coordinated effector and signaling

response that prevents viral replication while at the same time inducing an anti-viral

cellular state. This dual effector function is tightly regulated by auto-ubiquitination

and phosphorylation. Therapeutically, TRIM21 has been shown to be detrimental in

adenovirus based gene therapy, while it may be favorably utilized to prevent tau

aggregation in neurodegenerative disorders. In addition, TRIM21 may synergize with the

complement system to block viral replication as well as transgene expression. TRIM21

can also be utilized as a research tool to deplete specific proteins in cells and zebrafish

embryos. Here, we review our current biological understanding of TRIM21 in light of its

versatile functions.
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INTRODUCTION

Antibodies are a crucial part of the immune response to invading viruses, and induction of
neutralizing antibodies is a primary goal of vaccination (1). In addition, there is great interest in
the isolation and engineering of broadly neutralizing antibodies against major human pathogens,
such as human immunodeficiency virus and influenza virus for prophylactic and therapeutic uses
(2–4). Antibody-mediated neutralization is generally considered to occur extracellularly due to
exclusion of antibody from the cell interior by membrane compartmentalization. Extracellular
neutralization has also been reported to be potentiated by engagement of Fc receptors (5, 6).
However, the identification of tripartite motif containing-21 (TRIM21) as a high affinity cytosolic
antibody receptor with anti-viral functions (7), has extended our understanding of the reach of
antibody immunity to include the cytosol of cells.

Extracellular viral neutralization is thought to require a given level of antibody occupancy of
specific epitopes to prevent entry into cells (8). However, viruses are known to display immuno-
dominant epitopes that bias the polyclonal antibody response toward non-entry neutralizing
epitopes (9–11). This implies that some viruses and bacteria have the capacity to penetrate
the cell membrane and enter the cytosolic compartment even when they are opsonized with
antibody. Such opportunistic pathogens are rapidly sensed by cytosolic TRIM21, which induces
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a synchronized effector and signaling response. Antibody-
opsonized non-enveloped viruses are rapidly targeted for
degradation via the proteasome and induce an innate immune
response. Bacteria in complex with antibody trigger innate
immune signaling (12) and possibly killing via autophagy
(13). In both cases, TRIM21 functions as a link between the
intrinsic cellular self-defense system and adaptive immunity by
taking advantage of the diversity of the antibody repertoire
to detect invaders (14). By doing so, TRIM21 distinguishes
itself from other members of the TRIM protein family with
anti-viral functions as these generally recognize the invading
pathogen directly (15). TRIM21 recognition is also distinct
from that of other innate sensors, such as pattern recognition
receptors, which detects pathogen associated molecular patterns
(PAMPs) (16). Instead, TRIM21 treats the displacement of
antibody from the extracellular to the intracellular environment
as a danger associated molecular pattern (DAMP) (12). Viral
restriction by TRIM21 may also synergize with protective anti-
viral mechanisms mediated by the complement system (17, 18).

In addition to its role in intracellular defense, the implications
of TRIM21 in therapy and as a research tool in cell biology are
beginning to emerge. This includes identification of TRIM21
as a key player in preventing efficient adenovirus based gene
delivery and vaccination (19), as well as proteasomal targeting of
spreading tau protein (20). The latter promotes tau degradation
instead of intracellular aggregation, which is associated with
several neurodegenerative diseases. Finally, microinjection or
transformation of antibody into cells can be used to direct
intracellular proteins for TRIM21 mediated destruction. This
technology is called TRIM-Away and is used to study protein
function in cells (21, 22). These functions of TRIM21 are
summarized in Figure 1.

In this review we discuss our current understanding of
TRIM21 as a cytosolic Fc receptor that executes its effector
functions alone or in synergy with the complement system. In
addition, we highlight why TRIM21 should be considered in the
context of disease and therapy.

TRIM21 AND ITS INTERACTION WITH
ANTIBODY

TRIM21 is a multi-domain protein consisting of an N-terminal
RING domain with E3 ubiquitin ligase activity, a B-box domain,
a coiled-coil dimerization domain and a C-terminal PRYSPRY
domain (23). The domain architecture is conserved within
the TRIM protein family and it is the C-terminal PRYSPRY
domain that contains the antibody binding site and thus dictates
function (24). The TRIM21 PRYSPRY domain is a globular fold
comprising a β-sandwich of two anti-parallel β-sheets connected
by flexible loops, which are sub-divided into PRY and SPRY
elements (25, 26). In solution, TRIM21 exists as a homodimer
and forms a stable 1:1 complex with antibody, in which the
two PRYSPRY domains bind symmetrically to the Fc (7, 25).
An illustration of dimeric TRIM21 in complex with antibody is
shown in Figure 2A.

TRIM21 is also known as Ro52 and was first identified as
a major autoantigen in autoimmune diseases such as Sjogren’s
syndrome and systemic lupus erythematosus (SLE) (27–29).
Autoantibodies generated against TRIM21 in SLE are specific for
the RING and B-box domains and not the Fc binding PRYSPRY
domain (30).

Interaction between TRIM21 and part of an immunoglobulin
heavy chain was first reported as a false positive in a yeast two-
hybrid screen (31). Since then, direct binding between bona
fide antibodies and TRIM21 has been demonstrated and its
affinity and mechanism of binding dissected by site-directed
mutagenesis and binding studies combined with solving the
crystal structure of the human TRIM21 PRYSPRY domain in
complex with a human IgG1 Fc fragment (25). The structure
confirmed that two PRYSPRY domains bind to each side of the
homodimeric Fc. The TRIM21 binding site is located at the
CH2-CH3 interface of the Fc. This is distal from the binding
site for the classical Fcγ receptors and complement factor C1q
(32–36), but overlaps with that of the neonatal Fc receptor
(FcRn) (37, 38), as well as viral and bacterial defense proteins
(39–41) (Figure 2B). Notably, the TRIM21-IgG interaction is
largely pH-independent and unaffected by removal of the bi-
antennary N-glycan structure attached to N297 in the Fc
CH2 domain (25, 31). It is, however, sensitive to high salt
concentrations (25).

The core TRIM21-IgG1 interaction is formed between a
protruding loop encompassing residues 429–436 in the Fc CH3
domain and a deep binding pocket formed on the surface of the
PRYSPRY domain (25). The apex residues H433, N434, H435,
and Y436 (HNHY-motif) of the Fc loop is inserted into the
PRYSPRY binding pocket. The residues form a hydrogen bond
network with the base of the pocket that is protected from solvent
by a shield of hydrophobic side chains. Key interacting residues
in the PRYSPRY domain include D355, W381, W383, D452,
F450, and W299. A detailed view of the interaction is depicted
in Figure 2C.

The binding affinity between human IgG1 and the
recombinant human PRYSPRY domain has been measured
to be in the range of 150–200 nM by both isothermal titration
calorimetry and surface plasmon resonance (7, 42). However,
since TRIM21 is homodimeric, its functional affinity upon
binding symmetrically to the IgG1 Fc is as low as 0.6 nM as
measured by fluorescence anisotropy (7). This represents an
increase of >300-fold compared to monomeric binding, making
TRIM21 the highest affinity Fc receptor known in humans.

The TRIM21-IgG interaction is highly conserved across
species, which is illustrated by the fact that both human
and mouse TRIM21 efficiently bind IgG from a range of
mammals (26). There is also a strict correlation between site
specific mutations made in mouse TRIM21 on binding to both
mouse and human IgG subclasses, which is indicative of both
thermodynamic and kinetic binding conservation across species.
In line with this, TRIM21 distinguishes itself from other Fc
receptors in that its PRYSPRY domain does not only bind all four
IgG subclasses, but also IgM and IgA. The monomeric affinity
of TRIM21 PRYSPRY to IgM and IgA are much weaker, 17 and
50µM, respectively (7, 43). This is due to large differences in
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FIGURE 1 | TRIM21 in disease and therapy. (A) The dual effector and signaling responses mediated by TRIM21 during Ad5 infection. (1) Ad5 coated with antibody

enters the cytosol via CAR and αvβ3/5 integrin, (2) and is intercepted by TRIM21 that mediates proteasomal degradation and induces innate signaling. (B) TRIM21

mediated block to gene therapy. (1) An Ad5 based gene therapy vector enters the cytosol via CAR and αvβ3/5 integrin upon which (2) TRIM21 targets the vector for

proteasomal degradation and induces innate signaling. (3) This hinders nuclear delivery and transgene expression. (C) (1) Tau protein bound by antibodies enters the

cytosol via endocytosis and is targeted for destruction by TRIM21 (2). (3) This prevents formation of large intracellular tau aggregates. (D) TRIM-Away; (1) Antibodies

are microinjected or electroporated into cells where they bind their antigen, (2) TRIM21 is recruited and directs the targeted protein to proteasomal degradation. The

figure was made in BioRenderTM.

FIGURE 2 | The TRIM21-IgG interaction. (A) Illustration showing binding of dimeric full-length TRIM21 to antibody (blue). The RING (pink), B-Box (red), Coiled-coil

(orange), and PRYSPRY (yellow) domains of TRIM21 are shown. (B) Structural illustration of the interaction between the globular human PRYSPRY domain (orange) of

TRIM21 and human IgG1 Fc (blue) (25). Insertion of Fc loop 429–436 into the PRYSPRY binding pocked is highlighted with a square. (C) Close-up view showing the

insertion of IgG1 Fc loop 429–436 into the hydrophobic binding pocket on TRIM21 PRYSPRY. A was made in BioRenderTM while B,C were made in PyMOL using

PBD ID: 2IWG crystallographic data (25).

the amino acid composition of the Fc loop corresponding to the
HNHY-motif in IgG, which is PNRV in IgM and PLAF in IgA.
However, the loop is accommodated into the PRYSPRY binding
pocket, and due to the dimeric nature of full-length TRIM21,

functional affinity is likely to be in the sub-µM range (43).
Both IgM and IgA have been shown to trigger TRIM21 effector
functions (7, 43). Whether or not TRIM21 is able to interact with
IgD or IgE has not yet been investigated, but nevertheless, it is the
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only known Fc receptor that is capable of interacting with three
distinct antibody isotypes.

TRIM21 COORDINATES VIRAL
NEUTRALIZATION AND INNATE
SIGNALING

How TRIM21 responds to antibody-coated viruses in the
cytosol has been studied in detail using human adenovirus
type 5 (Ad5) as a model pathogen. Upon infection of cells
with Ad5-antibody complexes, TRIM21 mediates a sequential
and coordinated effector and signaling response. This involves
proteasomal degradation of the virus and induction of an anti-
viral cellular state through activation of innate immune signaling
pathways. The degradation of invading viruses by TRIM21 is
termed antibody dependent intracellular neutralization (ADIN).
This process occurs with rapid kinetics and can be observed with
only a few antibodies per virus (44).

The dual effector response is fully dependent on the E3
ubiquitin ligase activity of TRIM21 mediated by its RING
domain (45, 46). Upon engagement of antibody, TRIM21 is N-
terminally monoubiquitinated by the E2 enzyme Ube2W. Then,
the monoubiquitin acts as a primer for ubiquitin chain extension
via a K63 linkage using the E2 enzyme complex Ube2N/Ube2V2.
Depletion of cellular Ube2N leads to loss of both K63 and K48-
linked ubiquitin from over-expressed TRIM21, suggesting that
subsequent K48-linked ubiquitin may be incorporated, in the
form of mixed or branched chains (45).

Auto-ubiquitination of TRIM21 ultimately targets the
TRIM21:antibody:antigen complex to the proteasome for
degradation. Here, the proteasome associated deubiquitinase
Poh1 liberates the ubiquitin chains en bloc to induce NF-κB, AP-1
and IRF 3, 5, and 7 signaling pathways via TBK1, TAB/TAK, and
NEMO (12, 46). The result is production of pro-inflammatory
cytokines. The ATPase p97/valosin-containing protein (VCP),
an enzyme with segregase and unfoldase activity, is needed to
degrade viral particles possibly because intact capsids have to be
disassembled before the individual components are degraded in
the proteasome (47). Virus degradation exposes viral genomes
to the cytosolic DNA and RNA sensors cGAS and RIG-1, which
initiates a second wave of immune signaling in response to Ad5
or human rhinovirus 14 (HRV-14) infection, respectively (48).
The dual effector functions of TRIM21 are outlined in Figure 3.

TRIM21 contributes to systemic protection (49) in vivo. This
has been demonstrated for mouse-adenovirus type 1 (MAV-
1) infection, both in naïve mice and mice passively transfused
with MAV-1 specific anti-serum. In these experiments, TRIM21
activity prevented MAV-1 induced hemorrhagic encephalitis as
mice lacking TRIM21 had higher viral loads and increased
mortality compared to wild-type (WT) animals, while mice
heterozygous for TRIM21 displayed an intermediate phenotype.
Interestingly, the fact that naive mice demonstrate TRIM21
dependent protection suggests that the early antibody response,
likely in the form of IgM, works with TRIM21 in vivo to
prevent infection. Also, use of the fully replicative MAV-1
demonstrates that TRIM21 is effective during an active spreading

infection. Together, these experiments show that TRIM21 makes
a substantial contribution to systemic protection and is an
important part of the humoral immune response.

Recently, the role of TRIM21 in immune activation was
mapped out in detail in a genome-wide differential gene
expression analysis using RNA-seq (19). The analysis revealed
that immune signaling is strictly dependent on TRIM21 and
its binding to antibody. In TRIM21 knockout (KO) mice gene
expression in naïve or Ad5 infected animals was barely affected.
Similarly, infection in the presence of the Ad5 hexon specific
mouse-human chimeric rh9C12 antibody resulted in more than
700 differentially expressed genes between WT and TRIM21 KO
mice (19). Furthermore, Ad5 infection in the presence of an
engineered version of rh9C12, the TRIM21 non-binding IgG1-
H433A (42), resulted in a similar gene expression pattern as Ad5
infection alone. Thus, both genetic knockdown of TRIM21 and
abrogation of the TRIM21-IgG interaction on the protein level,
prevented immune activation. Importantly, the H433A mutation
specifically ablates TRIM21 binding without impairing binding
to other Fc receptors or affecting the serum half-life of the
antibody within the timeframe of the experiments (19, 42, 50).

The specific contribution of TRIM21 to immune signaling
was determined by comparing the transcriptional changes
in immune genes induced upon infection in WT vs.
TRIM21 KO mice using rh9C12-WT vs. rh9C12-H433A.
TRIM21 specifically induced genes related to innate and
intrinsic immunity as opposed to genes associated with
a strong inflammatory response such as acute phase
proteins. This indicates that TRIM21 is a potent positive
immune regulator that focuses the anti-viral response toward
intrinsic immunity.

REGULATION OF TRIM21 IMMUNE
SIGNALING

Extracellular engagement of classical transmembrane-bound Fc
receptors results in intracellular activation or inhibitory signal
transduction (51, 52). Their regulation is dependent upon factors
such as expression level, receptor cross-linking and the ratio
between activating and inhibitory receptors, which together set
the activation threshold. Likewise, innate immune responses
inside cells must also be tightly controlled. Members of the
TRIM protein family sense ligands entering the cytosol, but it is
not well-understood how they trigger signaling. One regulatory
mechanism that has been proposed is that TRIM proteins are
activated by higher order assembly, based on early observations
of their formation of so-called cytoplasmic bodies (53). The
requirement for higher order assembly to drive ubiquitination
and activity was first suggested for TRIM5α (54, 55). Assembly
is thought to be required to allow RING domains to dimerize,
as they are normally separated from each other in TRIM
dimers by a long coiled-coil. What drives TRIM assembly is less
clear. Engagement of retroviral capsids by TRIM5α can induce
oligomerization and hexagonal assembly via B-Box interactions
between multiple TRIM5α molecules (56). Mutations that
disrupt dimerization inhibit its catalytic activity (57).
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FIGURE 3 | Mechanism of TRIM21 mediated anti-viral function. (1) Ad5 engages CAR and αvβ3/5 integrin at the cell surface. This triggers endocytosis of the

Ad5:antibody complex and loss of fiber from the Ad5 capsid. (2) Fiber loss exposes protein VI that lyse the endosomal membrane which allows the virus:antibody

complex to escape to the cytosol. (3) TRIM21 binds to the Fc part of the antibody in which auto-inhibition is released by B-box phosphorylation and undergoes

auto-ubiquitination by the E2 enzymes Ube2W and Ube2N/Ube2V2. (4) This directs the Ad5:antibody complex to VCP and the proteasome for degradation. (5)

Liberation of K63-linked ubiquitin chains by Poh1 activates IKKα-IKKβ-NEMO and TAK-TAB1-TAB2 which in turn induces NF-κB, AP-1 and IRFs resulting in the

production of pro-inflammatory cytokines and an anti-viral state. (6) Exposed viral genomes trigger a second wave of immune signaling via the cytosolic DNA sensor

cGAS. The figure was made using BioRenderTM.

While RING dimerization is not required for E2 enzyme
binding it is needed to form contacts with E2-charged ubiquitin.
This has been demonstrated for TRIM25 as mutations at the
RING dimerization interface disrupts its catalytic activity in
vitro (58). Likewise, higher order assembly drives N-terminal
K63-linked ubiquitination of TRIM5α, which is required for
NF-κB activation and capsid disassembly (56). Furthermore,
overexpression of TRIM5α in cells constitutively induces NF-κB
activation in the absence of infection, likely due to spontaneous
formation of cytoplasmic bodies (56). This in turn drives auto-
ubiquitination, resulting in more rapid protein turnover by
proteasomal targeting. However, such an activation strategy
does not seem to be used by TRIM21 since its B-Box is
auto-inhibitory (59). When TRIM21 is overexpressed in cells,
no NF-κB activation or proteasomal degradation occurs in
the absence of virus and antibody. Moreover, substitutions
in TRIM21 corresponding to residues crucial for TRIM5α
dimerization do not render TRIM21 catalytically inactive
(59). These differences are observed despite the fact that
the isolated RING domains of both TRIM5α and TRIM21
are highly catalytically active in vitro. So how is TRIM21
activation regulated?

Recent results have revealed that TRIM21 is auto-regulated via
the B-Box domain, as deletion of the B-box increases the catalytic
activity of its RING domain (59). This represents a novel function
for the B-box domain. Structurally, this is explained by the fact

that the B-box mimics and occupies the E2 ubiquitin ligase
binding site on the TRIM21 RING domain, thereby preventing
its auto-ubiquitination and activation of immune signaling. This
was revealed by solving a crystal structure of a truncated form
of TRIM21 containing only the RING and B-Box domains
(59). These structural observations were confirmed by nuclear
magnetic resonance (NMR) where E2 enzyme Ube2N bound
to RING but not RING-B-box variants of TRIM21. Thus, for
TRIM21 to respond to antibody bound virus in the cytosol a
mechanism for reliving the inhibitory effect of the B-box must
be in place.

The auto-inhibitory mechanism has been shown to be
released by phosphorylation of a non-conserved serine residue
at position 80 in the human TRIM21 RING domain by
IKKβ or TBK1 kinases, driving B-box displacement from
the RING (59). In line with this, stimulation of cells with
poly(I:C) or infection with antibody coated Ad5 resulted in
TRIM21 phosphorylation. S80 is part of a pLxSI like motif
in the C-terminal end of the RING domain and located at
the binding interface with the B-box. When the phospho-
mimicking mutation S80E was introduced into the TRIM21
RING-B-box variant catalytic activity was restored. Cellular
data support a role for phosphorylation, as infection with
antibody-bound Ad5 or HRV-14 in cells expressing a S80A
TRIM21 mutant did not activate NF-κB, while activation
and cytokine production was restored in cells expressing
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the S80E variant. Direct evidence of B-box displacement
and Ube2N binding to TRIM21 have been obtained by
NMR using the S80E variant (59). Interestingly, a similar
regulatory mechanism exists for unrelated innate immune
adaptors such as mitochondrial anti-viral signaling protein
(MAVS), stimulator of interferon genes (STING) and TIR-
domain-containing adapter-inducing interferon-β (TRIF), where
signaling is potentiated by serine phosphorylation of a similar
pLxSI motif (60).

Strikingly, TRIM21 dependent Ad5 neutralization proceeds
independently of the S80 phosphorylation state, suggesting
that signaling has a higher activation threshold than
neutralization (59). This is an important observation since
both the neutralization and signaling arms of TRIM21 require
ubiquitination, which suggests that neutralization can proceed
at a basal level without innate signaling being triggered. This
finding is consistent with earlier studies showing that while
neutralization is efficient using engineered rh9C12 IgG1
variants with up to 100-fold reduced binding for TRIM21,
NF-κB induction is ablated or severely diminished (42, 44).
Furthermore, design of rh9C12 IgG1 variants with differences
in on- and off- rate kinetics demonstrated that while slower
off -rates generally correlate with efficient TRIM21 activity, its
signaling function was abrogated faster by a reduction in off -rate
compared to its neutralization function (61). This may allow for
a low level of TRIM21 activity without inducing an anti-viral
state, which might be important for clearing low levels of free
antibody displaced into the cytosol.

An important question that remains to be answered is
what role TRIM21 effector functions play in different cell
types. Recently, Ad5 in complex with an Fc-engineered IgG1
rh9C12 variant with 100-fold improved binding to the TRIM21
PRYSPRY domain was reported to up-regulate the co-stimulatory
molecules CD80, CD83, CD86, and HLA-DR as well as increase
the production of pro-inflammatory cytokines by monocyte
derived dendritic cells (62). This translated into enhanced cross-
priming and activation of CD8+ T cells at high multiplicity
of infection. In contrast, the ADIN activity was found to
be unaffected. Although the exact intracellular mechanism
responsible for T cell cross-priming remains to be determined,
the data suggest that artificial antibodies bound to adenovirus
increase the ability of dendritic cells to activate of CD8+ T cells,
highlighting the usefulness of Fc-engineering.

Taken together, although the effector and signaling functions
of TRIM21 are synchronized, they respond in a distinct and
separable manner to antibody engagement, antigen binding
and auto-ubiquitination. The more stringent requirement for
activation of immune signaling compared to neutralization
serves to preserve an important hallmark of immunity, which is
to elicit a balanced and proportionate response. If this regulation
fails, the consequence of constitutive TRIM21 activation would
likely be to trigger chronic inflammation. This has been
demonstrated in lysosome-maturation impaired macrophages
from lupus-prone mice, in which leakage of IgG containing
immune complexes from the endosomal pathway into the cytosol
triggers a TRIM21 dependent inflammatory response in the
absence of infection (63).

SUSCEPTIBLE TARGETS FOR TRIM21

The anti-viral function of TRIM21 has been studied using several
viruses including Ad5, MAV-1 and human rhinovirus 14 (HRV-
14) (7, 48, 49). In addition, it has been shown that porcine
TRIM21 is able to restrict Foot and mouth disease virus (64). As
the requirement for TRIM21 activation is entry of an antibody-
coated particle into the cytosol, it is believed that enveloped
viruses are not targeted by the receptor since they leave their
membrane along with bound antibodies at the cell surface upon
fusion with the plasma membrane. This has been demonstrated
for human respiratory syncytial virus (RSV) bound by the
therapeutic monoclonal IgG1 antibody palivizumab (Synagis R©)
(12). Other non-enveloped viruses, such as HRV-2, form a pore
in the endosomal membrane through which their genomes are
injected so that its capsid and any attached antibody cannot
be sensed by TRIM21 (48). The paratope of the antibodies as
well as the epitope on the virus may also determine whether
or not it can be targeted by TRIM21. In case of Ad5, the most
studied virus in this context, its capsid fiber protein is shed during
endocytosis via αvβ3/5 integrin and the coxsackie and adenovirus
receptor (CAR) and as such does not follow the rest of the viral
particle into the cytosol (65). Therefore, a monoclonal Ad5 fiber
specific antibody poorly recruits TRIM21 (19). However, most
of the antibodies in polyclonal sera are not entry blocking and
target epitopes on the immunodominant major capsid protein
hexon (10, 19, 66–69). Interestingly, TRIM21 sensing is not
limited to viral infection, as signaling may also be triggered
in response to antibody-coated bacteria, such as Salmonella
enterica (12). In addition, non-pathogenic complexes such as
host-derived proteins bound by antibody or antibody-coated
beads are also targeted by TRIM21 and activate its dual effector
functions (20, 47).

IMPLICATIONS FOR THERAPY

Adenoviruses are major targets for TRIM21. In gene therapy, the
objective is to deliver gene variants or genes encoding vaccine
epitopes for expression in host target cells (70). Adenoviruses,
and in particular Ad5, is frequently used as a vehicle for
these transgenes (71). However, since adenoviruses are common
pathogens in humans, pre-existing antibody immunity against
the virus severely limits its use as it often prevents expression of
the transgene (72). Notably, normal human serum may contain
as much as 100µg/ml of Ad5 specific IgG (18). Thus, Ad5
based gene delivery vehicles will be coated with antibodies after
intravenous injection (i.v.), which may explain why CD8+ T-cell
responses against Ad5 delivered vaccine antigens are poorly
induced (72–75). However, finding a biological explanation for
why the presence of antibodies blocks gene expression has been a
puzzle because they do not prevent delivery of the transgene into
the cytoplasmic space (73).

Recently, a substantial proportion of this antibody inhibition
was demonstrated to be mediated by TRIM21 (19, 76). When
naive mice were infected with Ad5 carrying a luciferase encoding
transgene in the presence of the rh9C12 IgG1 antibody,
expression of the transgene in the liver was reduced by 1000-fold
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compared to when the virus was administered alone. Transgene
expression was not affected by antibody in TRIM21 KO mice,
or in WT mice using the TRIM21 non-binding mutant rh9C12-
H433A. This TRIM21 dependent block to transgene expression
was also observed using polyclonal mouse serum raised against
Ad5. Notably, potential re-routing of virus via classical FcγR
mediated uptake was not of significant importance, as infection
in the presence of a rh9C12 IgG1 variant that does not bind
FcγRs (L234A/L235A) did not affect the block to transgene
expression (19).

Further, impaired CD8+ T-cell responses against the
SIINFEKL epitope (SL8) of ovalbumin (OVA)were demonstrated
to be dependent on TRIM21 when mice were vaccinated with
Ad5 carrying the OVA transgene in the presence of antibody
(19). This resulted in reduced antiviral immunity, which was
established using an engineered influenza virus strain (H1N1)
carrying the SL8 peptide in its neuramidase stalk as well as
reduced anti-tumor immunity as shown by challenge of Ad-OVA
immunized animals with the OVA secreting fibrosarcoma cell
line MCA101.

In addition to blocking transgene expression, induction
of unwanted innate immune signaling may occur upon
administration of adenovirus based gene delivery vectors (73,
77, 78). This may be related to the activity of TRIM21. Pre-
clinically, this is supported by studies in mice infected with Ad5
in the presence of rh9C12 IgG1, where amplified transcription
levels of pro-inflammatory NF-κB inducible cytokines, type-1
IFN and IFN stimulated genes (ISGs) were measured in the
liver. The response was comparable to that of CpG, indicating
biologically relevant induction levels. Clinical gene therapy trials
indicate that pre-existing immunity to Ad5 vectors can be
circumvented by intramuscular or intranasal delivery (79, 80).
When Ad5 vector was given intranasally TRIM21 did not block
OVA transgene delivery as potently as seen for i.v. delivery.
However, this was accompanied by a 10-fold weaker OVA-
specific CD8+ T-cell response (19). Insights into how blockade of
transgene expression delivered by adenovirus vectors is mediated
opens up for development of strategies to circumvent targeting
of gene therapy vectors to TRIM21. Given the reduced T-cell
response associated with alternative delivery routes, a vector
shielding strategy to avoid pre-existing immunity may be the
most advantageous approach.

While TRIM21 negatively impacts gene therapy, the activity
of the receptor may be favorably utilized for other therapeutic
applications. One interesting area is neurodegenerative disorders,
such as Alzheimer’s disease, which are characterized by
aggregation of the intracellular microtubule-associated tau
protein (20). Intracellular tau aggregates are generated from
extracellular tau and can spread between cells (81, 82).
Administration of tau specific antibody is known to reduce
tau induced pathology in mice (83–86), but the underlying
mechanism has not been elucidated yet. Interestingly, TRIM21
has been shown to inhibit intracellular tau aggregation in a
newly established in vitro tau seeding assay that recapitulates tau
aggregation in diseased brains (20). Interception of extracellular
tau by anti-tau antibody in the extracellular environment during
cell-to-cell transfer resulted in TRIM21 dependent proteasomal

degradation. As tau aggregates fast after cytoplasmic entry,
the rapid recruitment of TRIM21 to incoming antibody:tau
complexes are likely crucial for prevention. This discovery
may foster development of new therapeutic approaches where
delivery strategies for antibodies through the blood-brain barrier
could be combined with targeting of extracellular tau to
TRIM21 (20, 87, 88).

TRIM-AWAY

The ability of TRIM21 to target cytosolic proteins tagged by
antibody for degradation can be utilized in research. This has
recently been demonstrated by a technology that has been coined
TRIM-Away (21). The method relies on introducing antibody,
specific for an intracellular protein of interest, into single cells by
microinjection or into cell cultures by electroporation (21, 22).
The principle has been exemplified by microinjection of anti-
GFP antibody into the human cell line NIH 3T3 over-expressing
free GFP, which led to degradation of GFP within a few minutes
(21). Likewise, when GFP was fused to a lipid or endogenous
proteins and localized to distinct places within primary mouse
oocytes, such as the plasma membrane, endosomal membranes
and the nucleus, GFP was efficiently targeted by TRIM21. The
depletion of nuclear proteins was dependent upon antibody
access to the nucleus, and in non-dividing cells did not take place.
One approach to solve this problem is to use alternative, smaller,
antibody formats, for instance an Fc fragment fused to an anti-
GFP nanobody that facilitated efficient nuclear transport and
target degradation (21). The robustness of the method has been
further studied in mouse oocytes, where targeting of the nuclear
Eg5 protein resulted in rapid degradation that prevented bipolar
mitotic spindle formation (21). Yet another example is targeted
depletion of the long-lived Rec8 protein in mouse eggs that led to
separation of sister chromatids. Importantly, this latter example
addresses a major challenge, namely that long-lived proteins such
as Rec8 cannot be effectively depleted using standardized DNA
or RNA based methods due to their very slow turnover rate
in cells (89, 90). Finally, TRIM-Away allows the depletion of
specific proteins in primary human cells. This was demonstrated
by depleting IKK and NLRP3 in primary human macrophages.
Depletion of NLRP3 was also shown to functionally alter the
macrophages, making them resistant to pyroptosis and reducing
their release of potent inflammatory cytokine IL-1β (21, 91).
TRIM-Away has further been used to demonstrate involvement
of SNAP23 in meiotic arrest and regulation of exocytosis in
developing mouse eggs (92). The usefulness of TRIM-Away to
manipulate primary cells is highlighted by the fact that other
approaches, such as transfection or transduction of RNA orDNA,
are inefficient and stimulate innate signaling (93, 94).

The duration of knockdown by TRIM-Away correlates with
the amount of antibody and TRIM21 present (21). TRIM21
is saturable when cells are exposed to high viral loads in
complex with antibody (44), which is explained by its expression
level, but also in part by the fact that TRIM21 is degraded
together with the antibody bound target. Despite TRIM21
being IFN-inducible, which is likely crucial to sustain its
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activity during an ongoing infection, the expression level of
TRIM21 is in many cases a limiting factor for the TRIM-Away
strategy. This is especially true when abundant cellular proteins
are targeted but can be overcome by over-expression or co-
administration of recombinant TRIM21 during microinjection
or electroporation. Importantly, over-expression of TRIM21
does not alter the cellular transcriptome, cell phenotype or
endogenous levels of other proposed TRIM21 ligands (21).
When the centrosome protein percentrin was targeted in NIH
3T3 cells over-expressing TRIM21, there was efficient depletion,
and percentrin failed to localize with its nuclear interaction
partner Cdk5rap2. In addition, the method has been used
to either activate or inhibit signal transduction pathways by
targeting its different components (21). Recently, the TRIM-
Awaymethodwas also reported to be an attractive tool to degrade
or delay expression of proteins in zebra-fish embryos, thus
enabling investigation of how specific proteins affect embryonic
developmental processes (95).

Amajor advantage of TRIM-Away is that it is rapid and allows
for monitoring of phenotypic changes in cells while at the same
time limiting the appearance of compensatory mechanisms (21).
On the other hand, it relies on the use of antibodies that are highly
specific and do not cross-react with other intracellular proteins.
A potential issue that should be taken into consideration is the
possibility that targeting of one cellular protein may result in the
concomitant depletion of strong interaction partners. However,
such knock-on effects are also likely to result from reduced
expression of the target via siRNA or shRNA or gene KO via
CRISPR Cas9.

TRIM21 SYNERGY WITH COMPLEMENT

The immune system orchestrates a range of effector mechanisms
to protect against infection. In humans, the complement system
consists of more than 20 proteins that label pathogens for
destruction via the classical, mannose lectin or alternative
pathways (96, 97). After labeling, viruses may still enter
endosomal compartments as well as the cytosol. As such,
complement may synergize with TRIM21 in different ways
to prevent cellular infection of non-enveloped viruses.
These mechanisms are illustrated in Figure 4. This was
first demonstrated by C3 deposition on the virus surface via the
alternative complement pathway in a factor B and D dependent
manner (17). C3 deposition triggers a dual effector response
similar to that mediated by TRIM21 in the cytosol. C3 coated
Ad5 is targeted to the proteasome in a VCP dependent manner
where it is degraded and also induces innate signaling via NF-κB,
AP-1 and IRF in non-hematopoietic cells. Further, C3 mediated
immune activation may synergize with TRIM21 and antibody
dependent signaling (7, 12). The efficacy of C3-dependent
signaling varies among different viruses such as Ad5, HRV-
14 and poliovirus P2, in which the strength of the response
correlated with the degree of endosomal lysis and escape of
intact C3 bound capsids into the cytosol (17). Again, enveloped
viruses, such as RSV, do not efficiently trigger the cytosolic
effector response.

The intracellular receptor for C3 has not yet been identified,
but is likely to involve an IFN inducible gene, as C3 dependent
neutralization of Ad5 is potentiated by IFN stimulation
(17). The C3-dependent signaling response is dependent on
MAVS and proceeds through the TNF receptor-associated
(TRAF) pathway. MAVS is not required for C3 dependent
neutralization which suggests that initial C3 sensing occurs via
an upstream component.

While no antagonistic mechanism has been identified for
TRIM21, certain viruses, such as HRV, produce cytosolic 3C
proteases that cleave C3 as a protective mechanism. This
has been demonstrated for HRV-14, where the 3C protease
disables both signaling and degradation in the cytosol of non-
hematopoietic cells, a phenotype that could be reversed by the
protease inhibitor rupintrivir (17). The fact that TRIM21 uses
antibody to sense pathogens, as opposed to direct deposition
of C3, suggests that it is more difficult for the virus to
directly antagonize it. On the other hand, some non-enveloped
viruses inject their viral genome into the cytosol via pores
formed in endosomal membranes, which separates antibody
from TRIM21 and as such can be considered a viral protective
strategy (98).

In addition to direct deposition of C3 on viral capsids
via the alternative pathway, antibody opsonized pathogens
may recruit the C1 complex (C1qC1r2C1rs2) to initiate the
classical complement pathway. Recruitment of C1 results
in cleavage of C4 followed by association of C4b with
C2a to form the C3 convertase that again cleaves C3
leading to C3b opsonization and downstream formation of
the membrane attack complex (MAC) (96, 97). Recently,
neutralization of Ad5 was shown to occur not only via the
antibody-TRIM21 axis, but also via the classical complement
pathway (18). This neutralization mechanism depends on
binding of C1 to antibody-opsonized Ad5 and subsequent C4b
deposition on the virus, which occurs independently of other
complement components.

Ad5 infection is a stepwise process that progresses from
binding to the host cell receptors to endocytosis and lysis
of the endosomal membrane (99–105). Ad5 engages two host
cell receptors, CAR and αvβ3/5 integrin, and these binding
events provide mechanical cues for the virus to commence
its stepwise uncoating process. This results in loss of the
fiber protein and exposure of the membrane lytic protein
VI, which lyses the endosomal membrane. Upon entry into
the cytosol, hexon recruits dynein and the capsid moves
toward the nucleus (105–109). During this process, the capsid
continues to progressively disassemble into a more meta-
stable state that ultimately serves to deliver the viral genome
into the nucleus. However, when C4b is deposited on an
antibody coated virus, it interferes with viral disassembly in
the endosome since the membrane lytic protein VI is not
exposed (18). As a consequence, the virus is routed down
the endo-lysosomal pathway and does not reach the cytosol.
In experiments where Ad5 was opsonized with a mutant
rh9C12 IgG1 variant (P329A) that fails to interact with C1,
the virus readily escaped into the cytosol and is instead
targeted by TRIM21. Thus, TRIM21, C1, and C4, and likely C3
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FIGURE 4 | TRIM21 synergizes with the complement system. (A1) Ad5 with deposited C3 enter cells via CAR and αvβ3/5 mediated endocytosis, upon which (A2)

Ad5:C3 complexes escape into the cytosol where C3 is detected. This may occur synergistically with TRIM21 engagement (B1, B2, A2). In both cases, Ad5 is

directed to proteasomal degradation (A3) followed by ubiquitin or MAVS mediated induction of NF-κB, AP-1, and IRFs (A4). (C1) Antibody coated Ad5 bound by C1

may result in C4b deposition on Ad5 prior to endocytosis via CAR and αvβ3/5 integrin. (C2) C4b prevents exposure of the Ad5 membrane lytic protein VI and blocks

endosomal escape. Instead, Ad5 is routed into lysosomes where it is degraded (C3). The figure was made using BioRenderTM.

dependent neutralization pathways may operate synergistically
during Ad5 infection (17, 18). This raises the question as to
which of these neutralization mechanisms dominates under
different conditions.

For C4b to be deposited on the surface of Ad5 to an extent
that results in C1C4 dependent neutralization, roughly 25 rh9C12
IgG1 antibodies must bind the virus (18). The EC50 of C4
deposition has been determined to be 45µg/ml, which is 10-fold
lower than normal serum concentrations. As the Ad5 specific
IgG titer is around 100µg/ml in normal human serum, this
strongly indicates that C4 mediated neutralization of Ad5 is
likely to be a significantly contributing factor in vivo. This was
confirmed in mice infected with Ad5 expressing a luciferase
transgene where expression of the transgene was inhibited in
the presence of rh9C12 IgG1, but partially restored in C4
KO mice (18). The remaining block to transgene expression
was TRIM21 dependent, consistent with what is observed in
vitro. When TRIM21 KO mice were given Ad5 in the presence
of rh9C12-P329A, transgene expression was fully restored to
control levels. This effect was confirmed in WT mice vaccinated
with Ad5-OVA together with the double negative rh9C12mutant
IgG1-P329A/H433A that does not bind TRIM21 nor C1q, as
CD8+ T-cell induction was completely restored 10 days post
administration. Thus, the complement system and TRIM21 may
work in concert to prevent infection but also to block Ad5 based
gene delivery.

ANTIBODY ENGINEERING BOOSTS
GENE THERAPY

Insights into how pre-existing antibodies limit the efficacy of
gene therapy, may pave the way for strategies to circumvent
the problem. One conceivable strategy may be to pre-coat Ad5
vectors with an antibody engineered to ignore both C1q and
TRIM21, such as P329A/H433A, or simply use a Fab fragment.
Using an in vitro competition assay, where Ad5 infection was
measured in the presence of a constant amount of rh9C12 IgG1
and increasingly higher concentrations of rh9C12-P329A/H433A
or Fab, both strategies were shown to interfere with complement
mediated neutralization at low concentrations (18). In contrast,
much higher concentrations of the competitors were required
to prevent TRIM21 mediated neutralization. This reflects that
TRIM21 neutralization only requires a few antibodies bound to
the virus to be effective (44), while efficient C1C4 neutralization
requires higher antibody coating levels (18). When WT mice
where infected with Ad5 carrying the luciferase transgene
in the presence of a 1000-fold excess of a rh9C12 derived
Fab fragment, a 10-fold improvement in transgene expression
was observed. Importantly, the Fab pre-coating strategy also
diminished the polyclonal antibody response toward the vector
when administered intramuscularly to naïve mice, suggesting
that this strategy could also prevent a protective antibody
response during repeated vector dosing.
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As hexon is the primary immunogen to which antibodies is
generated, rh9C12 that binds to the apex of the hexon trimer
spike (61), may be particularly well suited for such pre-coating.
Indeed, shielding the Ad5 surface with a trivalent 9C12 scFv
with high avidity has been used in combination with targeted
designed ankyrin repeat proteins (DARPin’s) binding to the fiber
knob of an Ad5 vector (110). The DARPin units block CAR
mediated uptake and re-targeted the vector to HER2 or EGFR
positive tumor cells in mice (110, 111). This combination strategy
improved the tumor to liver localization ratio of the Ad5 vector
and circumvented intracellular neutralization by TRIM21, thus
significantly boosting transgene expression.

CONCLUDING REMARKS

The role of TRIM21 as a high affinity cytosolic Fc receptor
has grown in significance in both disease and therapy. The
use of genetic KO of TRIM21, both in vitro and in mice,
together with specific KO of the interaction on the protein
level using engineered antibody variants have solidified the
role of TRIM21 as a positive immune regulator whose activity
is strictly dependent on detection of cytosolic antibody-virus
complexes (19). It should be noted however, that TRIM21 has
also been implicated in both positive and negative regulation
of innate signaling independent of antibody binding (112–117).
Furthermore, the identification of TRIM21 as a major player
in antibody mediated block to gene therapy, together with the
effect of complement factors C1 and C4, have inspired strategies
to shield Ad5 gene delivery vectors from pre-existing immunity
(19, 110). The finding that such shielding strategies limit immune
responses to the vector should be of particular interest in cases
where repeated administrations are needed.

Moreover, the remarkable ability of TRIM21 to engage three
different antibody isotypes (7, 43) is in sharp contrast to other Fc
receptors that are highly selective in regard to both isotype and
subclass binding properties. Early primary immune responses to
infections are dominated by IgM while IgG emerges later and
in secondary responses upon re-infection. The IgG response is
initiated by IgG3 followed by IgG1, both of which are considered
anti-viral subclasses (118–121). However, how each of the four
human IgG subclasses activate TRIM21 in the cytosol when
bound to viruses has yet to be addressed in detail. Furthermore,
since TRIM21 may synergize with the complement system, it
will be important to fully understand how anti-viral immunity is
orchestrated by different antibody isotypes and subclasses in the
absence and presence of C1/C4.

Even though circumvention or utilization TRIM21 activity
for therapeutic purposes are at the concept stage, the impact of
alleviating the block to adenovirus based gene therapy or using
antibody and TRIM21 to prevent intracellular tau aggregation are
potentially huge. If a method to deliver antibody into the cytosol
of specific cells in vivowith sufficient efficacy was to be developed,
one could even imagine that the TRIM-Away technology could
be exploited therapeutically to specifically degrade intracellular
disease associated proteins (21).

Furthermore, TRIM21 function has been extensively studied
using Ad5 as a model pathogen. While adenovirus infection
in healthy individuals is generally benign, it may cause severe
complications and even death in immunocompromised or
immunosuppressed patients (122). For example, aggressive
adenovirus infections in the human eye, known as epidermic
keratoconjunctivitis, may lead to loss of vision to which there
are no available treatment options (123). Whether adenovirus
infections in the eye may benefit from TRIM21 and antibody
therapy remains to be addressed, however, injection of antibodies
into the vitreous is frequently used in the clinic to treat eye
diseases such as age-related macular edema (124, 125). While
activation of a strong inflammatory response may not be
beneficial in a treatment setting, using engineered antibodies
with reduced affinity for TRIM21 or altered antigen binding
kinetics could be attractive to reduce inflammation without
compromising virus neutralization (42, 61).

The ability of TRIM21 to take advantage of the antibody
repertoire and orchestrate a potent intracellular immune
response to invading pathogens provides non-hematopoietic
cells the means to actively protect themselves even after a virus
have entered the cytosol. However, as TRIM21 is also expressed
by professional immune cells, its role in these cell types and how
it affects antigen processing and presentation in the context of
other antibody binding receptors will be important to address.
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