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Abstract: The purpose of this research was to evaluate the influence of aging and surface treatment
on surface roughness, biaxial flexural strength (BFS), and Vickers hardness (VHN) of translucent
dental zirconia. Half of 80 disc-shaped zirconia specimens (1.2 mm thickness and 12 mm diameter)
were aged (group A) in an autoclave for 20 h (134 ◦C and 0.2 MPa) and the other half were not
aged (group N). Specimens were subjected to: no surface treatment (SIN), particle air-abrasion with
50 µm alumina particles at 1 bar (0.1 MPa) and 2.5 bar (0.25 MPa), or polishing down to 1 µm (POL).
Specimens were analyzed using X-ray diffraction, laser scanning microscope, BFS, and VHN tests.
Three groups (N-SIN, N-POL, and A-POL) showed almost no monoclinic phase. While other groups
showed monoclinic phase ratios ranging from 7.5 vol. % ± 2.4 vol. % (N-0.1 MPa) to 41.5 vol. % ± 0.3
vol. % (A-0.1 MPa). Aging and particle air-abrasion increased significantly the BFS, ranging from
720 ± 37 MPa (N-SIN) to 1153 ± 92 MPa (N-0.1 MPa). The hardness was not influenced significantly
by aging. A certain amount of monoclinic phase at the surface strengthens the high translucent dental
zirconia, while hardness and roughness are not influenced. The pressure of particle air-abrasion
showed no influence on the evaluated properties.
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1. Introduction

Recently, Y-TZP ceramics (yttria-stabilized tetragonal zirconia polycrystals) are the strongest
alternative biomedical dental materials for all-ceramic dental restorations because of its esthetic, durability,
and availability [1–3]. In addition, it is more biocompatible than other ceramics, titanium, and metal alloys,
particularly when it is in direct contact with the gingival tissues. Zirconia has three crystalline phases:
monoclinic, tetragonal, and cubic phase [4]. Yttrium is added to stabilize zirconia at room temperature in the
tetragonal phase [5], accordingly, this transformation is responsible for its high mechanical properties [6].

The mechanical behavior of Y-TZP zirconia might be deteriorated by a spontaneous transformation
of the tetragonal phase to monoclinic phase (t→m) when triggered by external stresses such as
grinding [7,8] particle air-abrasion [9,10] and hydrothermal aging [11,12] which is called hydrothermal
degradation or low temperature degradation (LTD) [13].

LTD initially occurs at the superficial grains, where water is incorporated into zirconia grains by
filling oxygen vacancies, and later spreads to the surface increasing its roughness [14,15]. Afterwards,
LTD proceeds into the bulk material [15] and affects negatively the density and mechanical properties of
Y-TZP structures [2,16–18]. LTD can be induced by steam autoclave treatments at increased temperatures
(120–140 ◦C), whereby phase transformation of Y-TZP crystals occurs in the presence of water or steam [18–20].

Many studies reported that the real influence of aging of zirconia in an autoclave is not clear. It may
positively or negatively influence the mechanical properties of Y-TZP ceramics. First the aging leads to
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an increase in the mechanical properties, through the transformation toughening mechanism [6,21],
then it results in a mechanical deterioration of the material [2,13,22]. The improvement of mechanical
properties of zirconia by LTD was reported by several studies [9,12,23], while other studies [24,25]
showed that LTD had no effect on the mechanical properties of zirconia.

The strength of zirconia can be influenced also by different surface treatments, such as particle
air-abrasion with Al2O3 particles, silica coating, acid etching and combinations of any of these
methods [26–28]. Many studies showed that different surface treatments might influence the strength
of zirconia ceramic negatively [7,29–31]. Different surface damages were created as a result of the
surface treatment. These surfaces flaws act as stress concentration areas which later on act as a potential
site of crack initiation and propagation [32]. On the other hand, some studies reported an increase in
the strength of zirconia with particle air-abrasion treatment due to the created compressive stresses
induced by the tetragonal-monoclinic transformation on the surface of zirconia [7,8,33].

Some studies [34,35] reported that the tested polishing systems were not able to induce a tetragonal-
monoclinic transformation. While another study [33] showed a significant t→m transformation which
resulted in an increase in the biaxial flexural strength of Y-TZP with the polishing treatment.

Monolithic zirconia ceramics used as full-contour ceramic restorations, overcome the problems of
veneering porcelain chipping [36–38], and have the advantages of restorations requiring less invasive
tooth preparations and providing high mechanical and esthetic properties [39].

Dental restorations are exposed in the oral environment to different destructive stimuli such as
mastication, the effect of water, and change of temperatures. Currently, there are limited data concerning
the influence of aging and different surface treatments on the mechanical properties of translucent
3Y-TZP monolithic zirconia, which might be recommended during the repair of zirconia in the case of
chipping or partial fractures under clinical conditions. And some of the studies are contradictory to
others. The translucency of zirconia has a strong relationship with its microstructure and chemical
compositions [40]. Previous studies showed that the translucency of zirconia is influenced by grain
size of Y-TZP ceramics, grain boundary structures, and phase composition [41–43]. Different dental
manufacturers eliminate or reduced the alumina amount or increased the yttria content to improve
the translucency of dental Y-TZP ceramics [44]. Increasing the content of yttria influences negatively
the mechanical properties of zirconia [45]. Recently, some literature reported that the co-doping of
0.2 mol % Lanthanum oxide and 0.1 wt. %–0.25 wt. % Al2O3 in 3Y-TPZ zirconia resulted in a high
translucent zirconia with improved mechanical properties [44,46]. It has been reported that there
was an increase in the strength of zirconia with the increase in t→m phase transformation following
different surface treatments or aging [8,12,33]. In contrast, some studies showed that different surface
treatments or aging decrease the strength of zirconia [7,8,30,47], or cause no effect on the mechanical
properties of zirconia [34,48,49]. Therefore, the aim of this study was to evaluate the influence of aging
and surface treatment on surface roughness, biaxial flexural strength (BFS), and Vickers hardness of
high translucent dental zirconia. The tested hypothesis was that both aging and different surface
treatments will not influence the BFS or Vickers hardness of high translucent dental zirconia.

2. Materials and Methods

The 3Y-TZP ceramic used in this study is a high translucent zirconia (Katana HT10, Batch no.:
DPQAY, Kuraray, Tokyo, Japan) containing (ZrO2 + HfO2 + Y2O3) > 99.0%, yttrium oxide (Y2O3) >

4.5%– ≤ 6.0%, hafnium oxide (HfO2) ≤ 5.0%, and other oxides ≤ 1.0% with a translucency of 30%
according to the manufacturer’s information. Eighty disc-shaped high translucent zirconia with a final
diameter of 12 mm, a final thickness of 1.2 mm and shade HT10 were milled and sintered in a sintering
oven (Nabertherm GmbH, Bremen, Germany) according to the manufacturer’s instructions (1500 ◦C,
holding time: 2 h). The top side of each disc was polished down to 1 µm grit. After that the specimens
were divided according to aging into two main groups, aged (group A) and non-aged (group N).
For each group, a different surface treatment was applied: no surface treatment was applied after
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sintering (group SIN, particle air-abrasion either with 0.1 MPa (group 0.1 MPa), or 0.25 MPa (group
0.25 MPa), and polishing down to 1 µm (group POL) as shown in Figure 1.
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Figure 1. Design of the study for the evaluation of biaxial flexural strength.

2.1. Aging

After sintering, half of the specimens were aged (n = 40) using an autoclave (CS, WEBECO,
Bad Schwartau, Germany) according to ISO standard 13356, at 134 ◦C, under 0.2 MPa, over a period of
20 h. Then the specimens were cleaned ultrasonically in 99% isopropanol for 3 min. This protocol was
used in this study because previous studies showed that aging protocol of 134 ◦C, 0.2 MPa for 20 h,
promotes an extensive t→m phase transformation [50,51]. Thus the aging performed in this study was
considered sufficient to observe significant changes induced by different surface treatments.

2.2. Surface Treatment

The specimens were subdivided into four sub-groups (n = 10), according to the surface treatments
applied on the bottom side:

(a) Group SIN: as-sintered (control).

No treatment was applied after sintering.

(b) Group 0. 1MPa: particle air-abrasion treatment using 0.1 MPa.

Particle air-abrasion was done using 50 µm Al2O3 particles at 0.1 MPa for 15 s at a distance of
10 mm, with Nozzle motion in both lateral directions. Airborne-abrasion was performed using spot
blasting unit (P-G 400 K Spot Fine Blasting Unit, Harnish+Rieth, Winterbach, Germany). All specimens
were cleaned ultrasonically for 3 min in 99% isopropanol.

(c) Group 0.25MPa: particle air-abrasion treatment using 0.25 MPa.

Same parameters as in 0.1MPa group except the pressure used was 0.25 MPa.

(d) Group POL: Polishing down to 1 µm.

Specimens were polished under cooling water with a diamond grinding disc (Apex CGD, yellow,
Buehler, Düsseldorf, Germany) for 10 min to produce a parallel surface, then 1200 and 2500 grit silicon
carbide paper (CarbiMet, Buehler, Düsseldorf, Germany) for 140–150 min followed by 3 µm and 1 µm
diamond suspensions (MetaDi, Buehler, Düsseldorf, Germany) for 5 min for each. The polishing was
performed using a polishing machine (AutoMet 250 and EcoMet 250, Buehler, Düsseldorf, Germany).
All specimens were cleaned ultrasonically as described above.
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2.3. Phase Analysis

Three specimens were selected from each group for X-ray diffraction (XRD) surface analysis to
detect the available amount of tetragonal and monoclinic phases. Each specimen was analyzed in
a diffractometer (Seifert XRD 3000 PTS, GE GmbH, Munich, Germany) using Cu Kα radiation recorded
within the range of 20–40◦, a step size of 0.04◦ and a scanning time per step of 10 s. Voltage and current
were 40 kV and 40 mA, respectively. Integrated intensities of the relevant peaks of the diffraction
patterns were evaluated using the software Peakfit v.4.12 (Systat Software GmbH, Erkrath, Germany).

The amount of monoclinic phase (Xm) was calculated using the method developed by Gravie and
Nicholson as follows [52]:

Xm = (IM(111) + IM(111
−

))/(IM(111) + IM(111
−

)+IT(111)),

where M(111) and M(111−) represent the intensities of the monoclinic peaks, and T(111) indicates the
intensity of tetragonal peak. IT and IM represent the integrated area under the peaks of the tetragonal
(111) and monoclinic (111) and monoclinic (111−) peaks around 30◦, 31◦, and 28◦, respectively.
The volumetric fraction Vm was calculated using the following equation [53]:

Vm = (1.311 × Xm)/(1 + 0.311 × Xm).

2.4. Surface Roughness Evaluation

A 3D laser scanning microscope (Keyence VK-X100, Keyence GmbH, Neu-Isenburg, Germany)
was used to measure the average roughness value of the surface (Ra) and the mean roughness depth
(Rz) for all groups. For each subgroup, three specimens were selected. The measurements were done
using a wavelength of 658 nm. The used length for the measured line was 1180 µm and the distance
between the separate scans was 0.27 µm.

2.5. Biaxial Flexural Strength Test

Ten specimens from each subgroup were subjected to biaxial flexural strength test using piston-on-three
balls technique in a universal testing machine (Zwick Z010, Zwick, Ulm, Germany). Each disc was placed
centrally on three of 3.2 mm diameter steal balls positioned equidistant from each other on a metallic platform
with a diameter of 10 mm. Each specimens was loaded by a piston of 1.4 mm diameter at 0.5 mm/min
crosshead speed using the universal testing machine as shown in Figure 2.
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The biaxial flexural strength was calculated using the following equation [25,54]:

S = −0.2387 × P × ((X−Y)/(d2)),
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where S is the biaxial flexural strength (MPa); P is the fracture load (N); and d is the specimen disc
thickness (mm).

X and Y were determined as follows:

X = (1 + υ) ln (r2/r3)2 + [(1 − υ)/2] (r2/r3)2,

Y = (1 + υ) [1 + ln (r1/r3)2] + (1 − υ) (r1/r3)2,

where υ is Poisson’s ratio (0.25); r1 is the radius of support circle; r2 is the radius of loaded area; and r3
is the radius of the specimen.

2.6. Vickers Hardness Evaluation

An indentation tester (ZHV10, Zwick, Ulm, Germany) was used to measure the Vickers hardness.
A piece from each broken specimen from group SIN and group POL (aged or non-aged) was randomly
selected. All particle air-abrasion groups (0.1 or 0.25 MPa) did not undergo hardness test as it is
clinically not applicable and the measurements of rougher surfaces were not reliable. The rougher
surfaces make it difficult to identify the exact margins of the indentations and to obtain reliable results,
as observed with the SIN group measurements. An indentation was made on each specimen on
the bottom side using a loading mass of 5 kg and dwell time of 10 s. The measurements of Vickers
Hardness number were repeated 4 times at different points, the distance between each point and the
other was at least 2 mm. The hardness was computed using the following equation [55,56]:

VHN = 0.1891 × (F/d2),

where VHN is the Vickers hardness number, F is the applied load expressed in N, and d is the mean
length of the two diagonals of the indentation (mm).

2.7. Fracture Pattern

One exemplary sample of each group was selected and coated with a gold layer of 30 nm.
Then the fracture pattern was examined using a scanning electron microscope (SEM, XL 30 CP, Philips,
Surrey, UK) with an acceleration voltage of 15 kV.

2.8. Statistical Analysis

Shapiro-Wilk test was used to inspect the normal distribution of the collected data and then
the data were analyzed to determine the effect of aging and surface treatment on the tested
variables. One-way analysis of variance (ANOVA) followed by t-test were used for the BFS analysis.
While the Kruskal-Wallis and Mann-Whitney-U tests were used to analyze the hardness measurements.
The significance level of determination was of p ≤ 0.05. All calculations were made with statistical
software (IBM SPSS FOR Windows; Version 20.0, IBM SPSS, Inc., Chicago, IL, USA).

3. Results

3.1. Phase Analysis

XRD analysis showed that both aging and different surface treatment promote different amount of
monoclinic phase. The highest values of the monoclinic phase ratio (vol. %) were found within A-SIN,
A-0.1MPa, and A-0.25MPa groups. While the N-0.1MPa and N-0.25MPa groups showed a lower monoclinic
phase ratio and both polished (N-POL and A-POL) groups and N-SIN group exhibited almost no monoclinic
phase (Table 1). A typical XRD spectrum for all groups is shown in Figures 3 and 4.
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Table 1. Mean and standard deviation (SD) of monoclinic phase ratio of the zirconia measured by XRD
and roughness measured by laser scanning microscopy.

Group Aging Monoclinic Phase Ratio
Mean ± SD (vol. %)

Ra Mean ± SD
(µm)

Rz Mean ± SD
(µm)

SIN
Non-aged (N) 0.0 ± 0.0 0.449 ± 0.096 2.321 ± 0.422

Aged (A) 39.9 ± 0.7 0.502 ± 0.055 2.434 ± 0.221

0.1 MPa
Non-aged (N) 7.5 ± 2.4 0.531 ± 0.051 2.738 ± 0.176

Aged (A) 41.5 ± 0.3 0.434 ± 0.032 2.241 ± 0.136

0.25 MPa
Non-aged (N) 10.4 ± 1.5 0.528 ± 0.020 2.845 ± 0.092

Aged (N) 38.5 ± 2.8 0.485 ± 0.044 2.480 ± 0.150

POL
Non-aged (N) 2.1 ± 0.6 0.006 ± 0.001 0.034 ± 0.012

Aged (A) 2.1 ± 0.5 0.002 ± 0.001 0.014 ± 0.003Materials 2019, 12, x FOR PEER REVIEW 7 of 14 
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3.2. Surface Roughness Evaluation

The polishing groups either aged or non-aged showed the lowest mean Ra and Rz values.
The descriptive statistics was shown in Table 1.

3.3. Biaxial Flexural Strength Test

The mean BFS values increased with aging and particle air-abrasion, as showed in A-SIN, N-0.1
MPa, and N-0.25 MPa groups. Likewise, both A-0.1 MPa and A-0.25 MPa groups showed comparable
BFS mean values. While the BFS mean value decreased within both polished groups either aged or
non-aged as well as in N-SIN group (Table 2).

Table 2. Mean and standard deviation of biaxial flexural strength (BFS) (MPa) of all tested groups.

Groups
Aging

Non-Aged Groups Aged Groups

Mean ± SD Mean ± SD

SIN 720 ± 37 C, α 1064 ± 27 A, β
0.1 MPa 1153 ± 92 A, α 1110 ± 76 A, α

0.25 MPa 1137 ± 89 A, α 1105 ± 74 A, α
POL 894 ± 96 B, α 888 ± 86 B, α

Within the same column, mean with the same capital letter are not statistically different (p > 0.05); within the same
row, mean with the same Greek letter are not statistically different p > 0.05.

3.4. Vickers Hardness Evaluation

The Vickers hardness ranged from 1346 HV5 (A-POL) to 1446 HV5 (N-SIN). The aging had no
effect on the Vickers hardness. Likewise, with the polishing treatment both polished groups (N-POL
and A-POL) reported a lower hardness than both as-sintered groups (N-SIN and A-SIN), as shown
in Table 3.

Table 3. Median, mean and standard deviation of hardness (HV5).

Groups
Aging

Non-Aged Groups Aged Groups

Median Mean ± SD Median Mean ± SD

SIN 1446 Aα 1413 ± 127 1436 Aα 1428 ± 98
POL 1347 Bα 1340 ± 21 1346 Bα 1346 ± 18

Within the same column, mean with the same capital letter are not statistically different (p > 0.05); within the same
row, mean with the same Greek letter are not statistically different p > 0.05.

3.5. Fracture Pattern

A typical SEM micrograph of a typical samples of each group is shown in Figure 5. In most
cases, failure of these samples was initiated from a surface crack. Within the particle air-abrasion
treated specimens either aged or not and A-SIN, the SEM micrograph showed many subsurface cracks
connected with the surface cracks.
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4. Discussion

Many studies have been performed to predict the behavior of dental zirconia in the oral
environment regarding the aging ability as well as the mechanical properties [2,6,57]. In this concern,
the literature shows conflicting results of the effect of aging and surface treatment on the mechanical
properties of zirconia.

The aging protocol used in this study was in an autoclave at 134 ◦C, under 0.2 MPa, over a period
of 20 h, which was consistent with previous studies [50,51]. These studies showed that this protocol
promotes an extensive t→m phase transformation. Thus, the aging performed in our study should be
sufficient to observe significant changes induced by different surface treatments.

In our study, XRD analysis showed a different percentage of phase transformation. The highest
monoclinic phase ratio (38.5 vol. % ± 2.8 vol. % to 41.5 vol. % ± 0.3 vol. %) was found within
A-0.1MPa, A-0.25MPa and A-SIN groups. These findings show that both aging and particle air-abrasion
treatment produced a significant t→m phase transformation. These results are consistent with other
studies [8,9,12,24]. In contrast, both non-aged specimens with 0.1 or 0.25 MPa particle air-abrasion
showed a lower monoclinic phase ratio (7.5 vol. %± 2.4 vol. % to 10.4 vol. %± 1.5 vol. %). These results
indicate that the differing pressures during particle air-abrasion treatment produced a comparable
amount of monoclinic phase on the surface of zirconia. In addition, both polished groups (N-POL and
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A-POL) and N-SIN group showed almost no vol. % of monoclinic phase ratio revealing almost no t→m
phase transformation on zirconia surface. These results may have been due to neither sintering nor
polishing treatment probably promotes monoclinic phase transformation as shown with groups N-SIN
and N-POL. These findings also confirm other studies, which showed that polishing produced no t→m
phase transformation [34,35,58]. It can be assumed that the previously transformed monoclinic layer
(20 µm thicknesses) caused by aging on the surface of zirconia within group A-POL was removed
during the polishing treatment.

BFS data demonstrated that groups with monoclinic phase ratio ranging from 7.5 vol. % ± 2.4 vol.
% to 41.5 vol. % ± 0.3 vol. % showed the highest mean BFS. However, this increase in the BFS was
independent on the percentage of the phase transformation. The increase in the BFS might be explained
by the toughening mechanism, as the t→m phase transformation lead to volumetric expansion at
a localized area around the superficial defects resulting in a compressive stresses concentrated around
these defects and consequently stopping the crack propagation [6,12,52], which need more force to
bring the sample to fracture. The SEM micrographs show many subsurface cracks connected with
the surface cracks within the particle air-abrasion groups. This indicates, that there were already
some microcracks inside the material, which were stopped by phase transformation. This phase
transformation induced some compressive stress resulting in a higher BFS as described above. Groups
with a lower BFS do not show these many subsurface cracks as there were no microcracks that were
stopped by phase transformation. In contrast to the current study, other studies showed that neither
aging nor particle air-abrasion affected the strength of 3Y-TZP zirconia [25,48,49,54]. However, only
one study [49] investigated the same translucent zirconia.

Regarding the effect of the different used pressure during the particle air-abrasion on the strength
of zirconia, our results revealed no significant differences in BFS. In this regard, another study also
concluded that there were no significant differences in the BFS of zirconia with particle air-abrasion
treatment at different pressures [59].

Likewise, both polished (aged or non-aged) and N-SIN groups showed a reduced BFS, which might
be a result of almost no monoclinic phase on the surface of zirconia. In addition, group N-SIN showed
a lower BFS in comparison to both polished groups either aged or non-aged. These results may
have been due to the different surface roughness of the as-sintered and polished specimens. As the
as-sintered specimens showed a rougher surface than the polished specimens, and the surface defects
and flaws might later on act as a stress concentration sites, which lead to a significant decrease in the
strength of zirconia [29,31]. For this reason the null hypothesis has to be rejected concerning the biaxial
flexural strength.

Hardness results of the current study showed that the aging had no effect on the hardness which
are in good accordance to the finding of others [60]. In contrast, some studies showed a strong
correlation between the reduction of hardness and the increase of monoclinic phase. They reported
41% hardness reduction in femoral head of zirconia with 78% monoclinic phase content [61] and
30% hardness reduction with 48 wt. % ± 1 wt. % monoclinic phase fraction [22]. However, in the
current study the monoclinic phase content was 39.9 vol. % ± 0.7 vol. % with the as-sintered aged
specimens, which showed no effect on the hardness. One explanation for this might be that the t→m
phase transformation percentage was lower than that in previous studies.

Likewise, the findings concerning the effect of polishing treatment on hardness, both as-sintered
groups (aged or non-aged) showed a lower hardness than the polished groups (aged or non-aged).
Which might be an artefact of the measurement, as the rougher surface of the as-sintered samples makes
it difficult to identify the exact margins of the indentations and to obtain reliable results. However,
the null hypothesis concerning the hardness is confirmed by the results of the study.

Although the current study showed promising results regarding the mechanical behavior of
3Y-TZP ceramics, it should be considered that the fatigue behavior of this zirconia needs to be
investigated under thermal and mechanical loading in aqueous environment over long periods.
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This will simulate the mechanical loading and thermal conditions in the oral environment, which were
not applied in the current study. These and other aspects should be considered in future studies.

5. Conclusions

Within the limitations of this laboratory study the following conclusions are drawn:

(1) Both aging and particle air-abrasion demonstrated a significant t→m phase transformation which
leads to a significant increase in BFS of high translucent zirconia. While polishing causes no
monoclinic phase transformation.

(2) Aging leading to a ratio up to 40 vol. % of monoclinic phase seems to have no effect on the hardness.
(3) The tested different pressures during particle air-abrasion had no influence on the tested

mechanical and crystallographic properties.
(4) The positive response of this zirconia to aging and surface treatment seems to provide promising

mechanical properties of this material during the repair in case of chipping or partial fractures
under clinical conditions.
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