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Gliomas exhibit high intra-tumoral histological and molecular heterogeneity. Introducing
stereotactic biopsy, we achieved a superior molecular analysis of glioma using O-(2-18F-
fluoroethyl)-L-tyrosine (FET)-positron emission tomography (PET) and diffusion-weighted
magnetic resonance imaging (DWI). Patients underwent simultaneous DWI and FET-PET
scans. Correlations between biopsy-derived tumor tissue values, such as the tumor-to-
background ratio (TBR) and apparent diffusion coefficient (ADC)/exponential ADC (eADC)
and histopathological diagnoses and those between relevant genes and TBR and ADC
values were determined. Tumor regions with human telomerase reverse transcriptase
(hTERT) mutation had higher TBR and lower ADC values. Tumor protein P53 mutation
correlated with lower TBR and higher ADC values. a-thalassemia/mental-retardation-
syndrome-X-linked gene (ATRX) correlated with higher ADC values. 1p/19q codeletion
and epidermal growth factor receptor (EGFR) mutations correlated with lower ADC values.
Isocitrate dehydrogenase 1 (IDH1) mutations correlated with higher TBRmean values. No
correlation existed between TBRmax/TBRmean/ADC/eADC values and phosphatase and
tensin homolog mutations (PTEN) or O6-methylguanine-DNA methyltransferase (MGMT)
promoter methylation. Furthermore, TBR/ADC combination had a higher diagnostic
accuracy than each single imaging method for high-grade and IDH1-, hTERT-, and
EGFR-mutated gliomas. This is the first study establishing the accurate diagnostic criteria
for glioma based on FET-PET and DWI.
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INTRODUCTION

Gliomas are among the most common and severe primary
intracranial tumors in humans, particularly glioblastoma
(GBM) (WHO, grade 1V). Newly diagnosed malignant gliomas
are currently treated with surgical resection followed by
radiotherapy and chemotherapy. However, despite treatment
advancements, malignant glioma prognosis remains poor
(1, 2). The main prognostic factors for glioma survival are
extent resection, patient age and neurological performance (3).
In addition, several molecular markers, including isocitrate
dehydrogenase 1 (IDHI1), epidermal growth factor receptor
(EGFR), O6-methylguanine-DNA methyltransferase (MGMT)
promoter methylation, telomerase reverse transcriptase (TERT),
1p/19q codeletion, phosphatase and tensin homolog (PTEN),
and o-thalassemia/mental-retardation-syndrome-X-linked gene
(ATRX), have been shown to be glioma prognostic factors (4-7),
and their threshold values have been validated clinically.
Moreover, some of these factors are used as a primary
reference for post-operative therapy selection (8).

Currently, glioma diagnosis, grading, and molecular
phenotyping mainly rely on postoperative histological
examination, which requires obtaining a tumor sample using
surgical resection or needle biopsy. In order to promote micro-
invasive or non-invasive presurgical diagnosis, several studies have
investigated the association of glioma molecular markers with
specific tumoral imaging characteristics, including diffusion-
weighted MRI (DWI), dynamic contrast-enhanced perfusion-
weighted imaging (DCE-PWI), and magnetic resonance
spectrometry (MRS) (9, 10). The increasing application of PET
has improved the diagnosis and clinical management of gliomas
(11, 12). Amino acid PET tracers, such as ''C-methyl-methionine
(*'C-MET), O-(2-18F-ﬂu0roethyl)-L-tyrosine (*|F-FET) and 3,4-
dihydroxy-6-['*F]fluoro-L-phenylalanine ('*F-DOPA), exhibit
lower uptake in normal brain and inflammatory tissues than in
gliomas and thus present clearer tumor borders with a higher
tumor-to-background contrast than is achieved using 2-deoxy-2-
[ISF]ﬂuoro—D—glucose (*8F-FDG) (13). Previous reports indicated
that FET uptake is associated with GBM genetic biomarkers. For
example, IDH mutations were associated with higher methionine
uptake on PET in patients with grade II-III gliomas (10, 14)
compared with that in patients with high-grade glioma (HGG).

Glioma characterization using multi-modality imaging could
have several clinical benefits (15, 16). Considering that DWT is an
MR imaging modality that is based on measuring the random
Brownian motion of water molecules within a given voxel, and
apparent diffusion coefficient (ADC) has a comprehensible
relation with tumor tissue characteristics (17, 18), the
combination of DWI and FET can provide information about
the amino-acid metabolism and water molecule motion in the
tumor tissue, thus yielding more accurate and comprehensive
molecular image analysis. Importantly, a combination of ADC
and "®F-FET PET has been proven to detect glioma infiltration
and phenotypes more accurately than standard MRI and other
combination strategies such as ADC/cerebral blood flow (CBF)
and FET/Flair (19).

Current reports regarding the correlation between tumor-to-
background ratio (TBR)/ADC values and tumor type and grade
are based on the average value calculated from the whole tumor
or lesion. However, brain tumors, especially HGG, are known to
exhibit intra-tumoral heterogeneity, with spatial differences in
cellular phenotype and malignancy grade (20). Therefore, the
analysis of the average TBR/ADC value of a whole tumor may
not be truly representative to accurately determine the
correlation with different brain tumor phenotypes. This could
explain the wide ranges of previously reported TBR/ADC values
for various tumor subtypes. We conceptualized that addressing
this limitation could help improve the accuracy of
this correlation.

Thus, the initial aim of this study was to eliminate the
influence of glioma heterogeneity on the correlation between
TBR/ADC values and tumor type and grade. As a first step in this
direction, we retrospectively reviewed patients who underwent
image-guided needle biopsies of the brain and had a preoperative
T1, DWI, PET-MRI, and an intraoperative/early postoperative
T1 for tracing the biopsy position and compared the findings
with the histopathology report. Further, we studied the
correlation between the molecular phenotypes of glioma and
TBR/ADC values, which have never been validated by
biopsy studies.

METHODS

Patients

Eleven patients with newly diagnosed supratentorial gliomas
who underwent hybrid "*F-FET-PET/MRI and DWI prior to
biopsy from January 2019 to December 2019 were included in
this study. Written informed consent was obtained from all the
patients before PET/MR examinations. The Ethics Committee
and Institutional Review Board of Xuanwu Hospital Capital
Medical University approved this study. Patients were
informed about the procedure and signed the consent forms.

FET-PET/MRI

Patients had undergone the integrated PET/MRI within one
week before the surgical procedure. To analyze the images, we
used our previously published image-processing method (21).
'"SE-FET PET and MRI data were postprocessed and analyzed
using PMOD version 3.505 (PMOD Ltd.). Different modalities
were co-registered using nonaffine deformations and manually
adjusted by referring to anatomic landmarks. The static PET
images were resliced to the same voxel size as 3D T1 CEMRI with
I1x1x1 mm for robust co-registration and more precise glioma
volume calculations.

Stereotactic Biopsy Procedures

The 11 patients underwent stereotactic biopsies within a week
after MRIL. The biopsies were performed under neuroimaging
guidance using co-registered FET-PET and CE MR images
loaded to the stereotactic navigation system Robotized
Stereotactic Assistant (ROSA, Medtech) (22, 23). One to seven
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biopsy sites were selected per patient. Eloquent cortex areas and
areas close to vesicular structures were excluded by both the
experienced neurosurgeons (QT Lin and Y Cheng) and
neuroradiologists (J Lu and SS Song). In all, 36 samples were
obtained from lesions showing either contrast enhancement and
increased FET uptake or increased FET uptake but no
enhancement on CE MRI. No postoperative biopsy-related
complications were observed.

Intraoperative MRI and Image

Fusion Verification

Intraoperative images were acquired using intraoperative MRI
(Siemens, Verio) performed immediately after the biopsy
procedure to verify the biopsy site, and 3D Slicer (Verson 4.1,
SPL, Harvard Medical School) was used to register the
preoperative MRI to the intraoperative MRI using the “General
registration” module in the software. The biopsy site can be
identified as a clear signal void in the intra/postoperative images,
which was rigidly registered to the preoperative T1 and DWL
This was achieved using a module in 3D-Slicer called “Brains-
fit”. However, this was a semi-automatic process, and a manual
initialization of the registration was required. The “Transform”
module was, therefore, used to manually register the images first,
and then the “Generation registration (brain)” was applied to
refine the registration.

Sample Collection, Histological Grading,
and Molecular Genetic Analysis

The diagnosis of glioma, according to the 2016 WHO
classification criteria, was supported by the histopathological
examination. Formalin-fixed paraffin-embedded (FFPE) tumor
tissue blocks/sections or fresh tumor tissues were obtained from
the hospitals, with confirmation of diagnosis and tumor purity
provided by the pathologists. Grade II glioma was defined as low-
grade glioma (LGG) and grade III-IV glioma was defined as
high-grade glioma (HGG). Grade I glioma was not included in
this study.

Genomic DNA from fresh tumor tissue and whole blood was
extracted using the DNeasy Blood & Tissue Kit (Qiagen)
according to the manufacturer’s protocols. FFPE samples were
de-paraffinized with xylene followed by genomic DNA extraction
using QIAamp DNA FFPE Tissue Kit (Qiagen) following the
manufacturer’s instructions (23). Hybridization-based target
enrichment was carried out with GeneseeqOne pancancer gene
panel (416 cancer-relevant genes), and xGen Lockdown
Hybridization and Wash Reagents Kit (Integrated DNA
Technologies). The genetic markers most commonly used in
glioma therapy and prognosis, namely, IDH1/2, 1p/19q, MGMT,
hTERT, TP53, PTEN, EGFR, ATRX, were analyzed.

Statistical Analysis

Statistical analysis was performed using SPSS version 22 (IBM).
All quantitative data were presented as mean + SD in the text.
When comes to statistical analysis, we used a Shapiro-Wilk test
and Q-Q plot to confirm normality for continuous variables.
Then Student’s t test or the nonparametric Wilcoxon test were
used to assess any statistically significant differences. (Detailed

information in Supplementary Table). Descriptive statistics are
presented as the mean and standard deviation or the median and
range. A P value less than 0.05 was considered statistically
significant. The accuracy of imaging combinations in tumor
detection was determined using receiver operating characteristic
(ROC) analysis. Using the imaging measurements as the diagnostic
testand the histopathological analysis as the reference test, the areas
under the ROC curve (AUCs) with 95% confidence intervals were
calculated. AUCs of each single imaging method and the optimal
imaging combination (TBRmean and ADC) were compared usinga
nonparametric analysis of clustered binary data to account for
within-patient correlation.

RESULTS

Histopathology results of each biopsy site are listed in Table 1.
The biopsy samples were heterogeneous both histologically and
molecularly in some patients as different pathological results
were described in the biopsy reports even in the same patient
(Figure 1). The molecular phenotypes of the samples, as
determined using the GeneseeqOne pancancer gene panel, are
listed in Figure 2. The correlations of the mutation status of the
genetic markers with TBR and ADC/eADC are shown in
Figures 3-5, respectively. Our initial screening results revealed
no relation between TBR values and MGMT promoter
methylation and ATRX, EGFR, and PTEN mutations.
Moreover, ADC values cannot predict the mutation status of
IDH and PTEN or MGMT promoter methylation.

FET Uptake and ADC Values Predict
Glioma Grading

For tumor grading, the potential for feature-based differentiation
between WHO II-IV gliomas was assessed. The TBRmax values
were 2.823 + 1.112 vs. 4.624 + 1.675 in LGG and HGG (p<0.05),
respectively, whereas the TBRmean values were 2.305 + 1.056 vs.
3.949 £ 1.630 (p<0.05) in LGG and HGG, respectively. The mean
ADC values were 1.465 + 0.341 vs. 1.024 + 0.232 (x10° mm?/s) in
LGG and HGG (p<0.05), while the mean eADC values were
0.247 + 0.089 vs. 0.369 + 0.078 (mm?/s) in LGG and HGG
(p<0.05), respectively (Supplementary Table 1).

FET Uptake Levels Are Influenced by the
Status of hTERT, IDH1, and TP53
Mutations and 1p/19q Codeletion

The mutation status of hTERT, 1p/19q, IDH1 and TP53 was
predicted based on FET uptake in terms of TBRmax and
TBRmean. Samples with IDH1 mutations showed higher
TBRmean values than those of samples with wild-type IDH1
(3.552 + 1.752 vs. 2.498 + 1.322, p<0.05) (Supplementary
Table 2). Higher TBRmax and TBRmean values were found in
samples with hTERT mutation (4.173 + 1.803 vs. 2.584 + 0.866 and
3.455 + 1.766 vs. 2.158 + 0.864, separately, p<0.05) compared with
samples with wild-type gene (Supplementary Tables 3, 4). Lower
TBRmax and TBRmean values were found in samples with TP53
mutation compared with those in samples with the wild-type gene
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TABLE 1 | Histopathology results of each biopsy site and patient.
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FIGURE 1 | CE MRI, 18F-FET-PET and DWI-ADC map performed before biopsy, CE MRI performed after biopsy, and hematoxylin and eosin (H&E) staining (x40) of
the biopsy samples. Samples located in different regions within glioma tissue with different FET-PET uptake and ADC value were taken. H&E staining showed WHO
grade and the samples were also tested to analyze gene phenotypes. (A, C) Samples located in the region with increased FET-PET uptake and low ADC value in
DWI. H&E staining showed this area contained reactive gliocyte proliferation without obvious atypia nuclear. (B) A sample located in a region with increased FET-PET
uptake and high ADC value in DWI. H&E staining showed a cellular glioma corresponding to Oligodendroglioma of WHO grade II.

Frontiers in Oncology | www.frontiersin.org

November 2021 | Volume 11 | Article 743655


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Cheng et al.

"8F_FET-PET/DWI for Glioma Phenotyping

[)

4

ss. NRNN AR
]

Sample

BRAF, ATRX, EGFR and PTEN).

: 3I|I.|I|I||I||.m.||.||||||I||..m

B Alterations
mutant

HRRNEN HEEN HrerT

36.1% HEREER EE N o+
0% IDH2
13.9% il i 1P19Q
se1% [ BN 1 1Hi MGMT
se.3% HNNANEN ~~ RRERENERERERED TP53
0% BRAF
33.3% il | N ATRX
250 1] | EGFR
36.1% NN HREEEA [ ] ] PTEN

AN QT = QIO T = Q1O T = Q) T DL = Qe Q1) = v—'N"‘N")v-I'N
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(2.872 +£1.442vs.4.300 £ 1.590 and 2.441 + 1.312 vs. 3.492 + 1.702,
p<0.05) (Supplementary Table 6). Furthermore, the FET uptake
level was not correlated with the mutation status of ATRX, EGFR,
PTEN, 1p/19q codeletion and MGMT methylation as p>0.05
(Student’s T-test or Wilcoxon test).

ADC Values Predict the Mutation Status of
hTERT, TP53, EGFR, and ATRX and

1p/19q Codeletion

The mutation status of hTERT and TP53 and 1p/19q codeletion
were predicted by ADC values. Higher mean ADC values were
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FIGURE 3 | Statistic results of grading, IDH1/2, 1p/19q, MGMT, hTERT,
TP53, PTEN, EGFR, ATRX mutations status and TBR (*P < 0.05, **P < 0.01).

found in samples with TP53 (1.406 + 0.318 vs. 1.000 + 0.247,
p<0.05) and ATRX mutations (1.576 + 0.265 vs. 1.068 + 0.257,
p<0.05) (Supplementary Tables 6, 7), whereas lower values were
found in samples with hTERT and EGFR mutations (1.062 +
0.274 vs. 1.456 + 0.307, p<0.05) and 1p/19q codeletion (0.852 +
0.136 vs. 1.299 + 0.338, p<0.05) (Supplementary Tables 3, 4, 8).
These findings were statistically significant (p<0.05, Student’s T-
test). ADC values could not predict the mutation status of IDH
and PTEN and MGMT promoter methylation (p>0.05)
(Student’s T-test or Wilcoxon test).

eADC Values Predic the Mutation Status
of hTERT, TP53, EGFR, and ATRX and 1p/
19q Codeletion

The mutation status of the hTERT, 1p/19q and TP53 was
predicted by eADC values. Higher mean eADC values were
found in samples with hTERT (0.360 + 0.085 vs. 0.246 + 0.077,
p<0.05) and EGFR mutation (0.385 + 0.082 vs. 0.284 + 0.091,
p<0.05) and 1p/19q codeletion (0.433 + 0.052 vs. 0.289 + 0.090)
(Supplementary Tables 3, 4, 8), whereas lower values were
found in samples with TP53 (0.258 + 0.077 vs. 0.381 + 0.080,
p<0.05) and ATRX mutation (0.215 + 0.055 vs. 0.356 + 0.079,
p<0.05) (Supplementary Tables 6, 7). These findings were
statistically significant (p<0.05, Student’s T-test). However,
eADC values could not predict the mutation status of IDH and
PTEN and MGMT promoter methylation (P>0.05). (Student’s T-
test or Wilcoxon test).

Comparison of the Diagnostic Accuracy of
Single- and Multi-Modality Imaging

The diagnostic accuracy of the FET/ADC combination was
significantly higher than that of each single imaging method
with respect to both glioma grading and molecular phenotyping.
Moreover, the AUCs revealed that the accuracy of the
combination was significantly higher than that of single ADC
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or 'F-FET PET (Figure 6A). In the gene-specific subgroup
analysis, the diagnostic accuracy of combined TBR/ADC was
significantly higher than that of each imaging mode for gliomas
with IDH1 mutation (Figure 6B; AUC, 0.742 vs. 0.690
[TBRmean] and 0.500 [ADC]), so as for hTERT (Figure 6C;
AUC, 0.850 vs. 0.711 [TBRmean] and 0.827 [ADC]) and EGFR
mutations (Figure 6H; AUC, 0.815 vs. 0.601 [TBRmean] and
0.798 [ADC]). By contrast, the diagnostic accuracy of TBR/ADC
was not significantly higher than that of single ADC or '*F-FET
PET for gliomas with 1p/19q codeletion, MGMT promoter
methylation and PTEN mutation (Figures 6D, E, I). The
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diagnostic accuracies of TBR/ADC and ADC were almost
identical for gliomas with TP53 and ATRX mutation
(Figures 6F, G).

DISCUSSION

The decision for surgical resection of a tumor depends on the
possibilities of maximal function retention and minimal
recurrence. For example, when the gadolinium-enhanced
portion of the glioma is completely resected, 90% of recurrences
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FIGURE 6 | Receiver operating characteristic curves of 18F-FET PET, and DWI imaging combination. ROC curves with the AUC of the optimal imaging combinations in
yellow, FET-PET in blue and DWI in green in cyan for (A) grading, (B) IDH1 mutation, (C) hTERT mutation, (D) 1p/19q codeletion, (E) MGMT mutation, (F) TP53 mutation,

and samples of each ROC analysis is displayed in the title.

occur at the margin of the surgical resection in the macroscopically
normal peritumoral brain zone. However, as the patient may lose
important brain function owing to over-resection, the pre-surgical
plan needs to be comprehensive. Multi-modal MRI is widely used
for brain tumor diagnosis. Advanced imaging techniques,
including perfusion and diffusion MRI, as well as PET, are being
actively investigated to overcome some of the limitations of cMRI
modalities (24). Furthermore, the multi-model MRI has been
introduced to analyze the heterogeneity of GBM, and the use of
the ADC value is widely accepted in the evaluation of the
heterogeneity of GBM (25). During the last few years, interest
has increased in the development of DWI ADC and FET-PET
applications for tumor grading, molecular subtyping, and the
assessment of treatment response.

The combination of ADC and FET-PET imaging has been
proven to be more accurate than standard MRI in the detection
of infiltration in enhancing gliomas (26). However, there are no
reports of imaging combinations of FET-PET and ADC for
molecular phenotyping of gliomas. In the current study, we
calculated the value of image parameters (TBR/ADC) in the
needle biopsy sites to provide a more accurate TBR/ADC value

for tumor tissues of different grades and molecular phenotypes.
Since previous studies had reported the value and feasibility of
hybrid PET/MR-guided brain biopsies (27-29). Our study aims
to further assess the mutation status of gliomas using hybrid
PET/MRI in combination with stereotactic biopsy to eliminate
the influence of heterogeneity.

Consistent with previous histopathological reports (30), we
observed that the glioma histopathological grade was positively
correlated with TBRmax and TBRmean and negatively
correlated with ADC values. Furthermore, as in a previous
study (31), we validated the findings using needle biopsy to
eliminate the effects of glioma heterogeneity. In addition, IDH
mutation and 1p/19q codeletion are important markers for both
glioma typing and prognosis (32), as well as for differentiating
oligodendrogliomas from GBMs and astrocytomas (33). Based
on the 2016 WHO classification, oligodendrogliomas without a
1p/19q codeletion are classified as astrocytomas (32). A number
of studies have investigated the potential of exclusive MRI or
PET imaging to predict IDH mutation (32), suggesting potential
differences between the uptake patterns of different amino acid
PET tracers in gliomas due to the specific metabolic profiles of
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IDH-mutated gliomas. However, previously reported
correlations between IDH mutation status and FET uptake
varied due to the differences in the amino acid PET tracers and
calculation methods (32). The results of our point-to-point
biopsy method indicated a higher ['*F]-FET uptake in only
IDH-mutated gliomas. This was consistent with the findings of
Verger who used ['®F]-FDOPA PET to predict the IDH
mutation status (34). In our study, low ADC values were
found in the 1p/19q codeletion group. Thus, the combination
of FET-PET and DWI has the potential to preoperatively
differentiate astrocytomas from oligodendroglioma. None
IDH2 mutation was found in our samples. Histological and
molecular information obtained using multi-modality imaging
including advanced MRI imaging may help the surgeon prepare
a better surgical plan for tumor resection and needle biopsy than
that prepared based on conventional MRI imaging, which only
provides structural tumor information (35, 36).

For glioma phenotyping, IDH1/2, 1p/19q, MGMT, hTERT,
TP53, PTEN, EGFR, and ATRX mutations are usually regarded
as the key factors influencing postoperative therapeutic
decisions, such as radiotherapy, chemotherapy, molecular
targeted therapy and immune therapy (37). This is the first
study to report a correlation between hTERT mutation status
and TBRmax and TBRmean. This finding is in contrast to those
of a previous study that reported that these factors did not have
any significant correlations (8). These contrasting results can be
attributed to the differences in the methodologies of the two
studies. However, our results are more precise and accurate
because we determined the correlations based on examination
of biopsy sites. Further, lower ADC and higher eADC values
could preoperatively predict the presence of hTERT mutation.
The hTERT mutation has been specifically found in HGGs,
especially in GBM; therefore, hTERT could be a promising
therapeutic target in HGG, especially recurrent HGG (38).
Furthermore, our study is the first to find the value of ADC in
predicting TP53 and EGFR, which are also relevant molecular
targets (39). Therefore, our results have the potential to provide
precise molecular information based on image, so as to be a
reference for individualized treatment plan of molecular targeted
therapy and radiotherapy.

Our study also detected two additional molecular biomarkers,
PTEN and ATRX. ATRX mutations have been observed in 71%
of grade II-III astrocytoma, 68% of oligoastrocytoma, and 57% of
secondary GBM. Loss of ATRX is associated with improved
progression-free and overall survival (40). ATRX can be used not
only in the molecular classification of gliomas but also as a new
glioma therapeutic target (41). Our study is the first to report a
relationship between ATRX and the imaging parameters PET/
TBR and DWI/ADC. A higher ADC value was specifically
observed in ATRX-mutated gliomas. Furthermore, PTEN is
the most frequently altered tumor suppressor gene in GBM,
and its loss or mutation has been implicated in the resistance to
therapies, such as tyrosine kinase inhibitors, due to permissive
activation of the AKT pathway. However, depletion of PTEN has
also been shown to sensitize tumor cells to therapies that rely on
DNA damage, such as ionizing radiation (42). We did not find a

correlation between 18F-FET uptake, ADC value, and PTEN
mutation status was observed.

There are no previous studies using imaging modality
combinations for investigating mutations in MGMT, hTERT,
TP53, PTEN, EGFR, and ATRX in gliomas. Thus, the present
findings can be an initial step of exploring precise molecular
imaging of glioma. A recent study, reported that a combination
of ADC and FET-PET detected infiltration in enhancing gliomas,
as well as in HGG and oligodendroglioma, more accurately than
standard MRI and FET-PET (19). However, our study is the first
to perform glioma molecular phenotyping using a TBR/ADC
combination strategy. Moreover, our findings were validated by
hybrid PET/MR-guided biopsies. Interestingly, the combination
of TBR/ADC had a significantly higher diagnostic accuracy than
that of each single imaging method in both glioma grading and
predicting the mutation status of IDH1, hTERT, and EGFR.
When comes to the prediction of glioma grading and above three
genes, combined modality of PET and DWI are commended.

The present study is limited by the relatively small number of
patients in the subgroup analyses, especially in the case of
gliomas with 1p/19q codeletion and IDH2 mutation. However,
our data provide initial evidence for the correlation between
imaging parameters and molecular phenotypes. In addition to
IDH1/2, 1p/19q, MGMT, hTERT, TP53, PTEN, EGFR, and
ATRX, which were investigated here, we plan to evaluate other
genetic markers related to glioma characteristics and prognosis,
as well as those recognized as therapeutic and immune targets.

CONCLUSION

TBR/ADC values acquired using PET-MRI and DWT could be
useful diagnostic tools for radiologists for better preoperative
understanding of tumor characteristics and could also guide
surgeons in pre-surgical planning and treatment decision
making. While further research is required, we believe our
method of using the TBR/ADC values from the biopsy site
provides better representation of the actual tumor pathology.
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