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STAT3 is a nuclear transcription factor that regulates genes involved in cell cycle, cell survival, and immune response.
Although STAT3 activation drives cells to physiological response, its deregulation is often associated with the development
and progression of many solid and hematological tumors as well as with drug resistance. STAT3 is a redox-sensitive
protein, and its activation state is related to intracellular GSH levels. Under oxidative conditions, STAT3 activity is
regulated by S-glutathionylation, a reversible posttranslational modification of cysteine residues. Compounds able to
suppress STAT3 activation and, on the other hand, to modulate intracellular redox homeostasis may potentially improve
cancer treatment outcome. Nowadays, about 35% of commercial drugs are natural compounds that derive from plant
extracts used in phytotherapy and traditional medicine. Sesquiterpene lactones are an interesting chemical group of plant-
derived compounds often employed in traditional medicine against inflammation and cancer. This review focuses on
sesquiterpene lactones able to downmodulate STAT3 signaling leading to an antitumor effect and correlates the anti-
STAT3 activity with their ability to decrease GSH levels in cancer cells. These properties make them lead compounds for
the development of a new therapeutic strategy for cancer treatment.

1. Introduction

Cancer is the main single cause of death in both men and
women, claiming over 6 million lives each year worldwide.
The hallmarks of cancer include tumor cell proliferation
and survival, tumor angiogenesis, and metastasis. Tumor
cells exhibit an altered metabolism that allows them to
sustain high proliferative rates and resist to some cell
death signals, particularly those mediated by increased oxi-
dative stress. Several studies have identified a critical role
of aberrant activation of STAT3 signaling in oncogenesis.
Therefore, any treatment counteracting the STAT3 hyper-
activation has been considered as a new strategy to treat
different tumors.

Over the last 20 years, a lot of literature evidence indi-
cates that many derived plant substances are potentially
interesting in cancer therapy or can be considered as lead
compounds to develop new possible anticancer drugs.

2. Signal Transducer and Activator of
Transcription 3

2.1. STAT3 Structure. Signal transducer and activator of tran-
scription 3 (STAT3) is a member of a family of seven proteins
(STAT 1, 2, 3, 4, 5a, 5b, and 6) activated by growth factors
and cytokines that participate in physiological cellular
responses [1, 2]. The transcript of STAT3 undergoes alterna-
tive splicing, resulting in the full length STAT3α (92 kDa)
and in the truncated isoform STAT3β (83 kDa) that lacks
the C-terminal domain including Ser727 [3].

Two crystal structures of STAT3 are deposited in the Pro-
tein Data Bank (PDB): the phosphorylated STAT3β-DNA
complex (1BG1) [4] and the unphosphorylated STAT3 core
fragment (3CWG) [5]. Sequence comparisons, biochemical
assays, and mutagenesis have identified six functional
conserved domains within the STAT3 molecule, each of them
contributing to various aspects of signal transduction
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pathway. The domains are arranged in the protein structure
as follows: an N-terminal domain (NTD) (1-137), a coiled-
coil domain (CCD) (138-320) formed by a four-helix bundle,
a DNA-binding domain (DBD) (321-494) comprising an
eight-stranded β-barrel, a α-helical linker domain (LD)
(495-583), a Src homology 2 (SH2) domain (584-688), and
a C-terminal transcriptional activation domain (TAD)
(723-770). The NTD is a conserved sequence that mediates
tetramerization of two phosphorylated dimers which cooper-
atively bind specific STAT3 sites in a gene promoter [6, 7].
The CCD is critical for recruitment of STAT3 to the receptor,
subsequent phosphorylation and dimerization, and its trans-
location into the nucleus [8]. Moreover, the CCD is involved
in protein-protein interactions leading to multiple types of
dimer complexes, and it also contains a lysine residue
(Lys140) subject to methylation by histone methyl transferase
SET9, which is a negative regulatory event [9]. The DBD
allows the recognition and the binding to a specific consensus
sequence defining the DNA-binding specificity. The SH2
domain is required for the recruitment of signal transduction
proteins to activated receptors and contains a key binding
pocket where the phosphotyrosine residue of other STAT pro-
teins can bind to form homo- or heterodimers [10]. Other
than SH2 domain interaction, we have recently detected two
interchain disulfides between cysteine 367 and cysteine 542
and between cysteine 418 and cysteine 426 (Cys367-Cys542
and Cys418-Cys426) responsible for STAT3 dimer stabiliza-
tion [11]. Finally, the TAD is involved in transcriptional
activation and promotes the full STAT3 activation through
the phosphorylation of the serine residue 727 (Ser727). In

the C-terminal domain, between SH2 and TAD, there is a tail
segment with the phosphorylation site tyrosine 705 (Tyr705)
that controls dimerization and yields the DNA-binding
activity of STAT3 [12].

2.2. STAT3 Signaling Cascade. Multiple distinct steps are
involved within the STAT3 signaling pathway. According to
the classical model, STAT3 is activated through the binding
of growth factors and cytokines to their cell-surface receptors.
Cytokines, like IL-6, IL-10, and IL-11, as well as growth
factors, like endothelial growth factor (EGF), vascular endo-
thelial growth factor (VEGF), and fibroblast growth factor
(FGF), can activate the phosphorylation cascade. This event
allows rapid transphosphorylation and activation of Janus
tyrosine kinases (JAKs, JAK1, JAK2, JAK3, and Tyk2) that
phosphorylate tyrosine residues on the cytoplasmic tail of
the receptors. The SH2 domain of STAT3 recognizes and
binds to these docking sites, placing STAT3 within close
proximity of active JAKs, which subsequently phosphorylate
STAT3 at Tyr705. The phosphorylated form of STAT3
homo- or heterodimerizes via reciprocal SH2 domain inter-
action and translocates from the cytoplasm to the nucleus,
where it regulates the transcription of target genes
(Figure 1) [13, 14]. In addition to JAKs, STAT3 can be acti-
vated by nonreceptor tyrosine kinases such as Src and ABL
[15–17]. Furthermore, various serine kinases, like protein
kinase C (PKC), mitogen-activated protein kinases (MAPK),
and CDK5, phosphorylate the OH residue of Ser727.
Although serine phosphorylation occurs in several cells, its
biologic role is still controversial. Some authors report that
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Figure 1: STAT3 signaling pathway. p-STAT3: phosphorylated STAT3; p-JAKs: phosphorylated JAKs; SOCS: suppressor of cytokine
signaling proteins; PIAS: protein inhibitors of activated STATs; PTPs: protein tyrosine phosphatases.
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serine phosphorylation allows to achieve maximal transcrip-
tional activity [18], whereas others demonstrate that serine
phosphorylation inhibits STAT3 activity [19, 20].

The binding of STAT3 to a specific DNA domain
promotes the expression of numerous genes involved in cell
cycle progression, apoptosis, tumor angiogenesis, invasion,
metastasis, chemoresistance, immunosuppression, and
cancer stem cell renewal (Table 1) [21–40]. Intriguingly,
many downstream target genes of STAT3 encode cytokines
and growth factors that trigger the same STAT3 signaling
pathway, thereby providing a mechanism of autocrine and
paracrine STAT3 activation.

Under physiological conditions, the activation of
STAT3 signaling is a transient and tightly regulated pro-
cess that can last from half an hour to several hours. After
this period, the signal decays and STAT3 are exported
back to the cytoplasm. This decay entails downregulation
of both receptors and JAKs, as well as of STAT3 transcrip-
tional activity, and involves several negative protein mod-
ulators, including the family of suppressor of cytokine
signaling proteins (SOCS), the protein inhibitors of acti-
vated STATs (PIAS), and several protein tyrosine phos-
phatases (PTPs) [41, 42] (Figure 1).

The SOCS family is composed by eight inducible intracel-
lular proteins, all characterized by the SH2 domain that inter-
acts with phosphorylated JAKs and/or with the intracellular
domains of the receptors to impede the recruitment of STATs

to the docking sites as well as to inhibit JAK activity. More-
over, via their SOCS box domain, SOCS interact with E3
ubiquitin ligase and promote the ubiquitin-dependent degra-
dation of targets [43]. Specifically, STAT3 stimulates SOCS3
gene transcription and the resulting protein binds phospho-
JAKs and/or the receptors to turn off the cascade.

Other than SOCS, STAT3 transcriptional activity is con-
trolled by PIAS3, a nuclear protein member of PIAS family
proteins which prevents active STAT3 from binding DNA
and inhibits STAT3-mediated gene activation [44].

Furthermore, STAT3 transcriptional activity is controlled
by PTPs, a family of tyrosine phosphatases, that operate on
various steps of signaling cascade. The best characterization
of these proteins is SHP-1 and SHP-2 that contain SH2
domain and ensure that tyrosine phosphorylation of JAKs
does not persist after the removal of the cytokine [2, 12].
Inactivation of STAT3 in the nucleus occurs through the
dephosphorylation of Tyr705 by TC-PTP and TC45 [45].

There is a growing body of evidence demonstrating
that STAT3 signaling is also regulated via a complex inter-
play with cellular miRNAs. Both direct and indirect regu-
latory mechanisms mediate several positive and negative
feedback loops between miRNAs and the STAT3 signaling
pathway. Approximately, 50 miRNAs are predicted to bind
the 3′-UTR of STAT3; among them, let-7, miR-20a, and
miR-93 were directly validated using STAT3-3′-UTR-
Reporter constructs. Several miRNAs directly induce
STAT3 upregulation (miR-551b 3p) or act to reduce the
expression of negative regulators of STAT3 (miR-18a,
miR-221, and miR-222), and others are activated by
STAT3 (miR-21) through binding within the promoters
of these oncomiRs. A more thorough review can be found
in the manuscript by [46].

2.3. STAT3 and Oncogenesis. Growing evidence over the last
years suggests a critical role of STAT3 as a point of conver-
gence of various signaling pathways that are deregulated in
cancer. In healthy cells, STAT3 is closely regulated to
maintain a transient active state. Conversely, STAT3 is
improperly and persistently activated in numerous hema-
topoietic and solid malignancies [47, 48]. Constitutively
active STAT3 induces deregulation of growth and survival,
promotion of angiogenesis, and suppression of host’s
immune surveillance against tumor. Moreover, it promotes
epithelial-mesenchymal transition, invasion, and metastasis
thereby contributing to tumor progression. In the last
years, increasing evidence indicates that STAT3 also pro-
motes resistance to conventional chemo- and radiation
therapy as well as to pharmacological inhibition of several
pathways of oncogene-driven malignancies [49, 50].

Although recent studies have revealed activating STAT3
mutations in some malignancies (hepatocellular adenoma,
40% of large granular lymphocytic leukemia, and 30% of
chronic lymphoproliferative disease of NK cells), these muta-
tions are too rare to account for the high prevalence of
STAT3 activation in solid tumors.

The constitutive activation of STAT3 in cancer is caused
mostly by the higher secretion of cytokines and growth
factors in tumor microenvironment. Furthermore, in this

Table 1: STAT3-regulated genes.

Tumor-supporting functions of STAT3
Biological functions Genes References

Apoptosis

Bcl-2 ↑ [44]

Mcl-1 ↑ [24, 30]

Bcl-xL ↑ [25, 30]

Survivin ↑ [26, 30]

Skp2 ↑ [27]

Fas ↓ [28]

Proliferation

c-Myc ↑ [30]

Pim-1 ↑ [30]

Cyclin-D1 ↑ [23]

Angiogenesis
VEGF ↑ [29, 31]

bFGF ↑ [32]

Immune suppression
IL-10 ↑ [33]

IL-12 ↓ [34]

Invasion and metastasis

MMP-1 ↑ [30, 36]

MMP-2 ↑ [30, 35]

MMP-3 ↑ [36]

MMP-9 ↑ [36, 37]

Vimentin ↑ [38]

TWIST-1 ↑ [39]

p53 ↓ [45]

Cancer stem cell CPT1B ↑ [40]

Self-renewal ALDH1A1 ↑ [41]

Chemoresistance SOX2 ↑ [42]
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context, it has been recognized a critical role to the dereg-
ulation of receptors with intrinsic tyrosine kinase activity
(e.g., EGFR or HER-2/neu) or of nonreceptor tyrosine
kinases (e.g., Src or Abl), as well as to the epigenetic
modulation of negative regulators of STAT3. High levels
of IL-6 have been reported in a lot of cancer patients
and are also described as a potent negative regulator of
dendritic cell maturation in vivo, contributing to control
T cell-mediated immune responses [51].

Studies of myeloma, hepatocellular carcinomas, and non-
small-cell lung cancer report the loss of proteins that nega-
tively regulate STAT3, such as PIAS [52] or SOCS [53].

On the other hand, JAK mutations and their relevance in
the pathogenesis of hematological disorders are well
described, with JAK2 V617F being the most well-known
mutation, which is found in >95% of patients with polycy-
thaemia vera, primary myelofibrosis, and essential thrombo-
cytosis [54]. Mutations in the genes encoding JAK enzymes
seem to be much less common in solid tumors.

Abnormal STAT3 signaling is also associated with defects
in activation of JAKs due to a chromosomal translocation
resulting in a fusion protein that contains the kinase domain
of JAK2 fused to the oligomerization domain of the Ets tran-
scription factor (Tel-JAK2) and possesses constitutive tyro-
sine kinase activity [55].

It has been reported that also noncanonical pathways
of STAT3 signaling play a significant role in malignant
transformation, causing alternative posttranslational modi-
fications like phosphorylation of Ser727 and acetylation of
Lys685 [56–59].

In the last years, miRNAs are emerging as important reg-
ulators of the JAK-STAT3 pathway in the pathogenesis of
cancer, causing up- or downmodulation of STAT3 signaling,
as well as in the development of chemoresistance in several
types of cancer. Further insights on the subject are by [46].

2.4. Treatment Strategies Targeting STAT3 Protein. The
understanding that STAT3 signaling promotes tumorigene-
sis and chemoresistance while severely hinders antitumor
immunity has stimulated the search for clinical agents that
can effectively inhibit this pathway. Over the last 15 years,
many direct or indirect inhibitors targeting various members
of the STAT3 pathway have been employed to disrupt
STAT3 activity (Figure 2) and some of them entered in clin-
ical trials for treatment of solid or hematological tumor.

Two principal approaches that indirectly inhibit STAT3
activation have been developed. First of all, antibodies that
target IL-6 or its receptor are extensively evaluated preclini-
cally and clinically (Figure 2, node 1). Siltuximab and toci-
lizumab are two antibodies approved by the FDA for the
treatment of arthritis or Castleman disease that have been
testing in phase I/II clinical trials in different hematological
as well as solid tumor [60–65]. Another indirect but efficient
mechanism is the use of JAK or Src inhibitors (Figure 2,
node 2) [66]. A number of small JAK and Src inhibitors
are now in various stages of clinical trials, and some of
them result in approved drugs, specifically ruxolitinib
and tofacitinib [67]. Other JAK and Src inhibitors such
as AZD1480, WP-1066, desatinib, and saracatinib demon-
strate the reduction of STAT3 phosphorylation as well as
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Figure 2: Strategies for inhibition of the STAT3 signaling pathway. Several agents targeting various nodes of STAT3 cascade have been
developed. Agents that act on nodes 1 and 2 indirectly switch off STAT3 signaling. Compounds at node 3 directly target STAT3 protein
or its DNA-binding downmodulating STAT3 activation. p-STAT3: phosphorylated STAT3; p-JAKs: phosphorylated JAKs.
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downstream implications like increased apoptosis and
decreased tumor growth [68–71]. Unfortunately, the JAK
and IL-6 inhibitors determine an increased rate of infection
and off-target neurotoxicity. Moreover, the inhibition of
these kinases may influence different signaling cascades and
give rise to additional off-target effects. For example, the cru-
cial role of STAT1 in inflammatory response and in disrupt-
ing cell proliferation is well known, as well as in antitumor
and immune surveillance [72–75]. Therefore, STAT1 should
not be downregulated, while attempting to inhibit the actions
of STAT3. It is clear that further investigation of all these
inhibitors is necessary to understand how to optimize
STAT3 inhibition.

For all these reasons, a better strategy for STAT3
inhibition is through the direct targeting of functional
phosphorylated STAT3. A lot of peptides and small mol-
ecules that impair dimerization, nuclear translocation, and
DNA binding of STAT3 have been developed (Figure 2,
node 3).

The small peptides designed on STAT3 SH2 domain
sequence that contain a tyrosine-phosphorylation site
(PY∗LKTK) bind to the SH2 domain of STAT3 preventing
its dimerization and translocation into the nucleus [76, 77].
Although these compounds have proapoptotic and antitu-
mor activity in cancer cells, they have primarily been used
as research tools due to their limited cellular uptake and
stability.

Nonpeptidic small molecules able to permeate cells
represent a more attractive approach to inhibit aberrant
STAT3 activity in cancer cells [78]. Compounds, such as
STATTIC, STA-21, LLL-3, LLL-12, WP1066, S3I-201,
BP-1-102, STX-0119, and HJC0123, inhibit the growth of
tumor cells with hyperactivated STAT3 [79–82]. Although
many SH2 domain inhibitors have proved to be promising
in laboratory studies, only a few have been evaluated in
clinical trials.

An alternative approach useful to inhibit STAT3 function
involves competitive inhibition of the interactions between
DBD domain of STAT3 and promoter elements in target
genes. Platinum (IV) complex, such as CPA-1, CPA-7, and
IS3-295, inhibits the STAT3 DNA-binding activity leading
to apoptosis in human cancer cell lines [83]. A 15 bp
double-stranded decoy oligonucleotide that correspond to
the STAT3 response element in the cFOS promoter compet-
itively inhibits STAT3 DNA binding and suppresses the
tumor growth of preclinical models of ovarian, breast,
head-and-neck, lung, brain, and skin cancers as well as acute
myeloid leukemia [84–87].

Although many of these anti-STAT3 compounds have
antitumor effects in vitro and in vivo, there are no currently
approved drug directly targeting STAT3 and the research of
STAT3 inhibitors is still evolving.

3. Redox Homeostasis in Cancer Cells

3.1. Intracellular Redox Homeostasis. In contrast to normal
tissue, most of solid tumors are characterized by regions of
low oxygen (hypoxia), low pH, and low levels of glucose
which result from an architecturally abnormal microcircula-

tion, rapid growth of tumor cells, and high interstitial pres-
sure. Hypoxia and the high energetic metabolism induced
by tumor microenvironment contribute to upregulation of
reactive oxygen species (ROS) production in mitochondria,
peroxisomes, and endoplasmic reticulum [88–91]. Excessive
levels of ROS cause oxidative damage to DNA, proteins,
and lipids, compromising their structures and function. To
prevent oxidative damage, cancer cells activate various
enzymatic and nonenzymatic antioxidant systems. The
first ones include superoxide dismutase, catalase, glutathi-
one peroxidase, and glutathione reductase whereas α-
tocopherol (vitamin E), β-carotene (vitamin A), ascorbic
acid (vitamin C), and uric acid represent the ROS scaveng-
ing molecules. Furthermore, multiple and interrelated
redox couples, such as NADPH/NADP+, GSH/GSSG,
Trx/TrxSS, and cysteine/cystine, contribute to the intracel-
lular redox homeostasis [92–99].

A number of human cancer tissues, including breast,
brain, colon, pancreas, lungs, and leukemia, produce high
concentrations of glutathione (GSH) that contribute to can-
cer initiation, progression, and metastasis formation and to
chemoresistance [100–103]. In accordance with the elevated
level of GSH in cancer cells, several drugs known to reduce
GSH concentration are currently being used in clinical trials
to improve efficacy of targeted therapy. In this regard, the use
of disulfiram, alone or combined with arsenic trioxide, has
been approved as therapy for metastatic melanoma and non-
acute promyelocytic leukemia [101, 104]. Buthionine sulfox-
imine (BSO), a synthetic inhibitor of GSH production,
confers increased sensitivity to chemotherapy in myeloma
and neck cancers [105] and has been clinically used in vari-
ous types of cancers [106]. Similarly, phenylethyl isothiocya-
nate (PEITC), which conjugates with GSH, inhibits the
oncogenic transformation of ovarian epithelial cells and
hematopoietic cells [107].

Collectively, modulation of the GSH level is an alterna-
tive way to increase the sensitivity of tumor cells to conven-
tional chemotherapy and provides a viable option for
patients suffering from therapy-resistant tumors.

3.2. [GSH]/[GSSG] Redox Couple. The tripeptide glutathi-
one (Glu-Gly-Cys) is the most abundant intracellular
nonenzymatic ROS scavenger reaching millimolar concen-
trations in the cells. Intracellular glutathione can exist as a
monomer in its reduced form (GSH) or as a disulfide
dimer (GSSG) after its oxidation which usually accounts
for less than 1% of the total intracellular glutathione
content.

As antioxidant and intracellular redox buffer, GSH has
essential roles in ROS scavenging and in detoxification of
electrophiles, xenobiotics, and heavy metals. Two oxidized
GSH molecules dimerize by a SS bond to form GSSG. Gluta-
thione reductase, a NADPH-dependent enzyme, reverts this
reaction to reconstitute GSH pool. GSH reduces peroxides
and generates GSSG via glutathione peroxidase (GPx) or
it reacts with many electrophiles to generate glutathione
S-conjugates (GS-R). Although these reactions can occur
spontaneously, they are often catalyzed by the glutathione
S-transferase (GST) [108, 109] (Figure 3).
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The cellular redox status can be evaluated measuring the
GSH/GSSG ratio by the Nernst equation [110]. At 25°C and
pH7, E° of the GSH/GSSG redox couple is

GSSG + 2e− + 2H+ ⟵⟶ 2GSH E∘
GSH/GSSG = −240mV:

ð1Þ

Since two GSH molecules are needed to form one GSSG
molecule, the reaction is second order with respect to GSH.
Thus, any changes in the absolute concentration of GSH will
change the redox potential, even without changes in the
GSH/GSSG ratio. This suggests that cells with much higher
GSH level have a greater reducing capacity than cells with
lower GSH concentration.

The cellular redox state is one of the master regulators of
different cellular processes, and physiological cellular func-
tion is maintained by a fine balance between reducing and
oxidizing conditions. It has been reported that the etiology
and/or progression of many human diseases, including
cancer, are related to GSH/GSSG homeostasis. Generally, ele-
vated levels of GSH that determine a more reducing cellular
environment stimulate cell proliferation whereas a mild oxi-
dizing environment results in cell differentiation. A further
shift toward a more oxidant cellular environment leads to
apoptosis or necrosis [108, 110, 111].

3.3. Redox Regulation of STAT3. Under oxidative stress,
many proteins undergo reversible and irreversible oxidative
modifications, which may lead to changes in the structure
and/or function of the oxidized protein. These redox-
sensitive proteins exhibit a striking differential susceptibility
to oxidative stress; while a protein may contain numerous
residues, only a minority of them will have the chemical
properties to function as a possible target site for oxidant.
This is largely due to the reactivity of anionic sulfur of various
oxidizing agents.

Mild oxidative stress induces selective modifications of
proteins at critical cysteine thiols including reversible oxida-
tion to sulfenic acids, intra- and intermolecular disulfides, S-
glutathionylation, and S-nitrosylation [112]. S-Glutathiony-
lation, the reversible formation of protein-mixed disulfides
with GSH, represents the most common steady-state deriva-
tive due to cellular abundance of GSH and ready conversion

of cysteine-sulfenic acid and S-nitrosocysteine precursors to
S-glutathionylcysteine disulfides. This reaction may protect
proteins from irreversible damage or modulate protein
function. Conversely, excessive oxidative stress is associ-
ated with permanent loss of function, misfolding, and
aggregation due to irreversible modification of SH groups
of protein [113–115].

Several studies demonstrate that intracellular redox envi-
ronment influences STAT3 activation cascade although it is
still not clear if ROS up- or down-regulate STAT3 activation.
Some authors report that ROS trigger Tyr705 STAT3
phosphorylation and upregulate its DNA-binding activity
[116, 117]. On the other hand, other authors indicate that
ROS oxidize conserved cysteines in STAT3 DNA-binding
domain impairing its transcriptional activity [118, 119].
Moreover, there is evidence from the literature which prove
that ROS scavengers and inhibitors of NADPH oxidase
enzymes (NOX) generally inhibit STAT3 activity [120, 121].
In addition, it has been shown that nitrosocyclohexyl acetate,
a nitroxyl donor, inhibits STAT3 phosphorylation through
the formation of sulfenic acid at the cysteine residues in
endothelial cells [122].

S-Glutathionylation and S-nitrosylation inhibit STAT3
phosphorylation as well as its DNA-binding activity in differ-
ent cell lines and in in vitro studies. Although the 3D model
of nitrosylated/glutathionylated STAT3 is not available, it
can be speculated that the small conformational changes
induced by NO or GSH addition could in turn induce a con-
formational change in the phosphorylation site of protein
inhibiting accessibility to JAKs [119, 123–125].

Our group has been studying STAT3 redox regulation for
the past ten years. Particularly, we identified three sesquiter-
pene lactones, costunolide, dehydrocostuslactone, and cynaro-
picrin, able to inhibit IL-6-induced as well as constitutive
activation of STAT3 in different cancer cell lines. These com-
pounds disrupt intracellular redox homeostasis, induce revers-
ible S-glutathionylation of STAT3, and decrease its Tyr705
phosphorylation [126, 127]. Deepening inside the redox regu-
lation of STAT3 signaling, we reported that Cys328 and
Cys542 in the DNA-binding domain and in the linker domain,
respectively, are a target of S-glutathionylation [123, 128].

Since STAT3 is validated as a therapeutic target in differ-
ent solid and hematologic tumor, the modulation of oxidative
stress could be a new strategy to inhibit STAT3 hyperactiva-
tion. On the other end, the consequent decrease in GSH levels
could sensitize tumor cells to conventional chemotherapy.

4. Sesquiterpene Lactones

4.1. Sesquiterpene Lactone Structure. Sesquiterpene lactones
(SLs) are colorless, bitter, and stable compounds of terpe-
noids, a class of lipophilic plant secondary metabolites. More
than 5000 SLs have been characterized in species of the plant
kingdom, in particular in the family Asteraceae, and plant
extracts rich in SLs have long been employed in traditional
medicine against inflammatory-related diseases. SLs possess
a broad spectrum of biological activities, including anti-
inflammatory, antibacterial, and immunomodulatory effects.
These compounds also inhibit cell cycle and proliferation and

2 GSH

GSSG

NADP+

NADPH

ROOH

ROH+H2O

GPx GR

ElectrophilesGS-R

GST

Figure 3: Antioxidant function of glutathione. GST: glutathione
transferase; GS-R: electrophile-GSH adduct; GPx: glutathione
peroxidase; GR: glutathione reductase.
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induce apoptosis, in different cancer cell lines and in many
in vivo studies [129–131]. Although the exact mechanisms
of action are not well elucidated, emerging data suggest that
the biological effect of SLs is associated with depletion of
GSH and ROS generation [126, 127, 132, 133].

SLs are 15 carbon compounds consisting of three iso-
prene (5-C) units arranged in several characteristic ring
systems, including one or more lactone rings. The α-β-
unsaturated carbonyl group present in most of these com-
pounds is the major responsible for their biological effects
[134]. The α-β-unsaturated carbonyl group is a strong
alkylating agent that may react by Michael-type addition
with intracellular nucleophiles, such as cysteine sulfhydryl

residues in proteins, leading to disruption of their biolog-
ical function. The α-β-unsaturated carbonyl moiety may
also react with the sulfhydryl group of cysteine residue
in GSH leading to redox homeostasis disruption and oxi-
dative stress in cells (Figure 4(b)) [134–136].

Further chemical features, such as lipophilicity and
molecular geometry of compounds as well as the chemical
environment of the target nucleophiles, also influence the
bioavailability and biological activity of SLs [137, 138].

4.2. Sesquiterpene Lactones and STAT3. In the last years,
many natural SLs able to induce apoptosis through the
inhibition of STAT3 signaling have been recognized in
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Figure 4: (a) Chemical structure of SLs that induce STAT3 S-glutathionylation and impair STAT3 phosphorylation. The reactive centre of
SLs is evidenced with a red circle. (b) Schematic representation of Michael reaction.
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different cancer cellular and animal models (Table 2) [126,
127, 139–155]. Induction of apoptosis was found to be
linked with increased ROS production, GSH depletion,
and modulation of GSH/GSSG ratio. Although the final
biological outcome of all SLs is well described, the molecu-
lar mechanism of anti-STAT3 activity is not reported for all
of them. Cheng et al. demonstrate that 6-O-
angeloylplenolin directly interacts with the SH2 domain of
STAT3 and inhibits the constitutive and IL-6-induced
STAT3 activity in lung cancer cells [153]. A direct interac-
tion with STAT3 SH2 domain is also reported for alanto-
lactone [142]. Furthermore, Liu et al. describe that
parthenolide covalently binds to Cys residues of JAKs
suppressing its kinase activity and downmodulating the
STAT3 pathway [145].

Other studies show that SLs inhibit STAT3 signaling
through S-glutathionylation of Cys residues in STAT3 pro-
tein. Dehydrocostuslactone, costunolide, cynaropicrin, and
alantolactone that contain an α-β-unsaturated carbonyl
group directly interact with GSH by Micheal addition and
induce a rapid drop in GSH concentration, thereby triggering
S-glutathionylation of STAT3. This event impairs STAT3
phosphorylation switching off the signaling cascade
(Figure 4(b)) [126, 127, 139]. It is possible to speculate that
S-glutathionylation is the common molecular mechanism of
anti-STAT3 activity of other SLs able to disrupt GSH/GSSG
homeostasis [140, 141, 143, 146–148, 150–152]. The exact
molecular mechanism by which S-glutathionylation inhibits
STAT3 phosphorylation is not completely clarified. We

reported that S-glutathionylation of STAT3 slightly modu-
lates the secondary and tertiary structure of STAT3 affecting
the phosphorylation site thus hampering the recognition of
Tyr705 site by JAKs [123].

Various in vitro and in vivo studies reveal that sup-
pression of STAT3 activation by SLs overcomes drug resis-
tance [127, 139, 142, 144, 152, 154, 155]. Since the central
role of STAT3 in carcinogenesis and chemoresistance, SLs
able to switch off STAT3 signaling have gained considerable
attention from the researchers for the development of a
new therapeutic strategy for cancer treatment.

5. Concluding Remarks

Very often, the rational development of drugs that kill
cancer cells interacting with one signaling has a sporadic
success due to the activation of other pathways as well
as to the development of chemoresistance. It is known that
oxidative stress is closely related to carcinogenesis and to
resistance toward classical drug treatment. Therefore, the
use of molecules able to reduce STAT3 activation and,
on the other hand, to induce a mild oxidative stress in a
high-reduced cellular environment may potentially
improve cancer treatment outcome. In this context, SLs
are promising compounds in cancer drug discovery and
their anti-STAT3 activity as well as their ability to disrupt
redox homeostasis place them as lead compounds in the
development of innovative therapies (Figure 5).

Drugs

GSH

GST

SLs

Nucleus

Apoptosis

GS-R

JAK

Y

Cytokines

YP

P
P JAK

STAT3 P

STAT3 P
STAT3P

STAT3

STAT3
P

P
Transcription

STAT3
GSS

Figure 5: Cancer cells are characterized by elevated levels of GSH that confer resistance to several chemotherapeutic drugs and by constitutive
activation of STAT3 signaling that contributes to tumorigenesis and tumor growth, promotes angiogenesis and metastasis, suppresses
immune response, and induces chemoresistance (red line). SLs inhibit STAT3 signaling targeting different steps in the signaling cascade
(black line). The mild oxidative stress, derived by the direct binding of SLs to GSH, induced S-glutathionylation of STAT3 switching off
STAT3 signaling (black line). Moreover, the reduced GSH levels contribute to overcome chemoresistance. GST: glutathione transferase;
GS-R: drug-GSH adduct; GSS-STAT3: glutathionylated STAT3; p-STAT3: phosphorylated STAT3; pJAKs: phosphorylated JAKs.
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