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ABSTRACT
Introduction: Recent advances in research on stress and,
respectively, on disorders of perception, learning, and behaviour
speak to a promising synthesis of current insights from (i)
neurobiology, cognitive neuroscience and psychology of stress
and post-traumatic stress disorder (PTSD), and (ii) computational
psychiatry approaches to pathophysiology (e.g. of schizophrenia
and autism).
Methods: Specifically, we apply this synthesis to PTSD. The
framework of active inference offers an embodied and embedded
lens through which to understand neuronal mechanisms,
structures, and processes of cognitive function and dysfunction. In
turn, this offers an explanatory model of how healthy mental
functioning can go awry due to psychopathological conditions
that impair inference about our environment and our bodies. In
this context, auditory phenomena—known to be especially
relevant to studies of PTSD and schizophrenia—and traditional
models of auditory function can be viewed from an evolutionary
perspective based on active inference.
Results: We assess and contextualise a range of evidence on
audition, stress, psychosis, and PTSD, and bring some existing
partial models of PTSD into multilevel alignment.
Conclusions: The novel perspective on PTSD we present aims to
serve as a basis for new experimental designs and therapeutic
interventions that integrate fundamentally biological, cognitive,
behavioural, and environmental factors.

ARTICLE HISTORY
Received 19 September 2018
Accepted 4 September 2019

KEYWORDS
Post-traumatic stress disorder
(PTSD); psychopathology;
audition; embodiment;
evolution

Introduction

Post-traumatic stress disorder (PTSD) affects a significant segment of society, including
combat veterans, first responders, sufferers of childhood and domestic abuse, and many
others who have endured traumatic experiences ranging from terror attacks to severe
transportation and industrial accidents. PTSD lowers the quality of life of those with
the condition and those around them, and can even precipitate perilous situations
during acute episodes. While PTSD has gradually come to be regarded as a collection
of heterogeneous conditions, with a variety of disparate causes and effects, there are
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also many promising syntheses of previous studies and models. Yet, such syntheses tend to
be relatively monolithic in their disciplinary scope, focusing exclusively on (e.g.) neuro-
biology or behavioural psychology.

Here, we present a novel view of PTSD that unifies reviewed work in neuroscience and
psychology using the active inference framework. The (meta) theoretical contribution of
this paper is just to provide a first principle account of extant formulations—so that
they can be seen in light of each other. We look at neuropsychological dysfunction,
both generally and in relation to PTSD. We argue that understanding the aetiology of
PTSD requires the recasting of some traditional “classical paradigm” notions of healthy
cognitive function—executive control, attention, contextual processing—in active infer-
ence terms (for an introduction, see e.g., Friston, 2009; for relevant details, see especially
Brown, Friston, & Bestmann, 2011; Feldman & Friston, 2010; for background on the
present context, see also Linson, Clark, Ramamoorthy, & Friston, 2018).

Broadly, our approach builds on the success of current research in computational psy-
chiatry. Our emphasis here is on “reframing” PTSD, to contextualise extant formulations
in relation to our subsequent computational work. This foundational theoretical treatment
is motivated by the difference our approach entails from the classical information proces-
sing scheme (in which environmental “input” is neurally “computed”). In particular, we
specify the abstractions required for modelling body/environment equilibrium-maintain-
ing behaviour via a sensorimotor nervous system.1

PTSD symptoms related to memory, arousal, and mood (DSM-5) have been the subject
of earlier computational models (for a review, see Radell, Myers, Sheynin, & Moustafa,
2017). In contrast, our emphasis lies in showing how adaptive/healthy behaviour can
become impaired, leading to maladaptive/pathological behaviour (see e.g., Sherin &
Nemeroff, 2011). This approach seeks to construe PTSD as resulting from a quasi-
lesion to a well-functioning system, and hence, an emergent phenotype, as opposed to a
phenotype posited post-hoc on the basis of symptoms.

The conceptual treatment of PTSD in this paper represents a variant of computational
psychiatry that is not rooted in the analysis of quantitative cohort data. Rather, our aim is
to develop a generative model based on active inference (Friston, FitzGerald, Rigoli,
Schwartenbeck, & Pezzulo, 2016) that can be realised in terms of message passing and
belief updating—and accompanying electrophysiological and behavioural responses
(Parr & Friston, 2018). In brief, we try to show how phenomena that emerge from first
(Bayesian) principles relate to clinical constructs (and the opportunity for in silico exper-
iments). In this paper, we appeal to empirical studies to demonstrate the construct validity
of an active inference account of PTSD. In subsequent work, we hope to use this account to
explain electrophysiological and psychophysical responses that characterise PTSD
(Linson, Parr, and Friston, in review).

Explanatory stack

Our reframing of PTSD is built on an explanatory “stack” of four interacting levels that
comprise the explanation2: (i) an embodied-embedded level, regarding evolutionarily,
developmentally, and situationally constrained body/environment behavioural dynamics;
(ii) a neurobiological substrate, ranging from low-level sub-cellular mechanisms to high-
level functional neural regions; (iii) a hierarchical Bayesian model of body/environment
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interactions, in terms of priors, hypotheses, and evidence; and, (iv) a psychophysical / phe-
nomenological level, in terms of experimental observation and self-report related to per-
ceptual sampling and associative machinery.

Here, we give a brief rundown of how our explanatory stack is applied to PTSD, begin-
ning with the active inference formulation of reward. Under active inference, reward is
recast as minimising the expected free energy following an action (Friston, 2010;
Friston et al., 2016), while embodied action is recast as proprioceptive inference.3 An
agent that actively brings about its own future implicitly takes into account both metabolic
expenditure (expected caloric investment and burn rate) and the lag-time in disambiguat-
ing sensory evidence as well as in realising a possible action. Thus, plausibly selected-for
evolutionary hyperpriors and hyperparameters (i.e., the embodied-embedded architec-
ture) pertaining to organism and species survival would contribute to the governing of
action selection in light of counterfactual trade-offs in metabolic and temporal costs
(Linson et al., 2018).

More concretely, as an example of a merited high, rapid caloric expenditure, we consider
a situationally apt “survival” prior that underwrites a “fight or flight” policy. This prior is
based on two simplifying assumptions. Thefirst is that survival and comfort are circumstan-
tiallymalleable, biologically inherited (i.e., selected for) “default”preferences over death and
anxiety (facilitating sufficient reproduction). The second is that the designation “fight or
flight” suffices to pick out the conditions that require a high metabolic rate in the motor
system, a focal point of the present analysis, along with a “freeze” state, with a similar neur-
onal footprint, but combined with motor inhibition. Generally, we acknowledge that this
formulation does not capture the full range of responses to perceived threat (Bracha,
Ralston,Matsukawa,Williams,&Bracha, 2004; LeDoux, 2012; Roelofs, 2017). Complexities
omitted from this abstraction include indications that the serial choice order of behavioural
alternatives appears to be flight, when possible, and fight when flight is not possible. In
addition, beyond the “freeze” state, which we consider later in relation to hypervigilance
and avoiding detection, there is also thought to be a “fright” state (alternatively known as
panic, tonic immobility, and “playing dead”), regarded as a survival mechanism during a
commenced threat engagement (beyond the present scope).

A survival prior that selects a “fight or flight” policy would mandate a high metabolic
expenditure (expected caloric investment and burn rate) in the motor system, following
active inference characterisations of attention and motor preparation (Brown et al.,
2011; Feldman & Friston, 2010). Under this policy, given fundamental energetic con-
straints, animals including humans would plausibly deploy metabolic expenditure to
(near-field) threat-engaging “fight” behaviour or (near- or wide-field) threat-aversive
“flight” behaviour, such that energy is diverted from exploratory sensing and awareness
of a global threat scene (see Mirza, Adams, Mathys, & Friston, 2016). In this case, to
ensure its survival, the organism must resist returning to a “resting” policy until the per-
ceived threat is neutralised or has subsided—to a sufficient degree of certainty. And yet, if
all the organism’s energy is expended, it will forcibly return to a resting state irrespective of
the threat (i.e., in safe or unsafe conditions). To strike a balance in favour of survival, the
“fight or flight” policy should include an occasional minimal scene resampling, to survey
the possibility that it may be safe to return to a resting state. Throughout the paper, we
continue to flesh out this key example with finer-grained details and supporting evidence.
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In what follows, the account of PTSD we develop focuses on a maladaptive response to
stress from an evolutionary perspective, while otherwise sharing much in common with
the comprehensive general treatment of stress by Peters, McEwen, and Friston (2017).
Similarly, our view of the relationship between evolution and neural circuits relevant to
PTSD is closely aligned with a broader account of emotion by LeDoux (2012). More gen-
erally still, our notions of embodied and embedded can be understood in relation to the
idea that self-preservation amounts to the maintenance of bodily and mental well-being
in the face of threats external and internal to the body/environment boundary (Peters
et al., 2017).

In short, for any creature, self-preservation amounts to bringing about a future in which
its continued self is underwritten by the avoidance of existential danger, which can be
understood as a process of active inference. This points to a difficult (implicit) problem
in the face of an approaching or acute threat: how should my metabolic resources be allo-
cated to ensure my own protection? We consider how animals such as humans embody a
solution (via natural selection) that is generally effective in health and that goes awry in
PTSD, with consequences that can be linked to its known physical and psychological
manifestations.

Evolution and active inference: ecologically situated perception

Animal studies on PTSD have considered the evolutionary continuity from invertebrates
to vertebrates, in relation to their adaptive responses to life-threatening psychological
stressors and associated stimuli (Clinchy et al., 2011). These responses become maladap-
tive when they induce sustained physiological effects beyond the threat condition. This
evolutionary continuity can be considered more generally in terms of organismic bio-
physical architectures (Niven, 2016; Niven & Laughlin, 2008). Consider, for example,
that for food-deprived blowflies, metabolic resources dedicated to motor control remain
relatively constant, while the expenditures needed for exteroceptive sensing are signifi-
cantly throttled (Longden, Muzzu, Cook, Schultz, & Krapp, 2014). More generally,
across species, greater energy expenditure is required for higher throughput from the
sensory system to the nervous system (Niven, Anderson, & Laughlin, 2007). On the
other hand, a brain leveraging dynamical instability (i.e., self-organised criticality) can
propagate stimulus-evoked transients more efficiently, a state associated with gamma fre-
quency rhythms (Robinson, 2006). The significance of this for PTSD will become apparent
below.

Notably, for organisms with spatially extensive niches, due to how sound travels
through space, auditory stimuli can be more relevant than other sensory modalities,
and acoustic cues can be more frequently alarming (Clinchy, Sheriff, & Zanette, 2013).
It is also notable that, in the evolutionary biodiversity record, an inverse correlation has
been identified between the narrowness of foveal focal range (the width in degrees of
sharpness in the visual field) and auditory localisation precision (Heffner, 2004). The
record shows that, across a wide range of mammals, humans rank among the narrowest
field of sharp vision, near 1°, and also the greatest precision in locating (the azimuth of) an
auditory stimulus in a 360° egocentric field. In terms of biophysics, it can also be noted
that, in humans, the auditory pathway from the sensory surface to the top of the cortical
hierarchy responds more rapidly and with more reliably low-latency stimulus-locked
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neuronal correspondences than the visual system (Kopp-Scheinpflug & Tempel, 2015). In
addition, psychophysical experiments have shown that, in the face of complex auditory
interference (known as informational and energetic masking, revisited in the next
section), auditory discrimination of a target is enhanced by visual cueing of the target
location (Best, Ozmeral, & Shinn-Cunningham, 2007).

Given these premises, we can focus in on the critical significance of multisensory inte-
gration in reducing uncertainty about potentially self-endangering distal stimuli (e.g., pre-
dators). Consider a scenario in which a human subject hears an unidentified sound from
behind. In the first instance, the sound is a surprisal (in the information-theoretic sense)
that indicates physical energy in the environment, beyond visual range. Since discovering
the source of this energy could be vital (in case it is an existential threat), the surprisal must
be reduced.

We can describe two plausible surprisal-reducing responses: the first is through the
process of active inference, that would direct biomechanical movement (e.g., of head,
neck, and torso) in such a way that brings the stimulus source into the narrow foveal
field. At this point, visually foraged sensory information may reduce the surprisal by
“filling in the blanks” (Friston et al., 2017). Namely, saccades lead to resolving uncertainty
about the “hidden” cause of the stimulus. This informational or epistemic foraging (i.e.,
active sensing) will be selected if it reduces expected surprisal (i.e., uncertainty) above
and beyond the surprisal associated with a costly re-orienting response. This form of
active inference samples salient information that propagates upwards through the cortical
hierarchy, to update a generative model of the scene at the level of familiar spatiotemporal
entities such as objects and animals (Mirza et al., 2016).

A second and equally valid response would be to treat the sound as indicative of an exis-
tential threat—in other words, to treat the sound as evidence for a “threat” hypothesis—
that would entail a reactive, motor-intensive “fight or flight” policy. The latter would not
require immediate sensory confirmation from the environmental scene. Instead, metabolic
resources would be diverted from cortical propagation to the limbic system, especially to
the locomotor and sympathetic nervous system (see Longden et al., 2014; see also Laugh-
lin, de Ruyter van Steveninck, & Anderson, 1998). This adaptive threat response would be
naturally selected for, as nascent species that reduced stimulus uncertainty at the expense
of reducing uncertainty about their own safety would fail to ensure self-preservation in the
face of actual existential endangerment.

Audition

In addition to the above evolutionary considerations, we focus on audition for two
related reasons. The first regards the well-studied role of auditory phenomena in PTSD
(e.g., the acoustic startle response), and the second regards the application of the
explanatory stack to auditory functioning in well-known paradigms (the “White Christ-
mas test” and “cocktail party effect”, considered below). The illustration of what can go
wrong in healthy auditory function in turn supports the argument we develop with
respect to PTSD. This does not imply that the auditory system is inherently tied to
PTSD; rather, that—in ecologically valid contexts—auditory sensation tends to have
greater ambiguity (i.e., higher entropy) than visual sensation, which provides an entry
point into our model.
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In an experimental study by Shalev et al. (2000), PTSD sufferers responded adversely to
an auditory trigger; the study’s authors note that “it seems implausible that the simple tone
stimulus employed [in the study] could have been associated with the various traumatic
events experienced by the subjects because of its generic nature”, consistent with the
present proposal for a strong “threat” prior (in connection with what we describe below
as an underfitting scenario). Shalev and colleagues suggest that the adverse response
might reflect “an impaired capacity to correctly classify intense, yet redundant, auditory
stimuli as harmless”. On our corresponding picture with a strong threat prior, the impair-
ment would relate to a diminished capacity to resample the scene and update beliefs about
the actual state of affairs on the basis of new information (cf. Chalk, Seitz, & Seriès, 2010;
Sotiropoulos, Seitz, & Seriès, 2011), which is metabolically expensive.

Our account underscores a continuous loop through the brain that stabilises the body
in its environment (Figure 1a), which amounts to having a “grip” on situational coordi-
nation. This reframes the traditional notion of impaired “reality testing” as a strong
top-down bias that is (atypically) decoupled from bottom-up confirmation (Figure 1b).
Crucially, on this view, top-down biases have a profound effect on the way sensory evi-
dence is garnered to confirm or disconfirm these biases. In other words, the deficit we
explore in this treatment rests upon inferential biases in the brain that preclude the gath-
ering of the sensory evidence which would challenge them, i.e., a failure of “reality testing”
due to “biased sampling”. From this perspective, since the environment continues to be
sampled, external reality does not remain untested; and, while bias is often regarded as
problematic, it can be adaptive or maladaptive, depending on the circumstances.

This overall picture is consistent with evidence showing that, for those with a tendency
toward psychosis, simple ambiguous stimuli (that presumably require less high-order cor-
tical predictive dynamics) are less likely to evoke an attribution of an “unpresented” signal
in noise; in contrast, complex ambiguous stimuli elicit more false positives (Grant, Balser,
Munk, Linder, & Hennig, 2014), suggesting that high-order cortical activation can become
a “runaway” top-down process, decoupled from further bottom-up confirmation
(Figure 1b). In an auditory context, those highly disposed toward hallucination are
more likely to believe they heard a sound that was not presented (Bentall & Slade,
1985). Conversely, a well-functioning continuous action-perception loop—equivalent to
unimpaired reality testing—corresponds to maintaining an appropriate sensitivity to
sensory evidence, via stimulus-locked neuronal activity, such as real-time high-order com-
prehension of a complex auditory scene (Plakke & Romanski, 2014).

While this picture of healthy function and dysfunction largely corresponds to healthy
and impaired classical top-down executive control, the classical description risks underes-
timating the role of environmentally embedded, embodied sensorimotor loops. For
instance, Arnsten (2009) presents compelling evidence on low-level mechanisms and
pathways concerning stress-related biological impairment, described in terms of a
mutually inhibitory trade-off between “thoughtful ‘top-down’ control by the PFC” and
“‘bottom-up’ control by the sensory cortices”. Remaining consistent with the underlying
evidence, the picture can be repainted in such a way that explains PFC-engagement not
as top-down executive control, but rather in terms of a how the brain samples the environ-
ment, specifically, how it calibrates the sampling of—and sensitivity to—sensory feedback.
This sampling can be overt, as in the saccadic sampling of visual information, or covert, as
in setting the precision of ascending sensory signals via attentional selection (Feldman &
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Figure 1. Simplified schematic model of active inference sensorimotor loop. Solid lines indicate strong
/ dense correspondence (high mutual information), dashed lines indicate weak / sparse correspon-
dence (low mutual information). Bold typeface indicates modulatory influence driving propagation.
Lines passing through depicted brain regions indicate primary relevant (bidirectional) pathways. Top
panel: Healthy function. Full loop through environment-body-brain system joins traditional top-
down and bottom-up directions with balanced agent (frontotemporal) / environment modulatory
coupling. Middle panel: Psychosis-related dysfunction. Functional decoupling between traditional
top-down and bottom-up pathways; impairment in traditional “reality testing”. Bottom panel: Stress-
related dysfunction (e.g., PTSD). Hypofrontal amygdala activation in “fight or flight”.
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Friston, 2010). In either case, a proper closure of the action-perception loop rests upon a
delicate and carefully orchestrated exchange between the sensory system and the PFC
(Figure 1a).4

When this coordination is inhibited, we can identify a correspondence to the notion of
“underfitting” in machine learning that relates to low variance in sensory feedback. This is
again consistent with the low-level mechanisms and pathways described in Arnsten
(2009), while not well-captured by the classical description of bottom-up sensory
control. Instead, we view the stress-induced impairment as one in which epistemic fora-
ging behaviour is subverted by prior beliefs, which amounts to a functional decoupling
between the systems responsible for exteroceptive inference (e.g., in the hippocampal-
prefrontal pathway; Godsil, Kiss, Spedding, & Jay, 2013), and those responsible for
motor (proprioceptive) and autonomic (interoceptive) functioning. Hence, in the
stress-impaired condition, exteroceptively informed scene recognition becomes function-
ally decoupled from the higher-level cortical dynamics that would normally deploy audi-
tory or visual information gathering (Figure 1b). Phenomenologically, this manifests as
misrecognition, delusion, or hallucination (i.e., false inference), driven by associations
that may nevertheless continue to correspond to sparse sensory samples (Silbersweig
et al., 1995).

Auditory phenomena

A sort of auditory hallucination—that is not necessarily unhealthy—can be found in the
“White Christmas test”, in which subjects that have been verbally primed with the associ-
ation of a familiar song hear the (unpresented) song during white noise stimulus presen-
tation (Barber & Calverley, 1964). This is akin to the underfitting scenario described
above, in which the strong prior is ultimately harmless. Notably, however, fantasy-
prone subjects exhibit this misattribution effect in greater proportion than the general
population (Merckelbach & van de Ven, 2001; van de Ven & Merckelbach, 2003).
There is a significant overlap between individuals with fantasy proneness and psychosis
proneness—especially when fantasy arises as a mechanism for mental escape from trau-
matic circumstances (Rhue & Lynn, 1987). It is therefore not surprising that PTSD and
psychosis have a high rate of comorbidity (Hamner, Frueh, Ulmer, & Arana, 1999; see
also Braakman, Kortmann, & Van Den Brink, 2008).

Another widely studied auditory phenomenon, the “cocktail party effect” (Cherry,
1953), can be cast in terms of model competition under strong priors (Feldman &
Friston, 2010). Depending on the priors and the corresponding model selection, this
can lead to both healthy and unhealthy behavioural responses. For example, if you mista-
kenly believe you heard your name called, and wish to interrupt your present conversation
to focus on the hypothesised source, this may not rise beyond the level of mild impolite-
ness. However, if you mistakenly believe that you overheard a threatening comment
directed at you, and you elect to respond with physical violence, it would be reasonable
to classify this as a dysfunctional behaviour. Formally, these scenarios would be identical,
and yet, a meaningful difference emerges when linking them to socially embedded behav-
iour. Furthermore, if an ambiguous stimulus easily evokes a strong threat prior—i.e., easily
recruits an internal hypothesis associated with a past threat—this would produce the psy-
chophysical and behavioural hallmarks of PTSD.
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A further connection to auditory research can be drawn from the distinction between
informational and energetic masking. Here, we connect these masking phenomena to
healthy function, and later, we tie them to PTSD. In auditory cognition studies, informa-
tional masking refers to a scenario in which two simultaneous acoustic signals reach the
sensory system, but only one reaches the threshold of perceptual awareness—thought to
be a semantic interference effect (i.e., within the auditory hierarchy). This is understood
as distinct from energetic masking, in which one acoustic signal prevents a competing
signal from discernible sensory surface perturbation. Informational masking amounts to
what could be considered involuntary selective attention to a non-target stimulus,
whereas energetic masking amounts to what could be considered the “overwriting” of a
target stimulus signal. While both phenomena are typically studied in austere controlled
experiments, an ecologically valid example might be failing to comprehend a conversation
partner due to either (a) a quieter nearby conversation that distracts and inhibits compre-
hension (informational masking) or (b) loud music playing, that precludes hearing speech
in the first place (energetic masking).

Given the above characterisation, the Feldman and Friston (2010) approach to selective
attention would explain informational masking as a case of treating an alternative stimulus
(even a quieter one) as more salient (i.e., uncertainty resolving) than a current (i.e., pre-
dictable) target stimulus, thereby requiring a higher-level hypothesis about “what I am lis-
tening to” to be selected, in order to attend to the more salient source. This higher-level
policy would be in competition with the policy that maximises evidence for the (predict-
able) target, and this competition is subsumed within a hierarchy that, at a higher level
still, may include an awareness threshold for subjective perception (Friston, 2008;
Friston, FitzGerald, Rigoli, Schwartenbeck, & Pezzulo, 2016). In predictive coding
terms, this form of attentional selection is thought to be mediated by top-down control
of neuromodulatory mechanisms that gate ascending prediction errors (i.e., sensory
information).

Thus, in the healthy, full loop through the environment (Figure 1a), the attended to
sensory information propagates to higher levels of the cortical hierarchy to revise prior
beliefs. Here, beliefs are understood as implicit and, in computational terms, subsymbolic,
which underpin explicit beliefs (that can be expressed symbolically), as in self-report
during psychophysical experiments. This hierarchical model of selective attention is con-
sistent with evidence from direct cortical recordings showing that, along with attended to
speech, ignored speech is tracked in low-level auditory cortices, while in higher-order
regions, only the attended to speech is tracked (Zion Golumbic et al., 2013). It is also con-
sistent with evidence from psychological experiments showing that people can more effec-
tively track (or ignore) a familiar voice than an unfamiliar one in the presence of an
interfering voice (Johnsrude et al., 2013).

While energetic masking is regarded as a separate phenomenon, we can collapse the
energetic-informational dichotomy on the basis of evolutionary criteria, using the active
inference framework. Namely, it is plausible to infer that an unexpected high-energy
stimulus is a salient indication of something worth tracking in the environment, such
as a possible existential threat; support for this is also suggested by empirical studies of
auditory response in the amygdala (Bordi & LeDoux, 1992). Unexpected threat signals
(rather than expected ones) have been found to evoke startle responses in a manner
specific to PTSD sufferers (Grillon et al., 2009), although this alone is insufficiently
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diagnostic (as it occurs in other psychopathological conditions as well). This reaction may
be related to imbalanced neurochemical modulation of the arousal system by norepi-
nephrine signalling, invoked by unexpected uncertainty, which can be distinguished
from cholinergic modulation by expected uncertainty or precision (Feldman & Friston,
2010; Yu & Dayan, 2005).

Using the example of an unexpected high-energy stimulus, and following our charac-
terisation of a “threat” prior, such a stimulus would be informationally (i.e., semantically)
relevant, thereby collapsing energetic and informational masking into hypothesised situa-
tional salience. Under healthy conditions, a possible threat may merit further scene
exploration, such as turning toward the high-energy sound source, using active inference
to reduce surprisal, as depicted in Figure 2, a1. Under impaired conditions, model compe-
tition for maximising threat evidence would plausibly result in a “fight or flight” policy
selection that would amount to diverting attention to the motor system (Brown et al.,
2011), as depicted in Figure 2, b1.

For an alternative perspective on what has traditionally been regarded as “generalis-
ation of conditioned fear” (Lissek et al., 2008), we can instead regard the same

Figure 2. Variational free energy andmetabolism in health andwith PTSD impairment. (I) Threat or safety
undetermined (high uncertainty average, high variance / exploratory sensing, i.e., environment-centric
attention). (II) Threat determined (low uncertainty average, low variance / motor preparation, i.e., ego-
centric attention). (III) Safety determined (low uncertainty average, high variance / dynamic attentional
allocation). The dotted line at t0–t1 depicts initial surprisal by a high-energy auditory stimulus outside
of foveal range. A healthy individual may engage in exploratory sensing (a1) with momentary high uncer-
tainty, and obtain fine-grained stimulus information at t2. If no threat is detected, a safety condition with
low uncertainty is designated, with fluid, flexible, reality testing, as self-evidencing environment-body-
brain dynamics (see Figure 1a), continuing in a2-4. If a threat is detected, metabolic resources are directed
away from exploratory sensing toward motor preparation (b2), with intermittent exploratory sensing to
ascertain if the threat is no longer present (c3), in which case, a4 is reached. Most of the same line may
be followed if the healthy person immediately classes the ambiguous stimulus as a threat (b1), continuing
aswith theprevious case to b2, c3, and a4. In contrast, PTSD impairs both the a1 and c3 trajectories, such that
the surprising stimulus is disproportionately classed as a threat (b1), and further exploratory sensing is not
permitted to escape the threat condition in b2, continuing instead to b3–4 (see Figure 1c).
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phenomenon as a forcibly limited disambiguation of a threat-associated stimulus, which is
rapidly classed as a threat, precluding any “reality testing”. This amounts to a lowering of
the threshold of evidence accumulation for a threat. The limitation is underwritten by a
failure to engage in further epistemic foraging, i.e., exploratory sensing and/or entertaining
competing (implicit) hypotheses. In other words, with impairments such as PTSD, com-
peting policies for resolving uncertainty—by minimising expected surprisal—are rejected
in favour of pragmatic “fight or flight” policies (Figure 2, b1), or a “freeze” policy, which we
consider below.

This is consistent with findings suggesting that patients with panic disorder designate a
stimulus as a threat (i.e., become fearful) for stimuli that differ to a greater degree from a
conditioned fear stimulus than such designations by healthy subjects. In other words,
healthy subjects typically require a stimulus that is sufficiently similar to a conditioned
fear stimulus to become fearful, suggesting that dysfunction reduces disambiguation (dis-
crimination) capacity (Lissek et al., 2010), which is another way of understanding a stimu-
lus gradient. Further support is found in a study showing that training to improve the
perceptual discrimination of danger- and safety-associated ambiguous stimuli (i.e.,
“safety learning”) corresponds in a reduction of the fear generalisation phenomenon
(Lommen et al., 2017). Similarly, our perspective supports the recasting of “fear extinc-
tion”, often studied in relation to PTSD, as a reduction in the biased disambiguation of
a stimulus as a threat, rather than a non-threat (Lovibond, Mitchell, Minard, Brady, &
Menzies, 2009). In other words, our model recasts “safety learning” and “fear extinction”
as “repairing” inference. These constructs can thus be re-described as extending the coun-
terfactual inference space to include hidden causes that are not threats (i.e., increased
entropy).5

Integration of free energy, molecular, neurodynamic, and connectivity
models

Based on the account thus far, the dysfunction of PTSD can be associated with two distinct
but intertwined phenomena. First, a PTSD-impaired individual may exhibit a higher prior
bias for explaining sensory stimuli in terms of an existential threat, as compared to a
healthy individual. In other words, in health, there may be occasions in which surprising
stimuli do not necessarily indicate existential threat, and have alternative epistemic affor-
dance (Figure 2, a1), whereas a PTSD response to the same surprising stimuli would
amount to a threat identification and concomitant (in)action (Figure 2, b1).

Second, once a threat prior is operative, the scene resampling required for an assess-
ment of the threat (Figure 2, c3) is compromised in PTSD (Figure 2, b3), such that any
provisional threat identification is inevitably treated as confirmed and immutable (i.e.,
even in the absence of an actual threat, or if a momentary threat no longer persists).
This amounts to saying that PTSD can be understood as a maladaptively prolonged
threat-response state in the later absence of the original stressor that precipitated the
condition. This offers an intuitive explanation for the combination of hyperarousal
and hypocortisolaemia found in neuroendocrine studies of the hypothalamus-pitu-
itary-adrenal (HPA) axis of PTSD patients (Sriram, Rodriguez-Fernandez, & Doyle,
2012; Yehuda, 2006).
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The neurobiological substrate of strong top-down biases is usually associated with the
encoding of precision in hierarchical (neuronal) message passing in the brain. This
translates into setting the right postsynaptic gain—or sensitivity to ascending prediction
errors—via mechanisms that generally involve neuromodulation (i.e., classical modula-
tory neurotransmitter systems or dynamical mechanisms such as synchronous gain).
We can unpack the pathophysiology of this PTSD-compromised epistemic foraging
in terms of aberrant neuromodulatory (precision) control of signals (e.g., prediction
errors) that revise beliefs about states of the world, and the policies pursued. Stress
drives Ca2+–cAMP signalling in the PFC, opening potassium (K+) ion channels
(HCN, KCNQ), which leaves cells hyperpolarised, such that synaptic efficacy and
network connectivity is weakened (Arnsten, 2009, 2015). This would preclude sensitive
responses to ascending prediction errors, in that it would uncouple long-range signal
propagation to higher cortical regions in exteroceptive hierarchies. Crucially, the
latter are instrumental in stimulus comprehension, rather than mere detection (Khosh-
khoo, Leonard, Mesgarani, & Chang, 2018).

Physiologically, setting the right sort of synaptic efficacy or postsynaptic gain can also
be reflected in fast synchronised neuronal activity, implicating (e.g.) fast-spiking inhibitory
interneurons (Bastos et al., 2012; Bosman et al., 2012; Chawla, Lumer, & Friston, 1999;
Fries, 2005). In this setting, the healthy state is associated with gamma-frequency
rhythms that both arise from, and facilitate, neuronal message passing and communi-
cation, while the absence of gamma-frequency rhythms is marked by sparser neuronal
firing that results in lower information transfer across functionally defined neural
regions (Fries, 2005). If, due to (e.g.) stress-induced cellular impairment, the brain
cannot escape the (non-gamma) neuromodulator states that inhibit (re)sampling of the
broader scene and the subsequent sensory sample disambiguation/integration processes,
the remaining available perceptual behaviour (apart from complete shutdown or disorien-
tation) would be computationally equivalent to underfitting—a functional decoupling of
prior beliefs from adequately supportive sensory evidence about states of the world. In
other words, if the neuronal circuitry has been “overloaded” by a prolonged threat
response state, this state becomes a stronger attractor basin than that of the typical
healthy state, resulting in PTSD. This is consistent with the observation that, when it
would be adaptive to ascertain a subsequent threat-free scene and curtail the threat
response state, in PTSD, the necessary neurochemical (glucocorticoid) “brake” to escape
the HPA-related negative feedback loop is inhibited (Sherin & Nemeroff, 2011).

Further support for this overall picture is suggested by simulation results showing that
stimulus-induced synchronous transients with strong propagation increasing mutual
information across neuronal sub-populations is facilitated by fast synchronised activity
(Chawla, Lumer, & Friston, 2000). Under the circumstances of a reduced number of
neurons responding to restricted partial information from salient and background
stimuli, there would be imprecise, impoverished sensory evidence, such that (Bayes)
optimal responses would depend on high top-down priors, resulting in underfitting.
We conjecture that, with this sort of pathophysiology, the top-down policy most readily
available corresponds to the threat prior which, in this case, would be a strong association
formed in the original circumstances that led to the PTSD (Tsoory et al., 2007). The threat
prior would remain dominant, because exploratory sensory sampling and the evaluation
of competing hypotheses would be physiologically impaired.
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This threat association would accompany significantly amygdala-modulated behaviour,
originally activated under the legitimate (pre-PTSD) existential threat condition (Tsoory
et al., 2007), which appears to require only sparse information for activation (Figure 1c), in
line with evolutionary considerations (Öhman, 2005). The amygdala-modulated subsys-
tem activation pattern in turn inhibits the PFC-modulated subsystem that is active
under safe conditions (Arnsten, 2009, 2015). On the above account, the latter (scene
sampling) subsystem would still need to be intermittently activated under a threat con-
dition, in order to ascertain that no threat persists by entertaining competing scene
hypotheses (Figure 2, c3)—a process which would be impaired by PTSD (Figure 2, b3).
Effective connectivity studies of PTSD patients suggest this aspect of impairment persists
even in resting state, where otherwise regulatory connections are weakened (Nicholson
et al., 2017).

In normal adaptation to danger, the amygdala is thought to play a role in associative
learning and active hypothesis testing of ambiguous stimuli related to biologically relevant
environmental events (Whalen, 1998). The response to danger can, however, become
maladaptive such that it chronically impairs a number of regulatory processes (Rosen &
Schulkin, 2004). It is this chronic impairment that gives rise to the range of distinctive
PTSD maladaptations, in contrast to similarly underpinned healthy, adaptive responsive-
ness to stressors and traumatic events.

Consider findings by Öhman (2005), which demonstrated that low-threshold activation
of the amygdala occurred during rapid fear-relevant stimulus presentation, but when

time was extended to allow conscious perception of the stimuli… there was strong bilateral
amygdala activation to the actually feared stimuli (e.g., snakes), but no significant amygdala
activation… in the fear-relevant but non-feared condition (e.g., spiders for a snake fearful
participant).

We can relate this to healthy function and PTSD dysfunction, by noting that, to benefit
from the longer time offered to healthy participants in the above study, the stimuli
must be comprehended. This in turn depends upon long-range propagation to higher cor-
tical areas (Khoshkhoo et al., 2018), for stimuli identified as non-threatening. Thus, if
propagation is impaired by (e.g.) stress, there would be no ability for higher-order stimulus
comprehension to ascertain that a perceived threat was misidentified, has subsided, or was
neutralised. Instead, the runaway, self-affirming, top-down processes (i.e., policies) would
continue to dominate sensory (exteroceptive) underfitting, by which sparse environmental
samples underdetermine an incorrectly confirmed externally-originating threat. At the
same time, (interoceptive) overfitting would treat all self-originating noise as evidence sig-
nalling an incorrectly justified feeling of endangerment.

This account is consistent with experiments showing that, even in the complete absence
of a stimulus, the most frequently presented stimulus pattern across previous trials was
(illusorily) perceived (Chalk et al., 2010). The latter implies that, once a strong prior is
formed, it can contribute to high top-down bias with absent or weak sensory evidence
(underfitting), as with a PTSD “flashback”, also referred to as an “intrusive” or “involun-
tary autobiographical” memory (Kvavilashvili, 2014), a quasi-hallucinatory state that
differs from ordinary autobiographical recall (Brewin, 2015). Additional experimental evi-
dence supports our model, in that PTSD flashbacks are associated with a decrement in
visuospatial processing (Hellawell & Brewin, 2002), i.e., reduced exploration and
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integration in sensory sampling of the environment (epistemic foraging). Our integrative
synthesis remains consistent with a wide range of clinical phenomena understood almost
entirely independently of biology, from a systematic cognitive and behavioural perspective
(Ehlers & Clark, 2000).

Connections to related work

The present approach is continuous with the Bayesian computational neuropsychology of
Parr, Rees, and Friston (2018), which considers inborn and lifespan neuronal loss, impair-
ment, and paralysis arising in (e.g.) autism, neurodegenerative diseases, and physical brain
damage. Here, we extend their account by the addition of experientially induced impair-
ment (from trauma and stress) found in PTSD. Generally, on active inference accounts of
psychopathology, sensory attenuation plays a significant role (Brown, Adams, Parees,
Edwards, & Friston, 2013; Friston, 2017; Joyce, Averbeck, Frith, & Shergill, 2013; Oestreich
et al., 2015; Parees et al., 2014; Shergill, Samson, Bays, Frith, &Wolpert, 2005). This is par-
ticularly relevant to our argument about PTSD, because the decoupling between sensory
and higher-level neuronal activity, especially in the exteroceptive and interoceptive
domains, can be described in terms of sensory attenuation—in other words, an attenuation
of the influence that sensory information exerts over belief updating about policies. In pre-
dictive coding process theories, this decoupling would correspond to an attenuation of the
precision afforded to ascending prediction errors.

Crucially, the PTSD story on offer in this paper is not simply a failure of sensory attenu-
ation: on the current view, sensory attenuation in PTSD is mandated by selecting policies
that involve action—namely, “fight”, “flight” or “freeze”. At a physiological level, it is as if
one is confronted with a two-alternative forced choice between responding to and confi-
rming a possible threat. The pathology here is not with sensory attenuation or neuro-
modulation per se, but rather, it rests on the inappropriate prior beliefs about policies
that will minimise surprise in the future, based upon previous experience, where the
default expectation is existential continuity. The final twist here is that once these
policy responses to unconfirmed threats become established, they are self-maintaining.
This is because they preclude alternative epistemic policies that would provide contradic-
tory evidence, namely, to disconfirm the threat (cf. learned helplessness; Hammack,
Cooper, & Lezak, 2012; Stephan et al., 2016).

Trauma

A related account of stress, psychosis, and auditory hallucination is offered by Dodgson
and Gordon (2009), who draw out cognitive and clinical connections to evolutionary
threat detection function. As Wilkinson, Dodgson, and Meares (2017) point out, the
former view is consistent with the Bayesian formalisms described by the predictive proces-
sing framework (Clark, 2016). In turn, further links between these accounts can be under-
stood in terms of relationships between evolutionary biology, predictive coding, and active
inference, as we have indicated above.

In their direct consideration of PTSD, Wilkinson et al. (2017) explore an established
clinical typology of trauma. Type 1 trauma describes the experience of an acute, cataclys-
mic, life-threatening traumatic event (e.g., a terror attack), while Type 2 refers to the
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trauma of experiencing an extended period of threat (e.g., an abusive domestic relation-
ship), both of which can lead to PTSD. They acknowledge that the type distinction can
be blurred, and is not always able to be disentangled in clinical observation.

We map these types onto the present account, to suggest their distinctive underpin-
nings. Here, Type 1 trauma would be described as leading to a primed pathway for assign-
ing a threat prior to a stimulus (Figure 2, b1). In the PTSD reaction, potentially relevant
sensory evidence would be dampened, in favour of selecting a past-trauma associated
model, driving an underfitting scenario with a functional decoupling from the PFC
(Figure 1c). This would occur, for instance, when a bottle accidentally knocked off a
shelf in a supermarket makes a loud breaking sound, which would lead to a (dispropor-
tionally frequent) immediate threat classification, in contrast to a healthy (balanced) prob-
ability of further scene sampling, to ascertain the possible misidentification of a threat. The
dysfunctional response would in turn lead to the reflexive selection of a threat-responsive
“fight or flight” policy.

Continuing with this account, Type 2 trauma would suggest the primed activation of a
past-trauma associated model, such that it (disproportionately) frequently “wins” in
model competition for stimulus-evoked scene recognition. Again, this stands in contrast
to a healthy probability of further scene sampling, to ascertain misrecognition. In the
PTSD reaction, if (for example) approaching footsteps are heard, these may be immedi-
ately classed as the approach of an abuser, evoking associations with the traumatic experi-
ence that has previously typically (serially) followed the sound of the abuser’s footsteps. In
light of an approaching rather than currently present threat, instead of “fight or flight”, the
approaching threat may plausibly lead to the selection of a “freeze” policy (mentioned
above), a fearful, hypervigilant paralysis state, with simultaneous motor preparation and
inhibition (Bracha et al., 2004; Roelofs, 2017).

Returning to our discussion of auditory masking, we can draw a direct correspondence
between energetic masking and Type 1 trauma, and respectively, informational masking
and Type 2 trauma. Essentially, events related to what are classed as Type 1 trauma
appear to be commonly associated with high-energy auditory stimuli (e.g., explosions,
gunfire, crashes, etc.), establishing an associative semantic and neuronally topographic
link between such stimuli and an existential threat condition. Hence, a PTSD impairment
would lead to model competition for maximising evidence for a threat condition, which
would result in a “fight or flight” policy selection that redirects metabolic resources to
the motor system (away from sensory exploration).

Given that Type 2 trauma is associated with an extended threat condition with a
broader distribution of sensory stimulus intensities (e.g., living with an abuser), it is
known that, for PTSD sufferers, even low-energy stimuli, such as quiet footsteps, can
evoke episodes. In this case, model selection is biased toward a model that maximises
evidence for an anticipated scenario in which the footstep sounds are regarded as pre-
cursors to an abuser’s infliction of acute trauma. This would allow even quiet footsteps
to become “informational masks” that “capture attention” to the exclusion of other
potentially salient information that indicates safe conditions (e.g., the sound of voices
normally absent during abusive situations). Such model selection would also relate to
the associative semantic and neuronally topographic links described above with
respect to Type 1. In both cases, these links would relate to amygdala activation and
PFC inhibition (Figure 1c).
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Context in context

Liberzon and Abelson (2016) offer a compelling synthesis and parsimonious generalisation
and expansion of three predominant models of PTSD by appealing to a neurobiological
account of contextual processing. On our view, this synthesis might be pushed further
by situating neurobiological contextual processing within the broader scope of our
explanatory stack. For instance, their description of a fundamental PTSD impairment in inte-
grating “spatial properties of the environment…with non-spatial information (e.g., time,
prior experience, and internal states) into a gestalt that becomes context” suggests
a consilience in terms of the overall psychopathology (Liberzon & Abelson, 2016). Beyond
the notion of a “context gestalt”, we propose that additional explanatory power is offered
by understanding context in terms of the substrate-mapped formalism of a hierarchical
Bayesian model architecture and attending neuronal process theories, performing what can
be described as active inference and/or free energy minimisation (see e.g., Friston, 2008).

Similarly, we are in agreement that “dysfunction within… interconnected context pro-
cessing circuitry—which involves hippocampus, prefrontal cortex, thalamus, and amyg-
dala—may play a central role in the pathophysiology of PTSD” (Liberzon & Abelson,
2016). However, in place of a “just so” story about the neural circuitry involved in contex-
tual awareness, additional explanatory power is offered by connecting neural structure and
function to an ecologically situated, embodied and embedded cognitive architecture
selected for by evolutionary pressures (Bracha et al., 2004; Clinchy et al., 2011;
Dodgson & Gordon, 2009; LeDoux, 2012; Roelofs, 2017). Such pressures can be further
contextualised in relation to fundamental energy-information trade-off requirements
(Linson et al., 2018; Niven, 2016; Niven & Laughlin, 2008).

Summary and conclusion

Based upon a conceptual analysis of the psychopathology and pathophysiology of PTSD,
we have proposed an alternative perspective. We explored some implications of re-arran-
ging the traditional or classical picture, in relation to top-down executive control, bottom-
up sensory control, and attention, by recasting these in terms of continuous loops through
an environmentally embedded, embodied neuronal architecture, and PTSD-related dis-
ruptions and alterations of these loops. Similarly, we presented an alternative account
of neurocognitive reality testing, of generalisation of conditioned fear, fear extinction,
and safety learning, as well as of informational and energetic auditory masking, and of
contextual processing.

To illustrate multiscale and heterogeneous interactions, we formulated a multilevel
explanatory stack. Our multilevel analysis can be summarised relatively straightforwardly,
as follows: PTSDmay induce prior beliefs that the appropriate policy—induced by sensory
cues of uncertain origin—involves “fight or flight” or “freeze” responses, as opposed to
exploratory active sensing (epistemic foraging). These maladaptive priors are particularly
pernicious because they preclude the corrective steering function normally provided by
sensorimotor interaction (“reality testing”), i.e., they inhibit the continuous testing of
alternative hypotheses about states of the world that do not entail any existential threat.
This leads to a biased (impoverished) sampling of the world and ultimately, a failure to
revise the prior beliefs that underwrite pathological responses.
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Physiologically, we consider this impaired belief updating to be a malignant form of
sensory attenuation, namely, a diminishing of overt epistemic foraging in the exteroceptive
domain, or a covert attenuation of the precision of exteroceptive signals. Both responses
intrinsically conserve metabolic energy in environmental sensing, thereby making more
available to policy-specific motor attention. Further metabolic reallocation arises from
stopping short of sensory propagation to higher cortical areas, which may cease to be a
readily available response due to neurochemical and sub-cellular imbalances that
weaken effective connectivity.

In other words, in order to remain safe from existential threat, the PTSD response
to surprising stimuli is all too frequently a physiological state change related to the
colloquial expression “better safe than sorry”. In this state, when the question
subsequently arises as to whether one can venture out to discover a possible “all clear”,
any such venturing is thwarted by a secondary “better safe than sorry”, thereby remaining
stuck in a self-maintaining threat preparedness state. This story appears to have predictive
validity in relation to the known neurobiology, psychology, and behaviours associated
with PTSD, and construct validity in relation to previous explanations for this, and
related, disorders.

Notes

1. This model can in turn be demonstrated using in silico simulations under the (Active Infer-
ence) Markov Decision Process scheme, which is the focus of a subsequent paper (Linson,
Parr, & Friston, in preparation).

2. This stands in contrast to independent (i.e., non-interacting) “levels of explanation”, as in
Marr-like decompositions, popular in cognitive science.

3. In brief, active inference can be regarded as a generalisation of e.g., reinforcement learning
and optimal control theory, such that it replaces the optimisation of expected reward with
the minimisation of expected surprise (where surprise can include negative rewards). For-
mally, active inference deals with the optimisations of (Bayesian) beliefs about hidden
states and policies under uncertainty, enabling it to deal in a principled way with things
like the exploration-exploitation dilemma. For example, it treats decision-making in terms
of planning as inference. In this setting, free energy provides a bound upon surprise and is
the negative of the evidence lower bound (ELBO) used in machine learning.

4. For an empirical account of these dynamics in terms of Global Neuronal Workspace Theory,
see Vugt et al. (2018).

5. More broadly, the generative model entails counterfactual possibilities (of hidden causes)
that can have different biases. When one possibility has a high bias, it can “win out” as
the inferred hidden cause for a sense datum that, in reality, could have alternative hidden
causes.
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