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Abstract: Systemic lupus erythematosus (SLE) is an autoimmune disorder that is characterized by
autoantibody production and dysregulated immune cell activation. Although the exact etiology
of SLE remains unknown, genetic, hormonal, and complex environmental factors are known to
be critical for pathologic immune activation. In addition to the inherited genetic predisposition,
epigenetic processes that do not change the genomic code, such as DNA methylation, histone
modification, and noncoding RNAs are increasingly appreciated to play important roles in lupus
pathogenesis. We herein focus on the up-to-date findings of lupus-associated epigenetic alterations
and their pathophysiology in lupus development. We also summarize the therapeutic potential of the
new findings. It is likely that advances in the epigenetic study will help to predict individual disease
outcomes, promise diagnostic accuracy, and design new target-directed immunotherapies.
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1. Introduction

Systemic lupus erythematosus (SLE) is a female predominant autoimmune disorder
characterized by autoantibody (autoAb) production and organ damages due to immune
complex-mediated pathology [1]. SLE onset is believed to be triggered by environmental
and hormonal factors in genetically susceptible individuals [2], but the exact cause remains
unknown despite decades of intense basic and clinical research. Lupus flares are common,
and induction and maintenance of remission are difficult to achieve. The mechanisms of
lupus flare and remission are still being actively investigated by clinicians in the field [3].
Current treatments for SLE typically involve combinations of corticosteroids and immuno-
suppressant drugs, many of which are not FDA approved specifically for SLE and can
be associated with significant side effects [4]. In over 50 years, however, only two new
molecular targeted drugs recognizing B-cell activating factor (BAFF) (belimumab [5]) and
IFN-I receptor (anifrolumab [6]) have been approved by FDA as add-on therapies for adult
SLE patients.

The development of SLE involves deficiencies in both innate and adaptive immune
systems. The innate immune system is a key player in perpetuating and amplifying the
disease [7]. T cells play major roles in SLE pathogenesis, amplifying inflammation by their
secretion of proinflammatory cytokines, helping B cells to generate autoAbs, and sustaining
the disease through the accumulation of autoreactive memory T cells [8]. B cells, in turn,
are the source of autoAbs, which trigger inflammatory cytokine production, abnormal
transcription factor activity, and alter signaling pathways in affected organs [9]. In SLE
development, it is believed that reoccurring environmental factors trigger proinflammatory
responses in individuals with genomic and epigenomic susceptibility. Under such persistent
inflammatory conditions, loss of the central and peripheral immunological tolerance leads
to the clinical manifestation of SLE.

Although a recent powerful genome-wide association study (GWAS) has revealed
over 100 lupus susceptible gene loci, thereby further improving our understanding of the
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genetic structure of SLE [2], gene abnormalities cannot fully account for the variety of lupus
clinical manifestations. Epigenetic dysregulation further alters the susceptible molecular
and cellular pathways attributed by the genomic variants and, thus, contributes to disease
initiation and severity [10]. Epigenetic modifications of the most interest here refer to non-
DNA sequence changes manifest at the DNA, RNA, or protein levels, including histone
posttranslational modifications, DNA methylation, and alteration of gene expression by
noncoding RNAs (ncRNAs) [11]. MicroRNAs (miRNAs) are noncoding small RNAs that act
as epigenetic modulators to regulate the protein levels of target mRNAs without modifying
the genetic sequences. Those inheritable changes are independent of the genomic DNA
sequence. Epigenetic modifiers have been shown to control T/B cognate interactions during
autoimmunity. In this review, we discuss recent findings on the epigenetic mechanisms of T-
and B-cell activation and differentiation in the scope of SLE initiation and progression, and
their involvement in lupus pathogenesis. Epigenetic modification targeted therapeutics are
also highlighted.

2. T-Cell Epigenetic Alterations in SLE

T-cell dysregulation has been implicated in the loss of tolerance in SLE [12]. In general,
the DNA of lupus CD4+ T cells is hypomethylated, which activates immune-related gene
expression in a distinct CD4+ T-cell subtype and correlates with SLE disease activity. In
principle, DNA hypomethylation can result from two different mechanisms: decreased
methylation and increased demethylation activities. DNA methylation is catalyzed by DNA
methyltransferases (DNMTs) [13]. Significantly lower DNMT1 and DNMT3A transcript
levels were observed in SLE patients, compared with healthy controls [14]. Oxidative
stress was shown to decrease DNMT1 levels and caused CD4+ T-cell gene activation in SLE
patients [15,16]. DNA hypomethylation can also be achieved through active demethylation
by a different set of enzymes. For example, 3-hydroxy butyrate dehydrogenase 2 (BDH2) is
a short-chain dehydrogenase involved in maintaining intracellular iron homeostasis. In
SLE CD4+ T cells, decreased BDH2 contributed to DNA hypomethylation via increasing
intracellular iron [17]. The correlation between DNA hypomethylation and gene expression
is largely based on broad gene association studies. Indeed, phenotypic differences seem to
arise from diverse methylation patterns [18]. The impact of DNA methylations at distinct
gene and CpG sites on SLE disease activity is not fully understood. Recently, a total of
22 CpG sites in the promoter and enhancer regions of the CD40 ligand gene (CD40L) were
investigated for their functional association with the disease activity presented in 49 female
SLE patients [19]. A site-specific hypomethylation of the CD40L promoter in CD4+ T cells
was associated with SLE disease activity [19]. A genome-wide DNA methylation analysis
also identified 55 differentially hypomethylated interferon-regulated genes in CD4+ T cells
from twin SLE patients [20].

Histone acetylation and methylation contribute to the overexpression of immune-
related genes that promote CD4+ T cell autoreactivity in SLE. In general, hypoacetylation
seems to be negatively correlated and hypomethylation positively correlated with SLE
disease activity [21]. However, conclusions were largely drawn from close association. It
is not clear if these are secondary consequences or primary contributing factors in SLE.
Nevertheless, among the core octamer histones, H3 modification (methylation, citrullina-
tion, or acetylation) seems to be predominant in SLE [22]. The trimethylation of histone
H3 at lysine 27 (H3K27me3), in particular, leads to global gene silencing in animals, and
increased H3K27me3 levels were reported in CD4+ T cells in lupus, compared with healthy
controls [23]. In contrast, decreased H3K27me3 levels in the BCL6 promoter region led to
significantly upregulated BCL6, which stimulates TFH differentiation in SLE [24]. Molec-
ularly, enhancer of zeste 2 polycomb repressive complex 2 subunit (Ezh2) is responsible
for the trimethylation of H3K27. H3K27me3 and Ezh2 are critical for T-cell lineage devel-
opment and activation [25]. Ezh2 expression is upregulated by TCR stimulation [26], and
overexpression of Ezh2 resulted in increased CD4+ T-cell adhesion [23]. Inhibition of Ezh2
reduced STAT1 phosphorylation and IFN-I stimulated ISGs [27]. Ezh2-KO CD4+ T cells
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were arrested at early activation stages in OVA immunized mice [28]. Global hypoacetyla-
tion of histones H3 and H4 has also been detected in CD4+ T cells of active SLE patients,
and the level of H3ac is negatively correlated with the disease activity [21]. Increased H3ac
was found to couple with decreased H3K9me3 in the promoters of CD11a and CD70 in SLE
CD4+ T cells [29].

ncRNAs are functional RNA molecules that are not translated into proteins. They are
classified into long ncRNAs (lncRNAs, >200 nt) and short ncRNAs (sncRNAs, including
miRNAs, <200 nt) [30]. Aberrant expression of ncRNAs and many miRNAs are observed in
SLE and associated with disease severity [31]. Decreased expression of H/ACA box small
nucleolar RNA 12 (SNORA12) was also found in SLE T cells in a small Taiwanese cohort
(n = 23) study [32]. The levels of SNORA12 were inversely associated with higher SLE
disease activity scores [32]. Numerous studies have revealed aberrant miRNA patterns in
SLE patients and their likely involvement in SLE pathogenesis, including different cellular
and molecular pathways. MiRNAs as disease biomarkers and therapeutic targets have
been reviewed elsewhere [33–35].

Posttranscriptional modifications at the mRNA levels also serve as novel gene ex-
pression regulators. Studies have identified 78 hypomethylated 5-methylcytosine (m5C)
transcripts and 131 hypermethylated transcripts in CD4+ T cells from Asian SLE patients.
Hypermethylated genes were significantly involved in immune-related and inflamma-
tory pathways, including interferon signaling [36], which is central to the pathogenesis of
SLE [37]. A distinct regulation pattern of mRNA modifier, N4-acetylcytidine (ac4C) [38]
and N6-methyladenosine (m6A) [39] has been observed in lupus and lupus nephritis,
respectively, but the direct link with disease pathology has not been established. More
studies are needed to relate this apparent correlation between RNA methylation and SLE
to specific outcomes or signaling pathways in the pathology of SLE.

3. B-Cell Epigenetic Alterations in Lupus

B cells play crucial roles in lupus initiation and progression due to their contribution
to cytokine secretion, antigen presentation, and autoAb production [40,41]. Interestingly,
however, studies addressing lupus B-cell epigenetic modifications are fewer, compared with
studies involving lupus T-cell epigenetics. Scharer et al. studied an African American (AA)
SLE cohort with high disease activity and found the resting naïve B cells are epigenetically
distinct in SLE [42]. In another study, the DNA methylation status (~460,000 CpG sites) of B
cells in various development stages was examined in AA and European American (EA) SLE
patients [43]. Epigenetic defects were identified in immature B cells from female AA patients
with SLE, but defects developed later during B-cell development in EA female patients
with SLE. AA-specific CpG sites are also enriched at the IFN-regulated genes (IRGs) [43].
Animal studies suggest that ten-eleven translocation (Tet) DNA methylase family members
Tet2 and Tet3 mediated chromatin modification participated in the repression of CD86 on
self-reactive B cells, a mechanism that may contribute to autoimmunity prevention. Indeed,
Tet2 and Tet3 deficient B cells led to hyperactivation of B cells, autoAb production, and
lupus-like disease in affected mice [44].

A more definitive comparison of environmental influences on SLE susceptibility would
be to study identical twins. Such a study would minimize the genetic influences on SLE
initiation, progression, and pathogenesis. For example, Ulff-Moller et al. studied the CpG
methylation status in B cells from 15 SLE-affected twin pairs (6 homozygotic and 9 dizy-
gotic). Predominantly hypermethylated CpG islands were observed in disease-associated B
cells, and the most important upstream regulators included TNF and EP300 [20]. Addition-
ally, a global search of histone modification revealed that H3 and H4 are hypoacetylated in
B cells from SLE patients [45]. Epigenetic regulation of abnormal X-linked gene expression
also impacted the female disease susceptibility. Female lupus patients exhibited abnormal
XIST long ncRNA localization, which resulted in 103 and 53 X-linked genes differentially
expressed in naïve B cells and activated B cells, respectively [46].
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4. SLE Therapeutics That Target Epigenetic Mechanisms

Epigenetic studies have enhanced our understanding of the pathogenic role of T and
B cells in SLE. Epigenetic modifications are pharmaceutically reversible; therefore, targeted
therapy is a feasible strategy in SLE. However, the clinical application of SLE epigenetics
for precision medicine and therapeutic target discovery remains challenging. The first
challenge is the global nature of the epigenetic modification. Histone and DNA CpG
methylation–acetylation and ncRNA targeting are all multigene and noncell type specific.
Therefore, therapeutic outcomes are hard to predict and may associate with adverse effects.
Secondly, epigenetic alterations can represent a primary trigger for SLE pathogenesis or, al-
ternatively, a secondary consequence of disease development. Such by-stander epigenetics
change with the disease progression but do not reflect disease pathogenesis. Nevertheless,
epigenetic aberrations have been proposed as diagnostic or disease prognostic markers [47].
On the other hand, if these challenges can be appropriately clarified, cell-specific epigenetic
modulation may provide opportunities for therapeutic intervention. For example, Li et al.
delivered 5-azacytidine (5-Aza) to T cells using nanolipogel-coated anti-CD4 or anti-CD8
Abs, resulting in expansion of Treg cells or decrease in DN T cells in MRL/lpr lupus-prone
mice, respectively [48]. Ameliorated lupus manifestation was observed as a result [48].

A large number of miRNAs have been discovered to be associated with SLE patho-
genesis through high throughput screening. Although therapeutics targeting miRNA are
still at their early stage, preliminary results with lupus-prone mice are encouraging. Many
miRNA targets, including miR-155, miR-146a, miR-21, miR-122, etc., have been shown to
efficiently inhibit lupus disease development and renal inflammation in mouse models
of lupus, and to suppress T-cell activation and T–B interaction [34,49]. miRNA-targeted
therapy has been reviewed in detail by others [33,34].

The histone methyltransferase Ezh2 is currently under evaluation for the treatment of
malignancy, and recent clinical trials have demonstrated a favorable outcome with Ezh2
inhibition [50]. Inhibition of Ezh2 by DZNep improved survival and significantly reduced
renal inflammation in MRL/lpr spontaneous lupus mice before and after disease onset [51].
Inhibition of Ezh2 also attenuated the activation of the IFN-I signaling pathway [27]. How-
ever, DZNep is a global methyltransferase inhibitor, and adverse effects were associated
with DZNep in animal models. Further studies in bm12-induced lupus and MRL/lpr
spontaneous lupus with two structurally related Ezh2 selective small molecule inhibitors,
GSK503 and GSK126, respectively, demonstrated significantly reduced autoAb production,
GC formation, and improved lupus nephritis [27,28].

Targeting plasma cell differentiation and autoAb responses are proof-of-principle
therapeutics in SLE. A preliminary study from the Casali group demonstrated histone
deacetylase (HDAC) inhibitors (HDIs) valproic acid (VPA) and butyrate diminished plasma
cell differentiation without altering B-cell viability and proliferation [52]. MRL/lpr lupus
mice treated with HDI before or after disease onset showed significantly decreased anti-
dsDNA titer and increased survival rate, compared with the control MRL/lpr mice [52].
Several other HDAC inhibitors have also been evaluated in mouse models of lupus. Their
biological effects are summarized in Table 1.

Interestingly, the traditional SLE drug, mycophenolic acid (MPA, an immunosuppres-
sant), was able to reverse the abnormal histone global hypoacetylation status in lupus CD4+

T cells by upregulating HAT expression and downregulating HDAC expression [53]. MPA
also activates miR-142 and miR-146a [54], both of which have been reported to negatively
regulate CD4+ T-cell activation in lupus [55–57]. Similarly, hydroxychloroquine (HCQ) or
prednisone treated NZB/W spontaneous lupus mice showed reduced miR-21 and miR-let-
7a expression in T and B cells, respectively [58]. Taken together, traditional SLE drugs may
act as epigenetic modifiers.
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Table 1. Epigenetic therapeutics in mouse models of lupus and lupus nephritis.

Drug (Type) Targets Effects Model Ref.

ACY-738 HDAC6 ↓ T- and B-cell development and response
MRL/lpr mice [59]

NZB/W mice [60]

TSA HDAC ↓ CD4+CD69+ T cells, ↑ CD4+CD25+ Treg
cells; ↓ IL-6, ↑TGF-β. NZB/W mice [61]

SAHA HDAC ↓ cytokines, ↓ DN T cells MRL/lpr mice [62]

VPA HDAC ↓ DN T cells MRL/lpr mice [63]

AZA nanolipogel CD4 or CD8 T-cell-specific
DNA demethylation ↑ Treg cells, ↓ DN T cells MRL/lpr mice [48]

DZNep Methyltransferase ↓ DN T cells, ↓ cytokine/chemokine MRL/lpr mice [51]

GSK503 Ezh2 methyltransferase ↓ TFH cells bm12 cGVHD [28]

GSK126 Ezh2 methyltransferase ↓ IFN-I pathway NZB/W mice [27]

Notes: AZA, 5-azacytidine; DN, double negative; HDAC, histone deacetylase; SAHA, suberoylanilide hydroxamic
acid; TFH, follicular helper T cells; Treg, regulatory T cells; TSA, trichostatin A; VPA, valproic acid.

5. Conclusions

Epigenetic processes in immune cells bridge the gap between genomics and environ-
mental factors in the pathogenesis of SLE. Epigenetic alterations often couple with different
cellular mechanisms to guide nuclear/cytoplasmic factors to mediate differential tran-
scription/translation processes. A comprehensive understanding of the role of epigenetic
modification in the already complex SLE pathogenesis will likely lead to safe and novel
epigenetic therapeutics with better clinical outcomes.
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