
RESEARCH ARTICLE

Role of mitochondrial DNA damage and

dysfunction in veterans with Gulf War Illness

Yang Chen1,2, Joel N. Meyer3, Helene Z. Hill2, Gudrun Lange4, Michael R. Condon2,5,

Jacquelyn C. Klein1, Duncan Ndirangu1, Michael J. Falvo1,2*

1 War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East

Orange, New Jersey, United States of America, 2 New Jersey Medical School, Rutgers Biomedical and

Health Sciences, Newark, New Jersey, United States of America, 3 Nicholas School of the Environment,

Duke University, Durham, North Carolina, United States of America, 4 Pain and Fatigue Study Center, Beth

Israel Medical Center and Albert Einstein Medical Center, New York, New York, United States of America,

5 Surgical Services, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United

States of America

* Michael.Falvo@va.gov

Abstract

Gulf War Illness (GWI) is a chronic multi-symptom illness not currently diagnosed by stan-

dard medical or laboratory test that affects 30% of veterans who served during the 1990–

1991 Gulf War. The clinical presentation of GWI is comparable to that of patients with certain

mitochondrial disorders–i.e., clinically heterogeneous multisystem symptoms. Therefore,

we hypothesized that mitochondrial dysfunction may contribute to both the symptoms of

GWI as well as its persistence over time. We recruited 21 cases of GWI (CDC and Kansas

criteria) and 7 controls to participate in this study. Peripheral blood samples were obtained

in all participants and a quantitative polymerase chain reaction (QPCR) based assay was

performed to quantify mitochondrial and nuclear DNA lesion frequency and mitochondrial

DNA (mtDNA) copy number (mtDNAcn) from peripheral blood mononuclear cells. Samples

were also used to analyze nuclear DNA lesion frequency and enzyme activity for mitochon-

drial complexes I and IV. Both mtDNA lesion frequency (p = 0.015, d = 1.13) and mtDNAcn

(p = 0.001; d = 1.69) were elevated in veterans with GWI relative to controls. Nuclear DNA

lesion frequency was also elevated in veterans with GWI (p = 0.344; d = 1.41), but did not

reach statistical significance. Complex I and IV activity (p > 0.05) were similar between

groups and greater mtDNA lesion frequency was associated with reduced complex I (r2 =

-0.35, p = 0.007) and IV (r2 = -0.28, p < 0.01) enzyme activity. In conclusion, veterans with

GWI exhibit greater mtDNA damage which is consistent with mitochondrial dysfunction.

Introduction

Approximately 25–32% of veterans who served during Operations Desert Storm and Shield (Gulf

War) are afflicted with a chronic multisystem illness referred to as Gulf War Illness (GWI) [1].

The clinical presentation of GWI is heterogeneous, though characterized predominantly by

fatigue, widespread pain, exercise intolerance and cognitive dysfunction. As symptoms of GWI

span multiple high-energy systems [2, 3], mitochondrial dysfunction appears biologically plausi-

ble. Patients with mitochondrial disorders present with multisystem symptoms displaying clinical
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heterogeneity and tissue-specific manifestations [4]. Tissues and organs that rely predominantly

on oxidative phosphorylation for energy production are often those that exhibit the greatest

pathology when mitochondrial function is compromised [5]. Despite this overlap in multi-symp-

tom presentation and heterogeneity among patients with mitochondrial disorders and veterans

with GWI, only two recent studies have investigated mitochondrial dysfunction in GWI [6]. Spe-

cifically, Koslik et al. measured post-exercise phosphocreatine recovery in skeletal muscle–an

indirect measure of mitochondrial capacity–following ankle flexion exercise in veterans with

GWI and observed prolonged phosphocreatine recovery in comparison to controls [6]. In addi-

tion, Abdullah et al. reported alterations of certain plasma mitochondrial lipids (i.e., acylcarni-

tine) among veterans with GWI [7]. Therefore, whether mitochondrial dysfunction is involved in

the pathobiology GWI remains to be established but is under active investigation.

Mitochondrial dysfunction has previously been hypothesized as an explanation for

symptoms underlying GWI, particularly in the contexts of environmental exposures during

deployment (e.g., carbamates and organophosphates) [8, 9]. Emerging evidence supports

this rationale as mitochondria are increasingly recognized as a target for environmental

toxicants [10, 11]. In fact, mitochondria appear uniquely susceptible to toxicants as a result

of: 1) accumulation of toxicants due to the high lipid content of the mitochondrial mem-

branes, slight negative charge of the mitochondrial matrix, and presence of metal cation

transporters; 2) ability to activate organic compounds via mitochondrial cytochrome

P450s; 3) the presence of the reactive oxygen species generating electron transport chain;

4) reduced repair mechanisms for mitochondrial DNA (mtDNA) in comparison to the

nuclear genome, and 5) the potential for toxicant exposure to increase the endogenous

level of production of reactive oxygen species [10, 12–18]. While the role of oxidative stress

in generating mtDNA mutations is currently contentious [19], mtDNA is highly sensitive

to oxidative damage [20], and mtDNA copy number may also be altered by oxidative stress.

Specifically, increased intracellular reactive oxygen species may initially lead to mitochon-

drial biogenesis (i.e., increased mitochondrial content) as an adaptive response, but over

time could damage mitochondrial DNA, proteins and membranes leading to mitochon-

drial dysfunction and mitochondrial DNA depletion [21, 22]. No studies to date have eval-

uated whether mitochondrial content and/or damage is elevated in veterans with GWI.

An increasing number of studies have described altered mtDNA content and damage in cir-

culation in genetic and non-genetic diseases with associated mitochondrial dysfunction, sug-

gesting that circulating mtDNA may serve as a marker of disease status [23]. These findings

are of particular relevance to GWI, which currently relies on case definitions derived from

self-reported symptoms [24, 25]. In light of the clinical presentation of veterans with GWI and

the susceptibility of mitochondria to environmental toxicants, we hypothesize that GWI is

maintained, in part, by mitochondrial dysfunction that is detectable by elevated levels of

mtDNA content and damage in circulation. Therefore, the primary goal of this preliminary

study is to examine markers of mitochondrial damage and function in veterans with GWI rela-

tive to controls. Specifically, we utilized a quantitative polymerase chain reaction (QPCR)-

based assay for the quantification of both mitochondrial and nuclear DNA damage [26],

which has previously been used to identify mtDNA damage in the blood of patients with

known mitochondrial dysfunction (i.e., Friedreich’s ataxia) [23].

Materials and methods

Participants

Twenty-eight participants volunteered to participate in this study, including 21 cases of GWI

(GWI+) and 7 controls (GWI-). Case status was assigned using the Centers for Disease Control
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(CDC) and Kansas criteria [27]. In brief, cases must endorse moderate-to-severe symptoms

in� 3 domain areas (i.e., fatigue, pain, neurological/cognitive/mood, skin, gastrointestinal

and respiratory) that began after 1990 and persisted for� 1 year. Comorbid conditions (i.e.,

diabetes, heart disease, stroke, lupus, multiple sclerosis, cancer, etc.) that may account for

chronic symptoms were excluded per case definition [25]. Control participants consisted of

three veterans and four civilians who did not meet the CDC or Kansas criteria and were also

free from chronic infection, neurologic, endocrine, or cardiovascular disease. Additional

details on screening procedures and exclusions are provided in supporting information

(Table A in S1 Text). Participant characteristics are provided in Table 1. Self-reported fatigue

severity and physical health-related functioning were also assessed in all participants via the

Fatigue Severity Scale [28] and the Veterans version of the Short Form 36 Health Survey [29],

respectively. All participants provided their informed written consent, and procedures were

reviewed and approved by the Department of Veterans Affairs New Jersey Health Care Sys-

tem’s Institutional Review Board.

Table 1. Participant characteristics and self-reported symptoms for cases with (GWI+) and without (GWI-) Gulf War illness.

Cases (GWI+)

n = 21

Controls (GWI-)

(n = 7)

Age (years) 49.8 ± 5.1 51.3 ± 4.9

Sex (female/male) 2/19 2/5

Ethnicity

Hispanic or Latino 23.8% 14.3%

Not Hispanic or Latino 42.9% 71.4%

Unknown 33.3% 14.3%

Race

American Indian or Alaska Native 4.8% 14.3%

Asian 4.8% -

Black or African American 19.0% 28.6%

Native Hawaiian or Pacific Islander - -

White 71.4% 42.9%

Unknown - 14.3%

Body Mass Index (kg/m2) 30.2 ± 4.3 30.4 ± 4.5

Physical Activity (min�wk-1) 124.5 ± 190.8 172.5 ± 217.2

Smoking History (pack-years) 6.3 ± 10.9 14.5 ± 14.8

Fatigue Severity Score† 48.3 ± 11.3 21.6 ± 7.5

Physical Composite Score‡ 38.3 ± 10.2 58.8 ± 4.5

Kansas GWI Screening Domains*

Fatigue 8.0 ± 3.3 2.0 ± 2.5

Pain 3.6 ± 1.8 0.17 ± 0.4

Neurological/Cognitive/Mood 18.0 ± 10.0 3.3 ± 6.8

Skin 2.2 ± 1.8 0.0 ± 0.0

Gastrointestinal 3.7 ± 3.1 0.0 ± 0.0

Respiratory 1.6 ± 1.9 0.0 ± 0.0

Data presented as mean ± standard deviation.

†Fatigue severity scores� 35 are considered clinically fatigued

‡Physical composite scores� 50 are reflective of poorer physical health-related functioning

*Symptom score totals were computed for each domain of Kansas GWI Questionnaire.

https://doi.org/10.1371/journal.pone.0184832.t001
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Peripheral blood sample acquisition

Peripheral blood samples (15 mL) were obtained via venipuncture and collected into vacutai-

ner tubes containing di-potassium EDTA salt. Peripheral blood mononuclear cells (PBMCs)

and plasma were separated from whole blood via a commercial solution of polysucrose and

sodium diatrizoate (Histopaque1-1077, Sigma Aldrich) and centrifugation at 700 g for 30

min. Plasma was aliquoted into microcentrifuge tubes and stored at -80˚C. PBMCs were twice

washed with phosphate-buffered saline (1xPBS, pH 7.4) and centrifuged at 200 g for 10 min,

and suspended in 100–200 µl of either 1xPBS or radioimmunoprecipitation assay (RIPA)

buffer without detergent, but with protease and phosphatase inhibitor and stored at -80˚C

until further analysis.

DNA isolation and quantification

PBMCs in RIPA buffer were used to extract total DNA using a commercial DNA purification

kit according to the manufacturer’s protocol (QIAGEN Genomic Tip 20/G). DNA samples

were quantified in a 96-well plate reader (Synergy NEO HTS; BioTek Instruments) via a stan-

dardized protocol using a fluorescence dye (Quant-iTTM PicoGreen1 dsDNA reagent; Molec-

ular Probes) [30]. In brief, lambda (λ)/HindIII DNA (Invitrogen) was diluted in 1xTE buffer

to a series of concentrations (0, 2.5, 5, 10, 20 ng/µL) to generate a standard curve for DNA

quantification. Concentrated DNA samples were quantified and diluted to a final concentra-

tion of 3 ng/μL via serial dilution (10 ng/µL, 5 ng/µL, 3 ng/µL) and stored at -80˚C for the

QPCR assay.

QPCR-based DNA damage assay

Mitochondrial DNA damage was measured using a QPCR-based assay [31] based on the prin-

ciple that DNA damage will attenuate or halt DNA polymerase progression resulting in a

smaller PCR product for samples with greater damage. This standardized protocol [31] was

slightly modified to use KAPATM LongRange HotStart PCR kit (KapaBioSystems), detailed

procedures and validation experiments are provided in supporting information (S1 Text).

QPCR products were quantified using Picogreen dye in a 96-well plate reader. DNA lesion fre-

quency (i.e., damage) was calculated for both mtDNA and nuclear DNA following a Poisson

equation [f(x) = e-λ λx /x!, where λ is the average lesion frequency for the non-damaged tem-

plate (i.e., the zero class; x = 0, f(0) = e-λ)], as previously described [26]. The amplification of

case (GWI+) samples (AGWI+) was compared to the amplification of non-damaged controls

(AGWI-; zero class) resulting in a relative amplification ratio. The DNA lesion frequency was

determined as λ = -ln (AGWI+/AGWI-). The amplification of the short mtDNA fragment is

assumed to be free of lesions due to its short size and represents mtDNA copy number

(mtDNAcn). The lesion frequency in mtDNA was calculated by normalizing amplification of

the long mtDNA fragment to the short mtDNA fragment.

Mitochondrial complex I and IV activities

PBMCs were also used to measure mitochondrial complex I and IV enzyme activities in a

96-well format using commercial kits according to manufacturer’s protocol (ABCAM). In

brief, protein concentration of each sample was determined by standard BCA protein assay

(Pierce BCA Protein Assay Kit; Thermo Scientific), and adjusted to 2.8 µg/µL and 2.5 µg/µL

with 1x PBS for complex I and IV enzyme activity assays, respectively, depending on the size

of available sample. Complex I activity was determined by following the oxidation of NADH

(nicotinamide adenine dinucleotide) to NAD+ and the simultaneous reduction of a dye which
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lead to increased absorbance at 450 nm. Complex IV activity was determined by following the

oxidation of reduced cytochrome c to decreased absorbance at 550 nm. Analysis was per-

formed within the 96-well plate reader using kinetics protocol for complex I and IV (Gen5

Data Analysis Software). Complex I and IV activities were normalized to mtDNAcn in order

to express activity as a function of mitochondrial content (S1 Text).

Statistical analysis

Between-group differences (GWI+ vs. GWI-) for our primary outcome variables (i.e., mtDNA

and nuclear DNA lesion frequency, and mtDNAcn) were assessed using the Welch’s t-test to

account for unequal variances [32] with statistical significance set at p< 0.05 (two-sided).

Cohen’s d was used to assess the magnitude of between-group differences. Post-hoc explor-

atory analyses were performed to compare between-group differences in enzyme activities as

well as determine their association (Pearson’s correlation coefficient) with indices of mito-

chondrial content and damage. All statistical analyses were performed using SPSS (v.24).

Results

We recruited 21 veterans with GWI+ and 7 controls, whose characteristics and self-reported

symptoms are presented in Table 1. In comparison to controls, veterans with GWI+ had

greater mtDNA lesions (GWI+ vs. GWI-, mean ± SD: 0.17 ± 0.28 vs. 5.6 x 10−4 ± 0.04 lesions/

10kb, p = 0.015, d = 1.13; Fig 1), mtDNAcn (1.33 ± 0.37 vs. 1.00 ± 0.05, p = 0.001, d = 1.69;

Fig 1. Mitochondrial DNA damage identified by QPCR analysis of blood for cases with (n = 21, GWI+) and without

(n = 7, GWI-) Gulf War Illness. Dot density plot data represent the number of excess lesions found per 10 kb of DNA from

mtDNA genomes in GWI+ cases as compared to controls (GWI-). Greater lesions (0.17 lesions/10 kb) were observed

among cases with GWI+ relative to controls (p = 0.015, d = 1.13).

https://doi.org/10.1371/journal.pone.0184832.g001
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Fig 2), and nuclear DNA lesions (0.06 ± 0.17 vs. 0.01 ± 0.11 lesions/10kb, p = 0.344, d =

1.41). Protein concentrations were insufficient to analyze enzyme activities for all partici-

pants; therefore, 9 individuals were excluded for complex I (GWI+ = 14, GWI- = 5) and 7

individuals were excluded for complex IV (GWI+ = 14, GWI- = 7). Enzyme activity for

complex I (0.22 ± 0.10 vs. 0.25 ± 0.04, p = 0.357, d = 1.18) was reduced in GWI+, and com-

plex IV activity (0.05 ± 0.02 vs. 0.04 ± 0.01, p = 0.583, d = 0.34) was similar between groups.

Greater mtDNA lesions were associated with lower complex I (Fig 3A, n = 19, r2 = 0.35,

p = 0.007) and IV activity (Fig 3B, n = 21, r2 = 0.30, p = 0.009). Similarly, greater mtDNAcn

was associated with complex IV activity (n = 21, r2 = 0.28, p< 0.01), but not with complex I

(n = 19, r2 = 0.19, p = 0.064).

Discussion

This study provides the first direct biological evidence of mtDNA damage in the blood of vet-

erans with GWI. Greater mtDNA damage and mtDNAcn are consistent with mitochondrial

dysfunction [21], which may contribute to symptoms of GWI as well as the persistence of this

illness over time. Levels of nuclear DNA lesion frequency were also elevated in GWI, despite

prior work demonstrating that damage is more severe and persists longer in mtDNA than

nuclear DNA [20]. Given increases in both mtDNA lesion frequency and mtDNAcn, we inter-

pret these findings as evidence that mitochondrial dysfunction is involved in the pathobiology

of GWI.

Fig 2. Mitochondrial content identified by QPCR analysis of blood for cases with (n = 21, GWI+) and without

(n = 7, GWI-) Gulf War illness. Dot density plot data represent mitochondrial content, as indexed by mtDNA copy

number, in GWI+ cases and controls (GWI-). Greater mtDNA copy number was observed among cases with GWI

+ relative to controls (p = 0.001, d = 1.69).

https://doi.org/10.1371/journal.pone.0184832.g002
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Circulating markers of mtDNA damage and mtDNAcn have previously been utilized for

evaluating mitochondrial dysfunction secondary to environmental and chemical toxicants

[33–37], which in some cases preferentially target the mitochondria [10, 11]. Baccarelli and

colleagues have identified that pro-oxidant environmental exposures, i.e., ambient particulate

matter, damage the mitochondrial genome which, in turn, may intensify oxidative stress [38,

39]. These findings are relevant for GWI as ambient particulate matter levels in the Persian

Gulf region are up to 10-fold greater than urban cities in the United States [40], although the

composition of the PM may not be the same. Despite high levels of ambient particulate matter,

exposure to carbamates and organophosphates (e.g., pyridostigmine bromide, pesticides, and/

or insect repellant) deserve greater attention in the context of GWI [41–43] as these agents

were widely administered during the Gulf War [44, 45]. Further, self-reported exposure to

some types of exposures, such as pyridostigmine bromide and pesticides, has demonstrated an

association with symptom severity in a dose-response manner [46]. Similarly in our sample,

self-reported exposure to pyridostigmine bromide and pesticides during deployment were

reported in 76.2% and 66.7% of our GWI+ cases, respectively. In related toxicology research,

studies have observed increased mtDNA damage, mtDNAcn and/or increased oxidative stress

following exposure to pesticide, pyridostigmine bromide, or their combination [47–52].

Though we observed increased mtDNA damage (Fig 1) and mtDNAcn (Fig 2) in circulation

of veterans with GWI, the present study was not designed to verify past exposures or confirm

causality.

Mitochondrial dysfunction among veterans with GWI may help explain, in part, the persis-

tence of this illness for over 25 years. For example, chemical and environmental exposures dur-

ing deployment may have provided the initial insult to mtDNA and accumulation of damage.

Damaged mtDNA may subsequently impact the efficiency of electron transport chain com-

plexes and activity, resulting in enhanced reactive oxygen species and further damage of

mtDNA [20]. In the present study, mtDNA lesions were weakly associated with enzyme activ-

ity of complexes I and IV (Fig 3), which may suggest greater mtDNA damage is associated

with a reduction in mitochondrial function. This is an expected outcome of mtDNA damage,

in particular in the context of the vicious cycle theory of mtDNA damage and oxidative stress,

but to our knowledge is not one that has been tested in people [20]. Exploring GWI through

the lens of mitochondrial genetics may also provide an understanding of why chronic symp-

toms among deployed Gulf War veterans are not a universal finding. For example, certain

mitochondrial haplogroups are known to offer protection for specific neurodegenerative dis-

eases [53]. In addition, Wittkopp et al. [54] recently demonstrated that individuals with mito-

chondrial haplogroup U may be conferred protection from traffic-related air pollution

exposure. Future studies are necessary to determine whether mitochondrial genetic back-

ground confers protection from GWI, but appear warranted.

Our findings support recent work that demonstrated impaired skeletal muscle mitochon-

drial capacity (i.e., prolonged phosphocreatine [PCr] recovery) in veterans with GWI as

detected by 31P magnetic resonance spectroscopy [6]. PCr recovery time is suggested to pro-

vide a robust measure of skeletal muscle oxidative capacity [55, 56], but is largely impacted by

the availability and supply of oxygen [57]. Therefore, delayed PCr recovery may not solely

reflect mitochondrial dysfunction. More recently, Abdullah and colleagues reported alterations

of mitochondria-specific lipids (i.e., acylcarnitines) in plasma of veterans with GWI [7].

Increased plasma acylcarnitine levels are observed in response to incomplete fatty acid oxida-

tion [58], and abnormal acylcarnitine profiles have been reported in patients with mutations

in nuclear-encoded or mtDNA [59]. Elevations of plasma acylcarnitines in veterans with GWI

[7] are therefore intriguing in the context of the present study’s findings of damaged mtDNA,

particularly as increased plasma acylcarnitine levels have been shown to cause oxidative stress
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Fig 3. Mitochondrial DNA damage is associated with reduced Complex I and IV enzyme activity.

Mitochondrial complex I activity (A) and complex IV activity (B) for cases with GWI+ (filled circles) and controls

(open circles) were plotted against mtDNA lesion frequency yielding correlation coefficients of r2 = 0.35 and

0.30 (p < 0.01), respectively.

https://doi.org/10.1371/journal.pone.0184832.g003
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[60]. Lastly, in a randomized, placebo-controlled trial of coenzyme Q10 supplementation,

Golomb et al. observed greater self-reported physical function and health in veterans with

GWI who received supplementation [61].

It warrants attention that self-reported smoking history was moderately higher in our con-

trol group relative to cases (Table 1; p = 0.13, d = 0.63). This is important as individuals with

greater smoking histories (i.e., > 10 pack-years) have 5-fold greater mtDNA damage than

those with modest smoking histories (i.e., < 5 pack-years) [62]. Despite this, veterans with

GWI+ still demonstrated an excess mtDNA lesion frequency (0.17 lesions/10kb; Fig 1) relative

to controls. As lesion frequency is calculated as a relative amplification ratio [31], our observed

levels of mtDNA damage in veterans with GWI+ may in fact be underestimated.

A complementary goal of the present study was to identify a circulating marker of mito-

chondrial dysfunction that could distinguish those with and without GWI. Though focus on

peripheral blood may be considered a limitation, examining mitochondria in distinct tissues

(i.e., skeletal muscle) may not be ideal in a clinically heterogeneous disorder affecting multiple

organ systems. For example, current case definition criteria may identify a veteran as having

GWI even in the absence of musculoskeletal symptoms; therefore, analyses restricted to one

organ system may not fully capture pathology in a multisystem illness. Further, given increas-

ing attention to mitochondrial translational research and rapid clinical tests to detect abnormal

bioenergetics in mononuclear cells [63], a blood based test may be more widely implemented

in the clinic. We are currently performing additional studies examining functional implica-

tions of mtDNA damage in veterans with GWI using blood-based markers for these reasons.

In addition, future studies should include larger sample sizes as well additional experiments to

characterize downstream effects of mitochondrial dysfunction including DNA repair capacity.

In summary, the present study evaluated the integrity of mtDNA by using a QPCR-based

assay that afforded a direct and objective tool for assessing mtDNA damage. From these detailed

experiments, we found that mtDNA damage is 20% greater in veterans with GWI than controls,

and this mtDNA damage was associated with reduced enzyme activities in both complexes I

and IV. Future studies are necessary to confirm our findings; however, this work suggests that

mtDNA damage may serve as an objective biomarker of GWI. Results from the present study,

along with recent work from other laboratories [6, 7], suggest mitochondrial dysfunction is

involved in the pathobiology of GWI and should continue to be actively investigated.
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S1 Text. Figure A. Dose-response relationship between ultraviolet C radiation and
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sons described in the table. Table B. PCR Conditions. All the primer sets were produced by

Integrated DNA Technology. aUsing primers 5999 and 14841, this reaction generated a 8.9-kb

fragment from mtDNA, bUsing primers 48510 and 62007, this reaction generated a 13.5-kb

fragment from beta-globin.
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