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Abstract: Robot-assisted cell microinjection, which is precise and can enable a high throughput,
is attracting interest from researchers. Conventional probe-type cell microforce sensors have
some real-time injection force measurement limitations, which prevent their integration in a cell
microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with
a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was
designed to solve the real-time force-sensing problem during a robotic microinjection manipulation,
and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an
array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to
improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed
good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection
experiments were conducted. These results demonstrated the effectiveness of the sensor working
with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and
fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse
oocytes, could also be manipulated with this approach.

Keywords: cell-holding device; cellular force sensor; force measurement; microinjection;
micromanipulation; PVDF film

1. Introduction

With the fast development of cell biology and related biotechnology, robot-assisted cell
manipulation, which is precise and can enable a high throughput, is attracting interest from
researchers [1–4]. Robotic cell manipulation, e.g., cell probing, grasping, or microinjection, requires an
end effector to establish soft physical contact with the cell. A cell force sensor is, therefore, a crucial
element, as it allows the robot to better understand and control the mechanical interaction between
cell and manipulator.

Many force sensors have been developed for single cell force measurement. These include atomic
force microscopes, optical tweezers and magnetic tweezers, which provide small force measurement at
or below the nanonewton range. For larger cellular force measurement (in the micronewton range), a set
of mechanical sensors has been developed using microelectromechanical systems (MEMS) fabrication
techniques. A probe with a flexible beam is used as the force load of the cell; the force between the probe
and the cell results in deformation of the beam, as shown in Figure 1. A force-displacement sensing
mechanism, e.g., a piezoelectric [2–6], strain gauge [7–9], or capacitive transducer [10] is employed
and microfabricated as the beam. Lu et al. [7] developed a piezoresistive micro-force sensor to monitor
zebrafish embryo injection forces. A micropipette was bonded to the free end of a sensing beam, while
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the whole sensor was mounted on a movable stage. When the micropipette contacted the cell, the
beam was deformed, and the change in resistance was measured using a Wheatstone bridge circuit.
Rajagopalan et al. [9] used a flexible beam attached to a rigid probe to study the mechanical response
of embryonic Drosophila axons. However, conventional micro-force sensors share some common
limitations, which prevent their integration in a cell microinjection robot. In cell microinjection, the
probing needle must be connected to the pressure tube so that a liquid substance can be injected into
the cell (see also Figure 1). Since the needle is connected to a flexible beam, the gravity of the pressure
tube is far greater than the injection force, i.e., of the order of micro-newtons. In a study by Liu et al. [11],
a vision-based force measurement method was developed by positioning the force-sensing structure
at the cell side instead of the needle beam. An elastic polydimethylsiloxane (PDMS) pillar array was
placed at the cell side and the slender forces of these pillars were measured during cell microinjection.
The method overcomes the tube gravity problem associated with the conventional cell force sensor
and can be used in a robot-assisted cell microinjection system, but compared with MEMS-based force
sensing, it is difficult to precisely calculate the contribution of the pillar deflection by a visual tracking
algorithm [12]. In this paper, we present a new design of a MEMS-based micro-force sensor capable of
providing real-time cell force feedback in cell microinjection manipulation. A novel supported beam is
designed for the cell holder side. The piezoelectric material polyvinylidine fluoride (PVDF) is chosen
as the sensing element. Compared with vision-based elastic deformation sensing [11], PVDF-based
force measuring offers a more rapid measurement response.
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microinjection application by determining the real-time injection force on zebrafish eggs. 
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In addition, in the study of cell mechanics it has been found that the activity of cells, such as cell
growth, division, signal conversion and gene expression, changes the cell’s mechanical properties,
and vice versa [5]. The stiffness (ratio of stress to strain) of a developing egg changes at various stages
of the cell cycle. For a zebrafish embryo, for example, the stiffness at the blastula stage is 1.66 times
that at the prehatching stage [6]. From the robotic point of view, the manipulated object (i.e., the cell)
is time-varying and individually variable. Understanding the cell mechanical characteristics via a
force sensor is thus a key step for the controller design in a robot manipulation system. To this end,
a trapezoidal array based cell-holding device is specially designed. Combined with the micro-force
sensor, this will improve the measurement speed and allow the researchers better understand the
single cell characteristics by comparing the force characteristics of a batch of cells at same robotic
manipulation environment. We demonstrate the suitability of these sensors in a robot-assisted cell
microinjection application by determining the real-time injection force on zebrafish eggs.

2. Sensor Design

2.1. Sensor Construction

In the cell microinjection process, a high-sensitivity sensor is required, as the cell load force
is usually of the order of micronewtons or less. Figure 2 illustrates the structure of the proposed
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microforce sensor, which is composed of three parts: a mechanical transducer, which converts the
needle injection force to deformation of the PVDF beam; an electrical transducer, which converts
the charge output of the PVDF film to a corresponding voltage signal; and a cell-holding device.
The principle of operation of the force sensor is as follows. When the needle penetrates the egg, the
process can be considered quasi-static. The egg is suspended in culture medium, so the friction forces
between the cell and the cell-holding device and the fluid dynamic forces can be ignored. According
to Newton’s law, the needle probing force equals the force applied on the beam. The piezoelectric
PVDF film is a lightweight and compliant film that directly attaches to the beam without disturbing
the mechanical motion. As a typical piezoelectric material, it has a wide frequency bandwidth from
0.001 to 109 Hz and a high voltage output. Thus, we designed a PVDF beam structure that is fixed at
one end and simply supported at the other end. A U-shape constraint is designed at the non-fixed end
of the beam to prevent unwanted disturbances.
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Figure 2. Sensor design.

In our design, the cell-holding device is firmly glued to the PVDF beam so that the center of
the cell lies on the latitudinal center axis of the beam. When it is subjected to an injection force, the
beam deforms. Since the micropipette is acting at the center of the cell, bending is the primary mode
of deformation, while torsion is zero. Note that the sensitivity of the sensor output is determined
by the width and length of the beam, the stiffness of the beam and the piezoelectric strain constant
of the piezoelectric film. The structure of the beam is an important factor to be considered during
design. Compared with a conventional cantilever beam structure, this beam design—fixed at one
end and simply supported at the other end—is novel. Considering the mechanical properties of
the materials and structural principles, the cantilever structure undergoes greater deformation and
produces a higher voltage output than this novel beam design, for the same injection force. However,
the asymmetrical nature of the bending of the cantilever produces a larger puncture wound to the cell
than is produced by the novel beam design.

2.2. Microfabrication of Cell-Holding Device

The cell-holding device was fabricated in two steps. First, an inverted trapezoidal grooved
stainless steel mold was machined three times by electrical discharge machining with a cutting speed
of 0.05 m/s. To ensure the transparency of the cell-holding device, electrolytic polishing was carried
out, to reduce the surface roughness of the mold. The mold was then placed in the center of a glass
Petri dish that had been cleaned with acetone. The second step was the preparation of the PDMS
cell-holding device. Sylgard 184 pre-polymer and curing agent were fully mixed in a ratio of 10:1 by
weight, and the mixture placed in a desiccator to degas for 20 min by allowing bubbles to escape. This
mixture was then poured into a Petri dish and degassed in a vacuum heating furnace at 70 ˝C for 12 h.
Using a sharp scalpel to cut around the pattern evenly and gently, the PDMS cell-holding device was
removed from the stainless steel mold. Figure 3 shows the fabrication of the cell-holding device using
the stainless steel mold.
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2.3. Sensor Mechanical Model

Since the PVDF force-sensing structure is newly designed for cell injection force measurement,
we will analyze the force-mechanical model of the novel beam structure. The left end of the sensor in
Figure 4 is the clamped end; the right end is the simply supported end.
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For clear illustration, the beam of Figure 2 is redrawn in Figure 4a. A beam of length l and width
b is considered. According to material mechanics theory of hyperstatic beams [13], the force A can
be replaced by the force FA with the condition that the movement at point A is zero. Now the beam
structure is simplified as a cantilever structure, as shown in Figure 4b. If the cantilever movement at
point A is WA, then:

WA “ WF `WFA “ 0 (1)

where WF and WFA are the cantilever displacement at point A under the force F and FA, respectively.
Then we get:

FA “
a2p3l ´ aq

2l3 F

and the bending moment along the z-axis is:

Mpzq “

$

’

&

’

%

Fza2p3l ´ aq
2l3 , 0 ă z ă a

Fa´
Fzp2l3 ` a3 ´ 3la2q

2l3 , a ă z ă l
(2)
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where a is the distance from F to the supported end of the beam.
The bending moment causes tension at the bottom and compression at the top, as illustrated in

Figure 5. The strain in a small element at a distance x from the neutral axis of the bent beam is:

εz “
pR` xqθ´ Rθ

Rθ
“

x
R

(3)

where R is the radius of the curvature of the neutral axis, and X and θ are defined in Figure 5.
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The moment is expressed as:

Mpzq “
ż

s

xσzdxdy (4)

where σz is the stress in the z-direction.
According to Hook’s law and Equation (2), the stress in the z-direction is σz “ Ebεz, where Eb is

the Young modulus of the beam. According to Equations (2)–(4), we have:

R “ ´
Eb Ib
Mpzq

(5)

where Ib is the inertial moment of the cross-sectional area. We then obtain a new expression
for the strain:

εz “
xMpzq
Eb Ib

(6)

The force leading to the deformation of the material is mainly determined by the beam since
the stiffness of the beam is much greater than that of the PVDF film. The strain of the PVDF film is
dominated by the strain of the beam. Then the PVDF stress is σz´PVDF “ EPVDFεz, where EPVDF is
the Young modulus of the PVDF film. Based on these equations, the stress of the PVDF film along the
z-direction is given by:

σz´PVDF “

$

’

’

&

’

’

%

FEpvd f xza2p3l ´ aq
2Ebeam Ibeaml3 0 ă z ă a

Epvd f x
Ebeam Ibeam

rFa´
Fzp2l3 ` a3 ´ 3la2q

2l3 s a ă z ă l
(7)

In our sensor construction, the PVDF beam is stretching along its length, so the charge Q is mainly
affected by the piezoelectric strain constant d31. The electrical charge developed is:
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Q “
r

s
d31σz´PVDFdA

“
br

0

ar

0

FEpvd f xzd31a2p3l ´ aq
2Ebeam Il3 dzdy`

br

0

lr

a

Epvd f xd31

Ebeam I
rFa´

Fzp2l3 ` a3 ´ 3la2q

2l3 sdzdy

“
xEpvd f bd31p4Fal4 ´ Fa3l2 ` Fa2l3 ´ 2Fl5q

4Ebeam Il3

(8)

Let a = nl (0 < n < l); then:

Q “
xbd31l2p4n´ n3 ` n2 ´ 2qEPVDF

4IbeamEbeam
F (9)

Since d31, EPVDF, Eb, n, x, l and b are known constants, the relationship between the charge Q and
F can be expressed as:

Q “ k1F (10)

where k1 is a constant.

2.4. Sensor Electrical Model

A PVDF film has a high direct current output impedance and appears as a charge source. Thus,
a charge amplifier was added to convert the charge output from the PVDF film to a voltage signal.
Following the charge amplifier, low-pass amplifiers were added to remove the power frequency
interference in the circuit and amplify the weak voltage signal. In addition to the low-pass filters,
shielding techniques were considered to prevent electromagnetic interference noise. The electrical
circuit is shown in Figure 6.
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The circuit operates by passing an input current that charges the feedback capacitor C1. Because
of the virtual ground condition of the operational amplifier, the impedance of the parallel feedback
resistor R2 and capacitor C1 is:

Z “
R2

1` jωR2C1
(11)

By using Laplace transformation, the output voltage of charge amplifier V1 subjected to the input
current dQ/dt is obtained as:

V1 “
R2s

1` R2C1s
Q (12)

The charge amplifier network works as a high-pass filter where the cut-off frequency is:

fc “
1

2πR2C1
“ 0.16Hz
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It is worth noting that the input force is a limited-width signal in the time domain for force
measurement. This means that the spectrum of the input signal is continuous and that some of the
signal frequencies must be lower than the cut-off frequency. A digital compensator (1 + s)/s is thereby
added to Equation (11) to let the sensor output V1 be proportional to charge Q. Then we have V1 = k2Q,
where k2 = R2.

After there, a low-pass amplifier is then designed with an adjustable amplifier:

Vout “ p1`
R5

R4
qV1

and a cut-off frequency:

f2 “
1

2πR3C2
“ 40Hz

to eliminate the power frequency interference. Combined with the charge amplifier, the transfer
function of the complete electrical circuit becomes:

Vout “ k3Q (13)

where k3 is the electrical circuit gain. Substituting Equation (9) into Equation (12), the linear theoretical
model for the PVDF force sensor is obtained as Vout = k1k3F, where the proportional parameter k1k3

can be obtained in calibration experiments.

2.5. Analysis of Force Sensor Configuration

In the sections above, we have obtained an analytical model of the injection force and the sensor
voltage output of the PVDF beam structure. Because the V-shaped PDMS cell-holding device is
attached to the beam, the beam bending caused by the force not only depends on the properties of the
beam, but is also affected by the PDMS. Further analysis of the effect of the groove is obtained using
finite element software ANSYS.

The PVDF force beam structure models with and without PDMS were established, respectively,
using finite element analysis. The suitable boundary conditions were defined using the software. The
material is assumed to be isotropic and the analysis is of the linear type. The modulus of elasticity of
the PDMS is 1.8 MPa, the density is 0.95 g/cm3, and the Poisson ratio is 0.48. The piezoelectric beam
packaging material is polyethylene; its elastic modulus is 2200 MPa, its density is 1.01 g/cm3, and its
Poisson ratio is 0.38. The material parameters are affected by the synthesis process and are not exact
values. This does not affect the analysis of the influence of the groove on the bending of the beam, as
they are generally sufficiently accurate under an external force of 0.2 N applied perpendicular to the
same position of the beam (the center of the middle groove). Figure 7 shows the strain distribution
of the PVDF beam structure with and without the PDMS cell-holding device. It can be seen that
the forms of the bending is similar. The maximum deformation of the beam without the groove is
0.915 mm while that with the groove is 0.746 mm. This is mainly because the elastic modulus of the
PDMS material is very small and far less than the modulus of elasticity of the packaging material. The
packaging material has a large elastic modulus and is more rigid; the bending of the beam is mainly
influenced by the more rigid material.

3. Calibration Experiments

Prior to force-sensing application experiments, force calibration was performed to quantify
the relationship between the applied force and sensor output. The calibration set-up is shown in
Figure 8. When a needle moves towards the PVDF beam, the force exerted on the film equals that
on the electrical scale. The needle was manipulated by a linear motor (M-403.4DG, PI, Karlsruhe,
Germany) at a fixed speed, to ensure repeatability and consistency. A high-precision microforce sensor
(Nano17, ATI, Apex, NC, USA) was attached to the needle to measure the needle force. An oscilloscope
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(DS1102E, Rigol, Beijing, China) was used to display the voltage signal of the electrical circuit. The
PVDF film (SDT1-028K, MEAS., Hampton, VA, USA) has a length of 30 mm, a width of 13 mm and a
thickness of 28 µm. The electrodes of the PVDF film were sealed with seal glue (HMG-628X, HOMEEN,
Shengzheng, China), since the sensor is used in aqueous solution.Sensors 2016, 16, 483 8 of 13 
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The relationship between needle movement and voltage is first examined. The needle was moved
forward through different distances at a speed of 2.5 mm/s for five times. The five distances are
0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, and 0.5 mm, respectively. The corresponding output voltages are
shown in Figure 9, which shows that the sensor output has high repeatability and linearity. Within the
0–0.5 mm measurement range, the linear sensitivity is 4.5 V/mm. The linearity is 1.82% full scale.

It is noticed that an offset exists in Figure 9. It may be from the capacitors since the PVDF, cable
and charge amplifier contain ones. We observed the voltage output of the circuit at point 1 and V1

simultaneously without any force acts on the PVDF film in Figure 10. It can be seen that the offset
comes from the PVDF and cable capacitors are almost undetectable while the offset at V1 is steady.
This shows the offset may come from the non-ideal behaviour of the capacitor of C1.
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The force sensitivities of the three positions are 0.0439 V/N, 0.0399 V/N and 0.0354 V/N
respectively. The linearity is 1.82% full scale. As shown in Equation (9), the proportional relationship
holds as the acting point of the injection force F varies along the beam. These results show that the
sensor is consistent with the theoretical analysis and has a good linear response. The slight offset in
the experimental curves might be due to the inverse piezoelectric effects of the PVDF film, which has
not been considered in the model derivation.

4. Cell Injection Experiment on Zebrafish Embryo

4.1. Experiment Materials and Setup

To verify the effectiveness of the proposed microforce sensor, the PVDF sensor was adopted in
the real-time injection force measurement of a robot-assisted microinjection system for manipulating
zebrafish embryos. The zebrafish is one of the commonly used animal models of developmental
genetics and embryonic development. Microinjection of zebrafish embryos is a standard procedure
used to analyze the effects of introduced materials. The zebrafish embryos used in our cell
microinjection force measurement experiments were collected in accordance with standard embryo
preparation procedures [14]. The zebrafish embryo is about 800–1200 µm in diameter, with the
cytoplasm and nucleus at the animal pole sitting upon a large mass of yolk. The egg coat is called the
chorion, and is pierced by a needle when injecting genes into the embryo.

The robot-assisted microinjection system consists of the sensor, an inverted microscope
(AE31, Motic, Xiamen, China) with a CCD camera (UI-1540SE-M-GL, IDS, Obersulm, Germany),
and a three-degrees-of-freedom micro-robot (MP-285, Sutter, Novato, CA, USA) for controlling the
needle, as shown in Figure 12. The PVDF beam creates an extrusion when the needle is injected
into the embryo. The output of the PVDF charge signal is then transformed to a voltage output
by the electronic circuit of Figure 6. The injection needles were fabricated by a micropipette puller
(P2000, Sutter, Novato, CA, USA). The different diameters of needle tip were obtained by adjusting the
laser heating time. Tip diameters of 20 µm, 40 µm, and 60 µm were selected.
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4.2. Experiment Method and Results

We performed robot-assisted microinjection on 18 embryos. The embryos were randomly and
averagely divided into three groups. For different group the diameter of the inject needle is different.
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The first, three zebrafish embryos were placed in the trapezoidal PDMS groove, as shown in
Figure 13. It can be seen that the transparency of the PDMS is satisfactory for use as the cell-holding
device in a robot-assisted cell manipulation system. Compared with the horizontal bottom and top
of the trapezoidal groove, the image of the groove slope is darker. This results from the surface
roughness of the sloping side of the groove; it is more difficult to make the sloping sides smooth than
the horizontal sections in the fabrication process.
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Figure 13. Zebrafish embryos in cell-holding device.

Second, the needle was moved to the 3 o’clock edge of the embryo by the manipulator.
Figure 14 shows a single embryo and a needle before the robot-assisted microinjection (2ˆ objective,
0.65ˆ adapter). The needle microinjection speed was fixed as 2 mm/s and the move distance was
800 µm. For each group the diameter of the inject needle is 20, 40 and 80 µm, respectively.
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Figure 14. Zebrafish embryo before needle injection.

The typical microinjection force trajectories for different needle tip diameters are shown in
Figure 15, where the vertical axis denotes the corresponding penetration force between the needle tip
and embryo. It can be seen that the injection force nonlinearly increases as the needle advances. The
nonlinear properties were associated with the stiffness and inner pressure of the embryo.

The force was a maximum when the embryo chorion was penetrated, which can be used as a
signal for the robot to acknowledge penetration of the cell. The penetration force (peak force) increases
as the needle diameter increases. The average punctuation force of are 7.3 mN, 12.1 mN and 17.9 mN
corresponding to the 20, 40 and 80 µm diameter. After that, the force decreased while the chorion
pressure was released. The vibration of the force trajectory during the released process is a result of
the vibration of the PVDF beam.
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5. Conclusions 

To measure the real-time cell injection force trajectory in real cell microinjection experiments, a 
novel force-sensing beam structure was designed. Theoretical analysis showed that the force was 
proportional to the charge output of the piezoelectric sensor. A mechanical model of the sensor was 
verified experimentally. The traditional mold machining method was used to make a cell-holding 
device. This approach can be applied to smaller scales [15]. Finally, the effectiveness of the designed 
sensor when working with a micro-robotic cell manipulation system was verified experimentally. 
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Figure 15. Injection force trajectories for different needle diameters. (a) Force curve of 20 µm diameter;
(b) Force curve of 20 µm diameter; (c) Force curve of 20 µm diameter.

5. Conclusions

To measure the real-time cell injection force trajectory in real cell microinjection experiments, a
novel force-sensing beam structure was designed. Theoretical analysis showed that the force was
proportional to the charge output of the piezoelectric sensor. A mechanical model of the sensor was
verified experimentally. The traditional mold machining method was used to make a cell-holding
device. This approach can be applied to smaller scales [15]. Finally, the effectiveness of the designed
sensor when working with a micro-robotic cell manipulation system was verified experimentally.
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