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Many mammalian viruses encounter bacteria and bacterial molecules over the course of 46 
infection. Previous work has shown that the microbial ecology of the gut plays an 47 
integral role in poliovirus and coxsackievirus infection, where bacterial glycans can 48 
facilitate virus-receptor interactions, enhance viral replication, and stabilize viral 49 
particles. However, how airway bacteria alter respiratory viral infection is less 50 
understood. Therefore, we investigated whether a panel of airway bacteria affect 51 
rhinovirus stability. We found that Pseudomonas aeruginosa, an opportunistic airway 52 
pathogen, protects human rhinovirus 14 from acid or heat inactivation. Further 53 
investigation revealed that P. aeruginosa rhamnolipids, glycolipids with surfactant 54 
properties, are necessary and sufficient for stabilization of rhinovirus virions. Taken 55 
together, this work demonstrates that specific molecules produced by an opportunistic 56 
airway pathogen can influence a respiratory virus.  57 
 58 
Importance 59 
Bacteria can enhance viral stability and infection for enteric members of the 60 
Picornaviridae such as poliovirus and coxsackievirus; however, whether bacteria 61 
influence respiratory picornaviruses is unknown. In this study, we examined impacts of 62 
airway bacteria on rhinovirus, a major etiological agent of the common cold. We found 63 
that P. aeruginosa protects human rhinovirus 14 from both acid and heat inactivation 64 
through rhamnolipids. Overall, this work demonstrates bacterial effects on respiratory 65 
virus through specific bacterial molecules.  66 
 67 
Introduction 68 
 Rhinoviruses are the most common cause of the common cold (1-3). 69 
Rhinoviruses are a large and diverse group of enteroviruses that are divided into three 70 
species that bind various receptors—ICAM-1, LDLR, or CDHR3—that are found in the 71 
airway (2, 3). Although most rhinovirus infections are mild and self-limiting, severe and 72 
long-term consequences are possible. Rhinoviruses are the most common viral 73 
infection in those with cystic fibrosis and contribute to exacerbations (4-14). Cystic 74 
fibrosis disease is the result of ion imbalance at the cell surface (15), leading to 75 
aggregation of thick, sticky mucus and chronic colonization of opportunistic bacterial 76 
pathogens (16-18).  77 

Previous work from our lab has shown that intestinal bacteria bind related 78 
enteroviruses such as poliovirus and coxsackievirus (19-23). Bacteria-virus interactions 79 
stabilize these viruses and protect from heat inactivation (19). Further, bacteria promote 80 
viral replication in vivo, as demonstrated by reduced titers of poliovirus and 81 
coxsackievirus in antibiotic-treated animals (22). Similarly, intestinal viruses in other 82 
families also benefit from bacteria, including mouse mammary tumor virus, murine 83 
norovirus, and certain strains of reovirus (21, 24-28). Although these interactions have 84 
been examined for these enteric viruses and related enteroviruses such as poliovirus 85 
and coxsackievirus, whether bacteria influence rhinovirus infections is unknown.  86 
 To determine if respiratory bacteria stabilize rhinovirus, we incubated human 87 
rhinovirus 14 (HRV14) with a panel of respiratory bacteria at an inactivating acidic pH of 88 
5.8 or inactivating heat of 49°C and found that P. aeruginosa, a notorious cystic fibrosis 89 
pathogen, protects HRV14 from inactivation. Mechanistically, we found that 90 
rhamnolipids, biosurfactants produced by P. aeruginosa, are necessary and sufficient for 91 
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this stabilization. Taken together, these results demonstrate that specific molecules from 92 
a ubiquitous bacterium can stabilize HRV14. 93 
 94 
Results 95 
 96 
P. aeruginosa stabilizes HRV14.  97 
 Given that rhinoviruses likely encounter airway bacteria during infection, we 98 
questioned whether airway bacteria influence viral infection. In contrast to many other 99 
enteroviruses, rhinoviruses are acid sensitive (29). The healthy upper airway has an 100 
acidic pH that increases from the nares through the nose and sinuses with pHs of 5.5 to 101 
6.5, respectively (30) . The healthy lower airway has a neutral pH between 7.0-7.5 (31, 102 
32). However, in the presence of inflammation, the respiratory tract pH can decrease. 103 
During asthma exacerbations, exhaled breath condensate falls to 5.2 (33). In those with 104 
cystic fibrosis, exhaled breath condensate is reduced to 5.8 basally and to 5.3 during 105 
exacerbations (34). To examine potential effects of bacteria on HRV14 pH sensitivity, we 106 
first incubated 105 PFU HRV14 in synthetic nasal media (35) at a pH of 6.8 or 5.8 for 107 
one hour before quantifying titer by plaque assay using H1 HeLa cells (Fig 1AB). As 108 
expected, we found a >1000-fold reduction in viral titer at pH 5.8 (Fig 1B) compared 109 
with pH 6.8 (Fig 1A). Next, we repeated the assay in the presence of a panel of airway 110 
bacteria. Many of the bacteria used in this screen (e.g. M. catarrhalis, D. pigrum, S. 111 
aureus, S. epidermidis) are commonly found in the upper airways from the nares to the 112 
sinuses (36, 37). However, some of these bacteria are enriched in the upper airways 113 
and colonize the lower airways during chronic pulmonary diseases such as cystic 114 
fibrosis (e.g. P. aeruginosa, S. aureus, S. parasanguinis)(38, 39). Overnight cultures of 115 
bacteria (106-108 CFU (Table 1)) were washed and resuspended in media at a pH of 116 
either 5.8 or 6.8, 105 PFU HRV14 was added, and bacteria and virus were incubated 117 
together for one hour at 33°C prior to plaque assay.  Bacteria had no effect on rhinovirus 118 
titers at a non-inhibitory pH of 6.8 (Fig 1A). At a pH of 5.8, HRV14 titers were reduced 119 
across all samples, with no bacterial strain significantly protecting HRV14 from acid 120 
inactivation (Fig 1B), although P. aeruginosa strains had increased yields that were not 121 
statistically significant in this initial broad screen. We repeated the pH 5.8 stability assay 122 
for HRV14 incubated with P. aeruginosa PAO1 and found that it significantly increased 123 
viral stability by 10-fold (Fig 1B inset).  124 

We next determined whether airway bacteria could protect HRV14 from heat 125 
inactivation. For these experiments, HRV14 was incubated at 33°C or 49°C for two 126 
hours, followed by titer analysis via plaque assay. As expected, HRV14 titers were 127 
reduced by >1000-fold after incubation at 49°C (Fig 1C). In the presence of airway 128 
bacterial strains, only P. aeruginosa PAO1 significantly increased HRV14 titers at 49°C 129 
(Fig 1C). We next examined whether increased HRV14 viability in the presence of P. 130 
aeruginosa was unique to the strain PAO1 or if other strains of P. aeruginosa conferred 131 
protection. We compared P. aeruginosa strains PAO1, PA14, and FRD1. All three of 132 
these strains are typical lab strains of P. aeruginosa; however, exopolysaccharide and 133 
virulence factor production vary (40-42). We found that the PAO1 strain significantly 134 
increased HRV14 recovery after heat exposure, but PA14 and FRD1 strains did not (Fig 135 
1D), suggesting that PAO1 stabilizes HRV14 more than other strains of P. aeruginosa.  136 
 137 
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HRV14 does not have increased binding to P. aeruginosa.  138 
 Our group previously reported that direct binding to bacteria and bacterial 139 
glycans stabilizes related picornaviruses such as poliovirus and coxsackievirus (19-22, 140 
43). Therefore, to determine whether P. aeruginosa PAO1 has increased binding to 141 
HRV14, potentially explaining its virion stabilization phenotype, we quantified binding of 142 
purified, 35S-radiolabeled HRV14 to bacterial strains. We incubated our panel of airway 143 
bacteria (Table 1) with 35S-radiolabeled HRV14 (4,000 CPM/106 PFU) at pHs of 5.8 or 144 
6.8 to determine if HRV14 binds relevant airway bacteria. Virus was also incubated with 145 
2.8 µm streptavidin beads to account for nonspecific binding. E. coli and S. aureus 146 
Wichita had significantly increased HRV14 binding compared to the bead control at a 147 
pH of 6.8 (Fig 2A), although no significant differences in binding were observed at pH 148 
5.8 (Fig 2B). Surprisingly, HRV14 did not display enhanced binding to P. aeruginosa, 149 
suggesting that direct binding may not be a major facet of stabilization against acid 150 
inactivation.     151 
 152 
Heat-killed P. aeruginosa stabilizes HRV14. 153 
 To determine if P. aeruginosa-mediated protection of HRV14 from acid and heat 154 
inactivation was due a heat-sensitive factor or relied upon active P. aeruginosa 155 
metabolism, HRV14 was incubated with live or heat-killed P. aeruginosa at a pH of 6.8 156 
vs. 5.8 (Fig 3A) or at 33°C vs. 49°C (Fig 3B). Heat-killed P. aeruginosa protected 157 
HRV14 from acid inactivation, suggesting that a heat stable P. aeruginosa factor 158 
stabilizes HRV14 (Fig 3A).  159 
 Given that heat-killed P. aeruginosa was sufficient to protect HRV14 from acid 160 
inactivation, and our past work demonstrated that heat stable bacterial 161 
lipopolysaccharide (LPS) stabilizes picornaviruses, we hypothesized that LPS stabilizes 162 
HRV14. As an external glycan moiety on Gram-negative bacterial surfaces, LPS is a 163 
common factor that rhinovirus is likely to encounter. Previous work from our lab 164 
demonstrated that poliovirus binds LPS and that binding to LPS stabilizes poliovirus, 165 
Aichivirus, and coxsackievirus (19, 22). Conversely, LPS destabilizes enveloped 166 
influenza virions as well as alphavirus and flavivirus virions (44, 45). To assess LPS 167 
effects, HRV14 was incubated with LPS isolated from E. coli or P. aeruginosa at a pH of 168 
5.8 vs. 6.8 for one hour (Fig 3C) or at 33°C vs. 49°C for two hours (Fig 3D) followed by 169 
plaque assay. Surprisingly, LPS did not protect HRV14 from acid or heat, suggesting 170 
that some other P. aeruginosa factor is responsible for stabilization.  171 
 172 
Rhamnolipids stabilize HRV14. 173 
 We next hypothesized that other heat-stable, high abundance P. aeruginosa 174 
molecules stabilize HRV14. Like LPS, rhamnolipids are glycolipids that are produced by 175 
P. aeruginosa at high concentrations (46, 47). Rhamnolipids are important for biofilm 176 
formation and architecture, motility, and protection from phagocytosis (48-51). 177 
Rhamnolipids are synthesized by the enzymes RhlA, RhlB, and RhlC (Fig 4A)(52). RhlA 178 
catalyzes the conversion of B-hydroxyacyl-ACP into the fatty acid dimer 3-(3-179 
hydroxyalkanoyloxy)alkanoates (HAA)(53, 54). RhlB is a rhamnosyltransferase that 180 
catalyzes a reaction between HAA and dTDP-L-rhamnose to produce mono-181 
rhamnolipids (55). RhlC acts as a second rhamnosyltransferase that catalyzes the 182 
conversion of mono-rhamnolipids and dTDP-L-rhamnose to di-rhamnolipids (56).  183 
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To examine the potential impact of P. aeruginosa rhamnolipids on HRV14 184 
stabilization, we used strains with transposon insertions within rhamnolipid synthesis 185 
genes to test for necessity, and addition of purified rhamnolipids to test for sufficiency. 186 
First, we obtained rhlA, rhlB, and rhlC mutants in the P. aeruginosa PAO1 background 187 
(57) and incubated them with HRV14 at a pH of 5.8 vs. 6.8 for one hour (Fig 4B) or at 188 
33°C vs. 49°C for two hours (Fig 4C) followed by plaque assay. All mutants in the 189 
rhamnolipid synthesis pathway failed to protect HRV14 from acid inactivation (Fig 4B). 190 
The rhlC mutant partially restored protection of HRV14 from heat inactivation, 191 
suggesting that the production of mono-rhamnolipids are somewhat protective against 192 
heat (Fig 4C). Next, we tested whether purified rhamnolipids could stabilize HRV14 in 193 
the absence of bacteria. HRV14 was incubated with various concentrations of 194 
rhamnolipids at a pH of 5.8 vs. 6.8 for one hour (Fig 5A) or at 33°C vs. 49°C for two 195 
hours (Fig 5B) followed by plaque assay. Rhamnolipids protected HRV14 from both 196 
acid and heat inactivation at a concentration of 0.5 mg/mL. Overall, data in Figures 4 197 
and 5 indicate that rhamnolipids are necessary and sufficient for stabilization of HRV14 198 
by P. aeruginosa.  199 

To confirm that rhamnolipids stabilize HRV14 using an assay independent from 200 
viral viability assays, we performed a cell-free Particle Stability Thermal Release assay 201 
(PaSTRy)(58). Through this assay, virion RNA release is measured over a temperature 202 
gradient using SYBR green II dye to define the exact temperature of virion inactivation. 203 
RNA release was measured for HRV14 in the presence or absence of P. aeruginosa 204 
LPS (as a negative control) or rhamnolipids (Fig 6). Untreated HRV14 released RNA at 205 
48.7°C. As expected from our plaque-based assays, LPS had no effect on the 206 
temperature at which HRV14 RNA release occurred. However, rhamnolipids shifted 207 
HRV14 RNA release temperatures by ~1°C at 0.05 and 0.1mg/mL concentrations and 208 
by ~3°C at 1mg/mL concentration. Taken together, these results demonstrate that 209 
rhamnolipids stabilize HRV14.  210 
 211 
Discussion 212 
 Rhinoviruses are important respiratory pathogens, but potential impacts of 213 
bacteria on rhinovirus infection are largely unknown. Here, we screened a panel of 214 
respiratory bacteria and found that P. aeruginosa, an opportunistic pathogen that 215 
establishes chronic infections in those with chronic airway diseases, protects HRV14 216 
from acid and heat inactivation. Investigation of P. aeruginosa strains deficient for 217 
rhamnolipid production and addition of exogenous rhamnolipids revealed that 218 
rhamnolipids were necessary and sufficient for HRV14 stabilization. 219 

Rhamnolipids are glycolipids that are important for P. aeruginosa physiology and 220 
infection. P. aeruginosa produces copious amounts of rhamnolipids, with wildtype P. 221 
aeruginosa PAO1 producing as much as 39 g/L (46). Critically, rhamnolipids are present 222 
in sputum samples from people with cystic fibrosis that are colonized with P. aeruginosa 223 
(59, 60). Rhamnolipids help shape biofilm architecture (49), mediate P. aeruginosa 224 
dispersal (61-63), enhance P. aeruginosa motility (62), decrease phagocytosis (50, 51), 225 
and damage cell membranes (51, 64). Rhamnolipids inhibit the colonization and 226 
disperse a wide array of other bacteria (63, 65-70). Additionally, rhamnolipids inactivate 227 
enveloped viruses such as herpesviruses, coronaviruses, and respiratory syncytial virus 228 
via envelope disruption (71-75).  229 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2025. ; https://doi.org/10.1101/2025.06.04.657910doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.04.657910
http://creativecommons.org/licenses/by-nd/4.0/


Less is known about interactions between rhamnolipids and nonenveloped 230 
viruses, such as rhinoviruses and other picornaviruses. Rhamnolipids have no effect on 231 
poliovirus stability (71), but in silico modeling of HRV14 suggested that rhamnolipids 232 
interact with the canyon region of the capsid, where rhinoviruses bind their receptors 233 
(76). This interaction may be responsible for the stabilization phenotype herein, but 234 
further studies are required to fully delineate the role of rhamnolipids during rhinovirus 235 
infection. Beyond viral stability, exposure to biosurfactants, such as rhamnolipids, can 236 
increase pathogenesis of other picornaviruses, such as encephalomyocarditis virus 237 
(EMCV)(77-79). The pesticides dichloro-diphenyl-trichloroethane (DDT) and fenitrothion 238 
are associated with clusters of Reye’s Syndrome, a rare condition involving liver 239 
pathology and brain swelling that often accompanies viral infection. These surfactants 240 
increase EMCV uncoating in treated cells (78). Additionally, these compounds reduce 241 
interferon responses, contributing to increased morbidity and mortality in mice (78).  242 

Taken together, we found that rhamnolipids, glycolipids produced by the 243 
opportunistic pathogen P. aeruginosa, increases stability of HRV14. This interaction may 244 
be clinically relevant as many people with cystic fibrosis are chronically colonized by P. 245 
aeruginosa and rhinoviruses are a common cause of exacerbation events. Future 246 
studies are necessary to determine the role rhamnolipids and other compounds play 247 
over the course of rhinovirus infection.  248 
 249 
Methods 250 
 251 
Cells and viruses. 252 
 HeLa H1 cells were propagated in DMEM supplemented with 10% calf bovine 253 
serum and 1% antibiotics. Cells were grown at 37°C with 5% CO2. HRV14 was 254 
propagated from an infectious clone (gift of William Jackson) and infections were 255 
performed at 33°C 5% CO2.  256 
 257 
Bacterial strains, culture conditions, and reagents.  258 
 P. aeruginosa PAO1, FRD1, PA14 and the PAO1 isogenic mutants, rhlA, rhlB, 259 
rhlC, S. aureus, S. epidermidis, E. coli, and K. pneumoniae were maintained on 260 
lysogeny broth (LB) agar and grown on LB at 37°C with shaking at 250 rpm. M. 261 
catarrhalis was grown in brain heart infusion media at 37°C with shaking at 250 rpm. D. 262 
pigrum and S. parasanguinis were grown in Todd Hewitt broth/agar at 37°C with 5% 263 
CO2. Synthetic nasal media was prepared as described in Krismer et al 2014 (35).  264 
 265 
Table 1. Bacterial strains.  266 

Strain Characteristics Overnight 
CFU/mL 

Reference/Source 

P. aeruginosa 
PAO1 

Wound, lab isolate 108 (57, 80) 

PAO1 rhlA Transposon insertion in rhlA 108 (57) 

PAO1 rhlB Transposon insertion in rhlB 108 (57) 

PAO1 rhlC Transposon insertion in rhlC 108 (57) 

P. aeruginosa 
FRD1 

Cystic fibrosis, lab isolate 108 (81) 
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P. aeruginosa PA14 Wildtype, lab isolate 108 (82) 

M. catarrhalis  Wildtype 106 (83) 

E. coli K12 Lab isolate 108 (21) 

K. pneumoniae 
NCTC 9633 

Lab isolate  108 (84) 

D. pigrum Wildtype 106 (85) 

S. aureus USA200 MRSA 108 (86) 

S. aureus Wichita Wound, lab isolate 108 (87) 

S. epidermidis Wildtype 108 (88) 

S. parasanguinis 
FW213 

Wildtype 108 (89) 

 267 
Quantifying effects of bacteria on viral stability 268 
 For acid sensitivity assays, overnight cultures of bacteria (Table 1, 106 or 108 269 
CFU, depending on the strain) were centrifuged, washed in synthetic nasal media 270 
(SNM) at a pH of either 5.8 or 6.8, centrifuged and resuspended in (SNM) at a pH of 271 
either 5.8 or 6.8. HRV14 (105 PFU) was added, and the virus and bacteria of interest 272 
were incubated at 33°C with 5% CO2 for one hour. For heat sensitivity assays, overnight 273 
cultures were centrifuged, washed with PBS, centrifuged and resuspended in PBS. 274 
HRV14 was added as above, and the mixture was incubated at either 33°C or 49°C for 275 
two hours. After each incubation, samples were centrifuged and PFU in the 276 
supernatants were quantified via plaque assay as described (19). Briefly, samples were 277 
diluted in PBS supplemented with 100 µg/mL CaCl2 and 100 µg/mL MgCl2 and allowed 278 
to attach to cells for 30 minutes at 33ºC with 5% CO2. Agar overlays containing DMEM 279 
with 10% calf bovine serum and 1% antibiotics was added and removed 48 hours after 280 
infection. PFU were enumerated following crystal violet staining of monolayers.  281 
 282 
Quantifying viral binding to bacterial cells  283 
 35S-radiolabeled HRV14 was generated as previously described (20). Briefly, 284 
infected cells were pulsed with 35S-amino acids to label progeny virions, cell-associated 285 
virions were collected, and purified using Capto Core 700 beads (Cytivia) according to 286 
the manufacturer’s instructions. Briefly, rhinovirus was mixed end-over-end at 4°C with 287 
capto core beads for 45-minute increments three times. The slurry was centrifuged and 288 
virus from the supernatant was assessed for purity by SDS-PAGE.  For binding assays, 289 
~4000 counts per minute (CPM)(106 PFU) HRV14 was added to overnight bacterial 290 
cultures or streptavidin beads (Invitrogen, Dynabeads) resuspended in SNM pH 5.8 or 291 
6.8. Incubation proceeded for one hour at 33ºC with 5% CO2 and the mixture was 292 
centrifuged and washed to remove unbound virus. The pellet was resuspended in 293 
Budget-Solve complete counting cocktail (Research Products International) and CPM 294 
was determined by scintillation counting.  295 
 296 
Quantifying effects of lipopolysaccharide and rhamnolipids on viral stability 297 

Live or heat-killed P. aeruginosa PAO1 was incubated with HRV14 as above. 298 
PAO1 was heat-killed by incubating at 95ºC for 10 minutes. LPS (at 1 mg/mL) from E. 299 
coli (O111:B4, Sigma) or P. aeruginosa (PA-10, Sigma) was resuspended in SNM pH 300 
5.8 or PBS and incubated at 33ºC or 49ºC and quantified via plaque assay as above. 301 
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Exogenous rhamnolipids from P. aeruginosa (Sigma) were added and incubated via the 302 
same scheme.  303 

 304 
Particle Stability Thermal Release assay (PaSTRy) 305 
 Capto-core (Cytiva) purified and Amicon filter-concentrated (Sigma) HRV14 (~105 306 
PFU) was combined with rhamnolipids, SYBR green II (10x final concentration, 307 
Invitrogen), and buffer (10mM HEPES at pH 8, 200mM NaCl). The 50 uL reactions were 308 
heated from 25ºC to 95ºC on a 1% gradient in an ABI 7500 real-time thermocycler 309 
(Applied Biosystems) with fluorescent monitoring.  310 
 311 
Data analysis 312 
 All statistical analyses were performed using GraphPad Prism version 10.4.2 for 313 
macOS. Normality was assessed via the Shapiro-Wilk test. Further analyses were 314 
performed where indicated.  315 
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 323 
 324 
 325 

Figure Legends 326 
 327 

Figure 1. P. aeruginosa stabilizes HRV14.  328 
A/B/C) HRV14 (105 PFU) was incubated for one hour at a pH of 6.8 (A) or 5.8 (B) or for 329 
two hours at 33°C or 49°C (C) in the presence or absence of a panel of airway bacteria 330 
(106-108 CFU). Samples were centrifuged and PFU were quantified from the 331 
supernatant by plaque assay. D) HRV14 was incubated in the presence or absence of 332 
P. aeruginosa PAO1, PA14, or FRD1 at 33°C or 49°C for two hours prior to plaque 333 
assay. n=6, 3 biological replicates with 2 technical replicates. **, p<0.01, ***, p<0.001, 334 
****, p<0.0001 (A-D Kruskal-Wallis, Dunnett’s post hoc test, B insert unpaired t test).  335 
 336 
Figure 2. HRV14 does not have enhanced binding to P. aeruginosa. 337 
A/B) 35S-radiolabeled HRV14 (~4,000 CPM/ 106 PFU) was incubated in the presence or 338 
absence of streptavidin beads (2.8 µm) or 106-108 CFU bacteria in media at a pH of 6.8 339 
(A) or 5.8 (B) at 33°C for one hour. Samples were centrifuged and washed to remove 340 
unbound virus. Bound virus was quantified via scintillation counting and normalized to 341 
input. n=3. A) ns, p>0.05 (Kruskal-Wallis, Dunnett’s post hoc test). B) *, p<0.05, **, 342 
p<0.01 (one-way ANOVA, Dunnett’s post hoc test).  343 
 344 
Figure 3. Heat-killed P. aeruginosa stabilizes HRV14.  345 
A/B) HRV14 (105 PFU) was incubated in the presence or absence of 108 CFU live or 346 
heat-killed (HK) P. aeruginosa PAO1 at a pH of 5.8 or 6.8 at 33°C for one hour (A) or 347 
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33°C or 49°C for two hours (B) prior to plaque assay. C/D) HRV14 was incubated in the 348 
presence or absence of 1 mg/ml LPS from E. coli or P. aeruginosa at a pH of 5.8 or 6.8 349 
for one hour (C) or 33°C or 49°C for two hours (D) prior to plaque assay. n=6, 3 350 
biological replicates with 2 technical replicates. *, p<0.05, ****, p<0.0001 (A/C/D, 351 
Kruskal-Wallis, Dunnett’s post hoc test, B, one way ANOVA, Dunnett’s post hoc test).   352 
 353 
Figure 4. Insertion mutation of rhamnolipid synthesis genes ablates HRV14 354 
stabilization. 355 
A) P. aeruginosa rhamnolipid synthesis pathway. B/C) HRV14 (105 PFU) was incubated 356 
in the presence or absence of 108 CFU PAO1, rhlA, rhlB, or rhlC transposon insertion 357 
mutants at a pH of 5.8 or 6.8 at 33°C for one hour (B) or 33°C or 49°C for two hours (C) 358 
prior to plaque assay. n=6-8, 3-4 biological replicates with 2 technical replicates. *, 359 
p<0.05, ** p<0.01, ****, p<0.0001 (Kruskal-Wallis, Dunnett’s post hoc test).  360 
 361 
Figure 5. Rhamnolipids stabilize HRV14.  362 
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Figure 1. P. aeruginosa stabilizes HRV14. 

A/B/C) HRV14 (105 PFU) was incubated for one hour at a pH of 6.8 (A) or 5.8 (B) or for two hours at 33°C or 49°C 

(C) in the presence or absence of a panel of airway bacteria (106-108 CFU). Samples were centrifuged and PFU 

were quantified from the supernatant by plaque assay. D) HRV14 was incubated in the presence or absence of 

P. aeruginosa PAO1, PA14, or FRD1 at 33°C or 49°C for two hours prior to plaque assay. n=6, 3 biological 

replicates with 2 technical replicates. **, p<0.01, ***, p<0.001, ****, p<0.0001 (A-D Kruskal-Wallis, Dunnett’s 

post hoc test, B insert unpaired t test). 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2025. ; https://doi.org/10.1101/2025.06.04.657910doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.04.657910
http://creativecommons.org/licenses/by-nd/4.0/


B
ea

ds

P.
 a

er
ug

in
os

a 
PA

O
1

P.
 a

er
ug

in
os

a 
FR

D
1

M
. c

at
ar

rh
al
is

E
. c

ol
i

K
. p

ne
um

on
ia
e

D
. p

ig
ru

m

S
. a

ur
eu

s 
U
S
A
20

0

S
. a

ur
eu

s 
W

ic
hi
ta

S
. e

pi
de

rm
id
is

S
. p

ar
as

an
gu

in
is

0

10

20

30

40

50

%
 B

in
d
in

g

Gram negative Gram positive

pH 5.8

B
ea

ds

P.
 a

er
ug

in
os

a 
PA

O
1

P.
 a

er
ug

in
os

a 
FR

D
1

M
. c

at
ar

rh
al
is

E
. c

ol
i

K
. p

ne
um

on
ia
e

D
. p

ig
ru

m

S
. a

ur
eu

s 
U
S
A
20

0

S
. a

ur
eu

s 
W

ic
hi
ta

S
. e

pi
de

rm
id
is

S
. p

ar
as

an
gu

in
is

0

10

20

30

40

50

%
 B

in
d
in

g

Gram negative Gram positive

✱✱

✱

pH 6.8

A B

Figure 2. HRV14 does not have enhanced binding to P. aeruginosa.

A/B) 35S-radiolabeled HRV14 (~4,000 CPM/ 106 PFU) was incubated in the presence or absence of streptavidin 

beads (2.8 µm) or 106-108 CFU bacteria in media at a pH of 6.8 (A) or 5.8 (B) at 33°C for one hour. Samples were 

centrifuged and washed to remove unbound virus. Bound virus was quantified via scintillation counting and 

normalized to input. n=3. A) ns, p>0.05 (Kruskal-Wallis, Dunnett’s post hoc test). B) *, p<0.05, **, p<0.01 (one-way 

ANOVA, Dunnett’s post hoc test). 
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Figure 3. Heat-killed P. aeruginosa stabilizes HRV14. 

A/B) HRV14 (105 PFU) was incubated in the presence or absence of 108 CFU live or heat-killed (HK) P. 

aeruginosa PAO1 at a pH of 5.8 or 6.8 at 33°C for one hour (A) or 33°C or 49°C for two hours (B) prior to 

plaque assay. C/D) HRV14 was incubated in the presence or absence of 1 mg/ml LPS from E. coli or P. 

aeruginosa at a pH of 5.8 or 6.8 for one hour (C) or 33°C or 49°C for two hours (D) prior to plaque assay. n=6, 

3 biological replicates with 2 technical replicates. *, p<0.05, ****, p<0.0001 (A/C/D, Kruskal-Wallis, Dunnett’s 

post hoc test, B, one way ANOVA, Dunnett’s post hoc test). 
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Figure 4. Insertion mutation of rhamnolipid synthesis genes ablates HRV14 stabilization.

A) P. aeruginosa rhamnolipid synthesis pathway. B/C) HRV14 (105 PFU) was incubated in the presence or 

absence of 108 CFU PAO1, rhlA, rhlB, or rhlC transposon insertion mutants at a pH of 5.8 or 6.8 at 33°C for one 

hour (B) or 33°C or 49°C for two hours (C) prior to plaque assay. n=6-8, 3-4 biological replicates with 2 technical 

replicates. *, p<0.05, ** p<0.01, ****, p<0.0001 (Kruskal-Wallis, Dunnett’s post hoc test). 
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Figure 5. Rhamnolipids stabilize HRV14. 

A/B) HRV14 (105 PFU) was incubated in the presence or absence of various concentrations of rhamnolipids at a 

pH of 5.8 or 6.8 at 33°C for one hour (A) or 33°C or 49°C for two hours (B) prior to plaque assay. n=6, 3 biological 

replicates with 2 technical replicates. *, p<0.05, ** p<0.01, ***, p<0.001  ****, p<0.0001(Kruskal-Wallis, Dunnett’s 

post hoc test).
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Figure 6. Rhamnolipids enhance HRV14 thermostability. 

HRV14 thermostability profile using a cell-free Particle Stability Thermal Release assay (PaSTRy). HRV14 (105 PFU) 

was added to SYBR green II with or without LPS or rhamnolipids. Samples were heated from 25°C to 95°C on a 1% 

stepwise gradient with fluorescence monitoring. n=6, 3 biological replicates with 2 technical replicates.  **, p<0.01, 

****, p<0.0001 (one-way ANOVA, Dunnett’s post hoc test). 
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