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ABSTRACT
Obesity, a condition most commonly associated with hyper-leptinemia, is also characterized by
increased expression of autophagy genes and likely autophagic activity in human adipose tissue
(AT). Indeed, circulating leptin levels were previously shown to positively associate with the expression
levels of autophagy genes such asAutophagy related gene-5 (ATG5). Herewehypothesized that leptin
acts in an autocrine-paracrine manner to increase autophagy in two major AT cell populations,
adipocytes and macrophages. We followed the dynamics of autophagosomes following acute leptin
administration with or without a leptin receptor antagonist (SMLA) using high-throughput live-cell
imaging in murine epididymal adipocyte and macrophage (RAW264.7) cell-lines. In macrophages
leptin exerted only a mild effect on autophagy dynamics, tending to attenuate autophagosomes
growth rate. In contrast, leptin-treated adipocytes exhibited a moderate, ~20% increase in the rate of
autophagosome growth, an effect that was blocked by SMLA. This finding corresponded to mild
increases in mRNA and protein expression of key autophagy genes. Interestingly, a long-lived proteins
degradation assay uncovered a robust, >2-fold leptin-mediated stimulation of the autophagy/lyso-
some-related (bafilomycin-inhibited) activity, which was entirely blocked by SMLA. Collectively, leptin
regulates autophagy in a cell-type specific manner. In adipocytes, autophagosome dynamics is
moderately enhanced, but even more pronounced stimulation is seen in autophagy-related long-
lived protein degradation. These findings suggest a causal link between obesity-associated hyperlep-
tinemia and elevated adipocyte and AT autophagy-related processes.
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Introduction

Dys-regulation of autophagy, the evolutionarily-conserved
processes by which cells degrade intracellular components
to maintain cell homeostasis, is increasingly considered in
the pathophysiology of various diseases.1 Although mostly
dysfunctional (attenuated) autophagy is implicated in
pathogenesis as a result of accumulated damaged or un-
necessary cell components, over-activated autophagy is
likely also pathogenic, and was proposed to contribute to
the pathophysiology of several diseases, including chronic
pulmonary disease and cancer.2,3 In obesity, autophagy is
dys-regulated in a cell-type/tissue – specific manner. It is
considered to be attenuated in the liver, altered in beta-cells,
and decreased in skeletal and cardiac muscles.4,5 In adipose
tissue, how autophagy is dys-regulated remains unsettled,
with a general agreement that autophagy genes are over-
expressed in adipose tissue, particularly in depots and in

obesity sub-types that are more associated with metabolic
dysfunction.6–8 Yet, although autophagy, particularly in
chronic diseases, may be regulated also at the gene expres-
sion level,9,10 much more is known about its more rapid
regulation by post-translational modifications and protein-
protein interactions. Indeed, while two independent groups
suggested that autophagic activity (i.e., ‘flux’) is inhibited in
adipose tissue,11,12 at least four groups, including our own,
provided evidence that the elevated gene expression of
autophagy genes in adipose tissue manifests by increased
autophagic flux.6,13–16 The molecular consequence of such
elevated activity is not fully-mapped, but hyper-activated
autophagy in adipose tissue may not only associate with,17

but can also be causally linked to, decreased secretion of
adiponectin.17,18 This finding suggests a putative mechan-
istic link between activated adipose tissue autophagy in
obesity, adipose tissue dysfunction, and a dys-metabolic
obese phenotype.
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Some outstanding questions emerge from the above:
(1) since adipose tissue is composed of various cell
types, what is the cell-specificity of autophagy altera-
tions in obesity? Indeed, adipose tissue macrophages
(ATM) may actually exhibit inhibited autophagy in
obesity.19 Moreover, a transcriptional activator of adi-
pose tissue autophagy in obesity, E2F1, is up-regulated
in the adipocyte cell fraction but not in the stromal-
vascular fraction of adipose tissue in obesity.17 (2)
Among the various alterations that occur in the adipose
tissue milieu in obesity, which is/are the factor(s) that
dysregulate autophagy? Indeed, classically, autophagy is
activated under conditions of nutrient deficiency.
Inflammatory cytokines are common activators of
autophagy in disease states, and although adipose tissue
inflammation signifies metabolically-dysfunctional obe-
sity, many of the proinflammatory cytokines are only
mildly elevated in obesity compared to overt-
inflammatory reaction. Circulating levels of leptin are
robustly and positively associated with BMI,20,21 and
the effect of leptin on autophagy was studied exten-
sively in various cell types, and may be highly cell-type-
specific: Leptin activated autophagy in muscle, heart,
liver, kidney,22 conventional T cells23 and cancer
cells,24,25 while inhibited autophagy in human lung
cell line26 and recently was shown to inhibit ER-
stress – induced autophagy in whole adipose tissue.27

A gap of knowledge remains in understanding whether
and how leptin, produced by adipocytes at increased
amounts in obesity, can regulate autophagy in adipo-
cytes and other adipose tissue cell types.

In a previous study,18 we found that circulating
leptin levels associate with visceral AT (VAT) expres-
sion of ATG5 mRNA, a putative surrogate of adipose
tissue autophagic activity. This led us to hypothesize
that leptin, via the leptin receptor, may dys-regulate
autophagy in a cell-type specific manner.

Materials and methods

Materials

Tissue culture medium (DMEM 01–055-1A, Biological
Industries), heat-inactivated fetal bovine serum
(04–121-1A, Biological Industries), antibiotic solutions
(03–033-1B, Biological Industries), L-glutamine solu-
tions (03–020-1B, Biological Industries), human recom-
binant insulin (01–818-1H, Biological Industries),
phosphate-buffered saline (02–023-1A, Biological
Industries) and Earle’s balanced salts solution (EBSS)
(02–010-1A, Biological Industries). Indomethacin
(I7378), dexamethasone (D4902), 3-isobutylmethyl-
xanthine (IBMX; I7018), rosiglitazone (R2408) were

obtained from Sigma-Aldrich. CYTO-ID and chloro-
quine (ENZ-51031, Enzo Life Science). BODIPY-C12

and Hoechst 33342 (D3835, H1399, Thermo Fisher
Scientific,Inc). 3MA (M9281, Sigma-Aldrich). SMLA
(SNAL-1, Protein Laboratories Rehovot Ltd).

Cell culture

RAW264.7 murine macrophage cell line (American
Type Culture Collection, Manassas, VA, USA) were
cultured in DMEM 4.5 g/l glucose containing 10%
FBS, 50 U/ml penicillin, 50 μg/ml streptomycin and
4 mM glutamine, as previously described.19

Epididymal pre-adipocyte cells28,29 were cultured as
described. Briefly, cells were grown in DMEM 4.5 g/l
glucose, supplemented with 20% FBS, 50 U/ml penicil-
lin, 50 μg/ml streptomycin and 4 mM glutamine.
Twenty-four h after reaching confluence, preadipocytes
were induced to differentiate in media containing
0.125 mM indomethacin, 2 g/ml dexamethasone, and
0.5 mM 3-isobutylmethylxanthine for 48 h. For RT-
PCR and western blot analysis, cells were seeded in
6-wells plates and experiments were held after 6 d of
differentiation.

Live imagining

For macrophages imagining, cells were cultured until
they reached 60–80% confluence. Cells were scraped
and 3 × 104 cells were seeded in 96-well uClear black
plate (Greiner Bio One, Kremsmünster, Austria). For
adipocytes, on the third day after differentiation induc-
tion, cells were detached with trypsin. 4 × 104 cells were
seeded into 96-well uClear black plate.

3 h before treatments, the media was replaced to
DMEM 4.5 g/l glucose containing 0.05% FBS, 50 U/ml
penicillin, 50 μg/ml streptomycin and 4 mM gluta-
mine. Cells were treated with or w/o leptin (10 and
100 ng/ml, orders of magnitude larger than endogen-
ous leptin production from adipocytes cell-line
(~2 pg/ml/h)), chloroquine (10 μmol/l). 3MA
(5 mmol/l) and SLAN (50 μg/ml) were added to the
media 30 minutes prior to the treatments mentioned
above. For cell imaging and dynamic autophagosomes
tracking, Hoechst (final dilution 1:1000) and CYTO-
ID (final dilution 1:1000) were added to the media.
For lipid droplets staining, BODIPY-C12 (1 µM) was
used. Identification and quantification of images was
done semi-automatically by Columbus software, and
the mean value derived from each experiment was
used to calculate the final comparison between experi-
mental conditions.
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RNA extraction and quantitative real-time PCR

Total RNA was extracted using the RNeasy lipid tissue
minikit (74804, Qiagen). Final concentration of 2000 ng/
ml was used for reverse transcription into cDNA using
reverse transcriptase kit (4374966, LifeTechnologies).
cDNA was diluted 1:7 in ultra-pure water (002327777500,
BioLab), amplified by the Taqman system (4369016, Life
Technologies) and measured by RT-PCR (7500, Applied
Biosystems). Relative gene expression was obtained after
normalization to endogenous control genes (RPLP0 and
HPRT). The following probes were used: Hprt
(Mm03024075_m1), RPLP0 (Hs99999902_m1), Atg5
(Mm01187303_m1), Atg12 (Mm00503201_m1), Map-
1lc3b (Mm00782868_sH), LepR (total isoforms – extracel-
lular domain) (NM_001122899.1) and LepR (long isoform)
(NM_146146.2) (ThermoFisher Scientific,Inc).

Cell lysates and western blot analysis

Western blot analysis was done as previously
described.17Quantification was performed using
GelQuant.NET software and normalized to those of
ACTB. The following antibodies were used: Atg5,
Atg7, Beclin-1 (2630, 2631, 3738, Cell signalling) and
ACTB (A5441, Sigma-Aldrich)

Autophagy-mediated long lived proteins
degradation assay

We adopted a well-described protein degradation
assay30,31 for use in our differentiated epididymal pre-
adipocyte cells. Five days after differentiation induction,
cells were ‘pulsed’ for 24 h with 50 µCi/ml L-[14C(U)]-
Valine (NEC291EU050UC, PerkinElmer), then washed
thoroughly, and incubated for the following 24 h period
in medium containing 10 mM nonradioactive valine
(V0513, Sigma-Aldrich). After an additional washout of
the media with nonradioactive valine, the cells were
‘chased’ during a 6 h period in the above media, while
being treated with: EBSS+0.1% BSA (= positive control
for autophagy induction), control media (con), media
containing leptin (100 ng/ml) only, or media containing
leptin + SMLA (1 μg/ml). All conditions were given in
the presence or absence of Baf.A. (0.1 μM), as indicated.
SMLA was added 30 minutes prior to and during leptin
treatment. A sample of 200 µl was taken at 2 h intervals
and stored at −80◦ (200 µl of media was added back to
the well). After 6 h, 700 µl were collected into tubes, the
remaining media in the wells were removed, and wells
were washed with cold PBS containing 10 mM valine. In
order to separate the free amino-acids from the proteins,
20%TCA (T/2950/60, Fisher Scientific) was mixed with

1%PBS, 1:1 ratio, and was added to the media.
Radioactivity was measured in the supernatant fractions
(which contain mainly the free amino acids) and in the
pellet of the cells (which contains mainly cellular
proteins). % of [14C]-valine release was calcu-
lated as ¼ free animo acids radioactivity in the supernatant � 100

total radioactivity supernatantþ cells0pelletð Þ

Statistical analysis

Data are reported as mean +/- standard error of the
mean (SEM). For two-groups comparison, none-
parametric Mann-Whitney test was used. Comparison
of> 2 groups was analysed after homogeneity of var-
iances was confirmed using Levene test by one way
analysis of variance (ANOVA) and the post-hoc
Tukey’s method. When no equal variance was present,
Kruskal-Wallis and Dunns tests were used. All statisti-
cal analyses and graphs were performed using
GraphPad Prism 5. p < 0.05 was considered statistically
significant.

Results

Immune cell functions are altered by both changes in
autophagy, and by leptin – an adipokine that signals
through a cytokine receptor family member (the leptin
receptor) that induces well-described immune-
modulatory functions.32 Thus, we first assessed if obe-
sity-related activation of adipose tissue autophagy could
be attributed to the most abundant non-adipocyte cell
type composing this tissue – i.e., macrophages.33 RAW
264.7 macrophages were treated with the lysosomal
acidification inhibitor choloroquine to prevent degra-
dation of newly-formed autophago(lyso)somes, and the
dynamics of autophagosome formation and expansion
(maturation) was studied using high-throughput live-
cell imaging after staining cells with the fluorescent dye
(CYTO-ID ©). CYTO-ID stains vesicles from the post-
phagophore autophagosome stage to autophagolyso-
somes, irrespective of vesicular pH (but does not stain
primary lysosomes), and is being used in a growing
number of studies to detect autophagosome dynamics
in live cells.19,34,35 Leptin exhibited only a mild effect on
autophagy dynamics, tending to attenuate the initial
rate of increase in total autophagosome area per cell
(a composite measure of new autophagosome forma-
tion and expansion/maturation) (Figure S1(a,b)). This
result was variable and not significant with 10 ng/ml
(Figure S1(c)), but demonstrated a modest, though sig-
nificant, ~15% decrease in the rate of total autophago-
some area growth with 100 ng/ml. To determine the
likelihood that this might represent a physiologically-
relevant response, we measured LepR expression – both
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the total amount, and the long isoform (ObRb), using
specific primers (detailed in Methods). Compared to
adipocytes and to whole adipose tissue or liver samples,
RAW264.7 cells expressed only minute amount of total
LepR, but not its long isoform (Figure 1(a)). Thus, this
cellular macrophage system provides only limited sup-
port for leptin’s effect on macrophage autophagy, and
given the modest inhibitory effect – could not explain
contribution to the activation of whole adipose tissue
increased autophagy in obesity.

To estimate if leptin might activate autophagy in adi-
pocytes, we first assessed LepR expression in the adipo-
cyte cell line. Both pre-adipocytes and differentiated

adipocytes expressed a readily-measurable amount of
total LepR, but not the ObRb isoform. These levels were
markedly lower than in whole adipose tissue (in which
ObRb was also expressed, being 15% of the total LepR
expression), but comparable to the expression of adipo-
cyte fraction isolated from mouse adipose tissue after
collagenase digestion (Figure 1(a)). Furthermore, leptin
acutely increased AMPK phosphorylation in these cells
(~30% increase at 5 min, an effect completely inhibited by
the LepR inhibitor SMLA – data not shown). We next
utilized the established live-cell imaging approach (used
above in macrophages) to detect autophagosome
dynamics in differentiated pre-adipocyte cell line (lipid

Figure 1. Leptin receptor isoforms expression and live-cell imaging of autophagosome dynamics in differentiated adipocytes. (a) The
expression of total (black bars) and long (ObRb, white bars) LepR isoforms mRNA was measured in murine adipocyte cell-line (pre
and after differentiation), RAW264.7 murine macrophages cell-line, mice adipose tissue (whole tissue and adipocytes fraction) and
liver (positive control), using primers directed to the extracellular domain or the intracellular domain of ObRb, respectively. Results
are presented as fold expression from adipocytes cell line (n = 4). Values are mean ± SEM. Means were compared by Mann-Whitney
t-test. *p < 0.05, **p < 0.01. (b) Live-cell imaging (Operetta high throughput imaging system) of differentiated murine adipocyte
cell-line stained with CYTO-ID (green) to detect autophagosomes (white arrows), in BODIPY-C12 (red, to stain lipid-droplets) –
positive cells, and Hoechst (blue) to stain nuclei. Cells were treated with or without CQ (10 μmol/l) to inhibit autophagosome
degradation, or with 3-methyladenine (3MA, 5 mmol/l) to inhibit autophagosome biogenesis. Scale bar, 20 μm and 5 μm in zoomed-
in images. Shown are representative images. (c) Quantification of mean total autophagosome area per cell in BODIPY-C12 positive
cells over time was done semi-automatically by following CYTO-ID punctae area using Columbus software. Black arrows correspond
to the time-points shown in B.
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droplets were stained by the fatty acid fluorescent probe
BODIPY-C12). Over a > 4h tracking time, among the
BODIPY-C12 positive cells (i.e., differentiated adipocytes),
we observed that more autophagosomes accumulated in
the cell when their degradation was prevented with cho-
loroquine (Figure 1(b,c)). Conversely, the pan-PI3kinase
inhibitor, 3MA, frequently used to inhibit autophago-
some formation, markedly attenuated the process.
Jointly, live-cell imaging of autophagy dynamics can be

reliably achieved in differentiated adipocytes by tracking
CYTO-ID-positive puncta.

To assess leptin-induced changes in adipocyte
autophagosomal “mass” (number and size), cells were
pre-treated with chloroquine to prevent autophago-
some degradation, and the change in autophagosome
number and area was followed during the first 1.5 h of
leptin treatment. As seen in individual cells quantified
by the image analyses software (Figure 2(a)) and in

Figure 2. Leptin increases autophagosome area growth rate. Live cell imaging of differentiated murine adipocytes treated with
leptin (100 ng/ml) without or with leptin receptor antagonist (SMLA 20 µg/ml – the latter was given 30 minute prior to recombinant
leptin). CQ (10 μmol/l) was added as in Figure 1. Images are representative of three independent experiments performed in
triplicates, with each well providing 23 images. Identification and quantification of images was done semi-automatically by
Columbus software, and the mean value derived from each experiment was used to calculate the final comparison between
experimental conditions. (a) Changes in CYTO-ID positive puncta (white arrows) in selected adipocytes over three time points. Right
panel depicts the spots area as identified by the image analysis software. Scale bar, 5 μm. (b) Representative image (out of 23) and
a summary of their changes in CYTO-ID spots parameters (spots number, spots area and total area) as measured by the software.
Scale bar, 20 μm. (c) The change (Δ CYTO-ID positive puncta area) was calculated compared to the initial time-point from which CQ-
mediated increase was observed (Follow-up time). (d) Growth rate (slope of graphs in C) of total cellular area of CYTO-ID positive
puncta. ‘b’ = different from ‘a’ at confidence level of more than 95%.
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whole representative fields (Figure 2(b)), Leptin
induced a moderate, ~20% increase in the rate of
autophagosome area/cell (Figure 2(c,d)), suggestive of
increased autophagosome biogenesis and/or matura-
tion/expansion. This effect was nearly fully inhibited
by the leptin-R blocker, SMLA, confirming the specifi-
city of the response to the leptin-LepR system. Since in
adipose tissue in obesity autophagy genes’ mRNA and
protein levels were increased, we also determined
whether leptin could elevate the expression of such
gene products in adipocytes. The mRNA levels of
ATG5 and of Map1lc3b were mildly but nevertheless
significantly elevated (by ~15–20%), following stimula-
tion of adipocytes with leptin (Figure 3(a)). A similar
change was also detectable in some autophagy genes’
protein levels (Figure 3(b)).

Given the mild effect of leptin on adipocyte autop-
hagy detected by the cell imaging system, we aimed to
further assess whether leptin can activate autophagy-
related functions, by adopting for use in adipocytes, an
autophagy activity assay based on degradation of long-
lived proteins.31 For this purpose we metabolically
labelled long-lived proteins by pulsing cells with radi-
olabeled valine (a branched amino acid that does not
affect mTOR, a regulator of autophagy), followed by
a wash-out period of 24 h with media containing non-
labelled valine, as detailed in methods. Over a 6 hour
subsequent follow-up, 14C-valine release from long-
lived proteins to the media was linear. More impor-
tantly, the autophagy inhibitor bafilomycin markedly
inhibited, while serum and nutrient – free medium
(EBSS) accelerated the rate of 14C-valine release
(Figure 4(a)), consistent with a significant contribution
of autophagy to this process. Non-autophagy long-lived

protein degradation (i.e., in the presence of bafilomy-
cin) was similar under all conditions (Figure 4(b), black
bars). Nutrient- and serum-free buffer increased total
14C-valine release by >2-fold, and the rate of autop-
hagy-mediated degradation by >3 fold (Figure 4(b,c)).
Leptin treatment increased total and autophagy-
mediated 14C-valine release (the latter by >2 fold), an
effect that was completely blocked by the Leptin-R
blocker SMLA (Figure 4(b,c)).

Discussion

Although still debated, autophagy is likely activated in
adipose tissue in obesity.6,13–15,36,37 The regulation of
autophagy is highly cell and tissue – type, and biological
context dependent, and indeed, multiple inducers of
autophagy can be envisioned in the altered adipose tissue
milieu in obesity. These include the development of
adipose tissue hypoxia, inflammation, oxidative stress,
ER stress, insulin resistance, etc.,38 although nutrient
overload per-se (like high concentrations of free fatty
acids and glucose) would theoretically tend to attenuate
autophagy.30,39 In this study, we demonstrate that leptin
can modestly modulate autophagosome dynamics as
evident by the acceleration of the rate of growth of
autophagosome area per cell – a composite measure of
autophagosome number and size. This effect of leptin is
evident in adipocytes, but not in the RAW macrophages.
Although we demonstrate very low expression of LepR
in these cells, others demonstrated leptin-induced activa-
tion of mTOR activity, which would inhibit autophagy.40

Utilizing autophagy-related degradation of long-lived
proteins, leptin had a more pronounced activating effect
in adipocytes. Taken together our results suggest that

Figure 3. Leptin increases the expression of selected autophagy genes and proteins in adipocytes. Differentiated murine adipocytes
were treated with leptin (100ng/ml) for 24h. (a) Autophagy related gene expression measured by RT-PCR, normalized to RPLP0 and
HPRT. Results (n = 4 independent experiments) are the mean+SEM fold expression from control. (b) Representative Western blots of
autophagy related proteins normalized to β actin. Results in the graph are the mean+SEM densitometry values of four independent
experiments. *p < 0.05.
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obesity-related hyperleptinemia may contribute to
autophagy activation in adipose tissue, acting in an auto-
crine/paracrine manner via the leptin receptor.

Since autophagy is a dynamic process in which autop-
hagosomes are generated and degraded, snap-shot ana-
lyses of cellular autophagosome number, size, and of
autophagy-related proteins’ content can lead to mislead-
ing conclusions. An increase in autophagosomal ‘mass’
can result from increased biogenesis, and/or inhibited
degradation of autophagosomes. Therefore, dynamic
assays have become critical when evaluating autophagic
activity, and ideally, this should be performed by more
than a single assay.41 Here, we utilized dynamic, high
throughput live-cell imaging to track the increase in
autophagosome area when autophagolysosome degrada-
tion was inhibited. This allows assessing the effect of
leptin on initial rate of autophagosome biogenesis and
expansion (maturation). As stated above, leptin had
a modest effect using this assay, as well as on the expres-
sion of several key autophagy gene mRNA and protein
levels. Leptin’s capacity to activate autophagy was more
robust when autophagic activity was assessed by the
degradation rate of long-lived proteins. It is possible that
the apparent differences of leptin’s efficacy to activate
autophagy are due to different sensitivities of the two
assays. Yet, it is also plausible that they uncover a true
biological difference. Chaperone-mediated autophagy
(CMA), and micro-autophagy, are two processes in
which intracellular components, in particular proteins,
are destined for degradation by the lysosomal compart-
ment, by inserting them into the lysosome, independent
of the creation of new autophagosomes that would need

to merge with lysosomes to degrade their cargo.42 Indeed,
degradation of the lipid droplet-associated proteins peri-
lipin 2 and 3 was shown to be CMA-dependent.43 Thus, it
is tempting to speculate that leptin may only modestly
activate macro-autophagy, while more robustly augment
CMA and/or micro-autophagy. Current literature pro-
vides little evidence, if any, on direct regulation of these
processes by leptin: Chaperone-mediated autophagy was
proposed to be activated by calorically restricting high-fat
fed mice,44 a condition that would be predicted to dimin-
ish, not increase, leptin levels. Moreover, the effect was
demonstrated in liver, a tissue in which macro-autophagy
may be regulated opposite to adipose tissue in obesity.38

No information at all was found in the literature on leptin
and micro-autophagy. Thus, it would seem worthwhile to
address future studies on the potential capacity of leptin
to particularly target one or both of these generally less-
studied autophagic processes. This may be of particular
relevance to adipocyte biology. In adipocytes 38% of
detected proteome was reported to have an exceedingly
long half-life, with no discernible degradation evident
even after 96h of follow-up.45 Moreover, in that study,
(macro)autophagy was proposed to contribute only mini-
mally to total adipocyte protein degradation,45 suggesting
that leptin, by particularly regulating other autophagy-
type processes/lysosomal compartment – related process,
could be an important regulator of adipocyte protein
homeostasis.

It is noteworthy that a recent extensive study con-
cluded that leptin inhibits ER-stress – induced
autophagy.27 The in-vivo experiments of the study can-
not exclude an indirect effect of leptin treatment, such

Figure 4. Leptin enhances long-lived protein degradation rate in adipocytes. (a) Time-dependent release of radioactive valine from
epididymal adipocytes pre-pulsed with L-[14C(U)]-Valine, as described in Methods. Cells were either treated with EBSS+0.1% BSA to
stimulate autophagy (= positive control), control media (con), media containing leptin (100 ng/ml) only, or media containing leptin +
SMLA (1 μg/ml) with or without Baf.A. The radioactivity was measured in both the supernatant fraction and cell pellets and % of [14C]-
valine release was calculated as described in Methods. (b) Long-lived protein degradation rate calculated as % of L-[14C(U)]-Valine
release per 1 h, with or without Baf.A. (0.1 μM). Results are mean ± SEM of 3 independent experiments, each performed in triplicates.
Different letters denote significant differences between treatments in the absence of Baf.A, p < 0.05. (c) Net autophagy-mediated
L-[14C(U)]-Valine release (ΔProtein degradation rate) as calculated from b. As in b, different letters denote significant differences
between treatments (-Baf.A-(+Baf.A), p < 0.05.
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as via its actions on hypothalamic centres. Yet, some in-
vitro studies that also support the authors’ conclusions
cannot be easily reconciled with our studies, though we
propose that our highly dynamic approach to detect
changes in autophagic flux, and more so – the finding
that leptin may particularly augment long-lived protein
degradation, possibly through mechanisms distinct
from macroautophagy, may underlie the differences
between the studies.

Obesity is thought to be associated with leptin
resistance,21 questioning the relevance of our findings
in obesity. Yet, whether adipocytes exhibit leptin resis-
tance is not unclear: several papers concluded that obe-
sity induces leptin resistance in whole AT,46,47

characterized by decreased pSTAT3 levels and elevated
SOCS-3 expression. Yet, other studies27 do show leptin
responsiveness of AT in obese (ob/ob) mice. Regardless,
the chronicity of obesity may suggest that any leptin
regulation of adipocyte autopahgic process as we show
here, even if with a small effect size due to LepR expres-
sion and/or to obesity-related leptin resistance, may
nevertheless bear physiological relevance over time.

Leptin is only one, out of hundreds of peptides,
which are altered in obesity. Yet, since adipocytes are
its major source, and given that obesity is usually asso-
ciated with hyperleptinemia, local concentrations of
leptin in adipose tissue may be very high.
Systemically, leptin’s circulating levels are amongst the
adipocytokines with the highest dynamic range, parti-
cularly differentiating lean from obese persons. Thus,
despite being a single factor amongst many, which is
studied here in isolation, it is not impossible that leptin
contributes significantly to the dysregulated/activated
adipose tissue autophagy and to this tissue’s dysfunc-
tion in obesity.
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