
insects

Article

Unraveling the Morphological Variation of Triatoma infestans
in the Peridomestic Habitats of Chuquisaca Bolivia:
A Geometric Morphometric Approach

Carolina Vilaseca 1, Marco A. Méndez 2 , Carlos F. Pinto 1, Darija Lemic 3 and Hugo A. Benítez 4,*

����������
�������

Citation: Vilaseca, C.; Méndez, M.A.;

Pinto, C.F.; Lemic, D.; Benítez, H.A.

Unraveling the Morphological

Variation of Triatoma infestans in the

Peridomestic Habitats of Chuquisaca

Bolivia: A Geometric Morphometric

Approach. Insects 2021, 12, 185.

https://doi.org/10.3390/insects12020185

Academic Editor: Joji M. Otaki

Received: 28 December 2020

Accepted: 18 February 2021

Published: 22 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratorio de Ecología Química, Universidad Mayor Real y Pontificia San Francisco Xavier de Chuquisaca,
Sucre, Bolivia; vilaseca_c@yahoo.com.ar (C.V.); leqcepi@gmail.com (C.F.P.)

2 Laboratorio de Genética y Evolución, Facultad de Ciencias, Instituto de Ecología y Biodiversidad,
Universidad de Chile, Santiago 6640022, Chile; mmendez@uchile.cl

3 Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25,
10000 Zagreb, Croatia; dlemic@agr.hr

4 Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule,
Universidad Católica del Maule, Talca 3466706, Chile

* Correspondence: hbenitez@ucm.cl

Simple Summary: Triatoma infestans is the main vector of the Chagas disease transmission and has
been for years one of the main sanitary problems in Bolivia, particularly for the movement between
isolated population to the urban areas. In the following research, we analyze the pattern of biological
adaptation of this vector species from two different areas in Bolivia (areas of the Bolivian Chaco
with the inter-Andean valleys). Using advanced geometric morphometric tools, it was possible
to unravel T. infestans morphological variation and understand the biological adaptation of this
important insect species.

Abstract: Morphometrics has been used on Triatomines, a well-known phenotypically variable insect,
to understand the process of morphological plasticity and infer the changes of this phenomenon. The
following research was carried out in two regions of the inter-Andean valleys and two Chaco regions
of Chuquisaca-Bolivia. Triatoma infestans adults were collected from the peridomestic (pens and
chicken coops) along a geographic gradient in order to evaluate the morphological differentiation
between groups and their pattern of sexual shape dimorphism. Geometric morphometric methods
were applied on the wings and heads of T. infestans. The main findings include that we proved
sexual dimorphism in heads and wings, determined the impact of environmental factors on size
and shape and validated the impact of nutrition on head shape variation. These results show that
geometric morphometric procedures can be used to provide key insight into the biological adaptation
of T. infestans on different biotic (nutrition) and abiotic (environment) conditions, which could serve
in understanding and evaluating infestation processes and further vector control programs.

Keywords: Triatoma infestans; sexual dimorphism; shape plasticity; geometric morphometric; Cha-
gas disease

1. Introduction

In Bolivia, Triatoma infestans (Klug) Hemiptera Reduviidae is the main vector of
Trypanosoma cruzi, a parasite that causes Chagas disease. T. infestans is a synanthropic insect
it is found in seven countries in Latin America [1]. In Bolivia, T. infestans is not only limited
to the intradomiciliary and peridomestic habitat, but in some localities of the inter-Andean
valleys and the Chaco, there are sylvatic foci [1–3]; however, in Chuquisca no sylvatic foci
outbreaks have been identified yet [4]. Environmental characteristics, such as temperature
and relative humidity, as well as the structure of the pens and chicken coops, are important
factors to understand the morphological characteristics of the insect.
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Chuquisaca is a region where the Chagas disease has been endemic in Bolivia; pro-
grams for diagnosis and treatment of the disease have been implemented along with the
application of chemicals like insecticides in houses and peridomestic habitats, such as
pens, chicken coops and warehouses [5]. According to reports from the Chagas Program,
the intradomiciliary infestation level in the inter-Andean zone has decreased to less than
3%, but in the Chaco region, it is still high, more than 7% [5]. In the rural peridomestic
environment, infestation rates for T. infestans are still high in both regions, more than 14%,
despite spraying insecticides, with continuous re-infestation processes [5]. Morphometric
analyses in T. infestans have studied the differentiation between domestic and sylvatic
specimens in Bolivia [2,3,6–10].

In the last thirty years, studies that analyze the relationship between wild (sylvatic)
and domestic T. infestans populations have been performed using linear morphometrics of
multiple traits. Recently, geometric morphometrics with the aim to understand patterns of
the origins of morphological variation and the level of Chagas infection related to the host
and environmental conditions [7,11,12].

Nevertheless, intra and interspecific patterns of sexual dimorphism related to envi-
ronmental conditions are less studied. Sexual dimorphism is a topic of interest in parasito-
logical studies, particularly using vector species since the differentiation between sexes is
often not obvious, or the specimens are very small; thus, finding discriminating characters
allows easy determination of sexes [11]. Sexual dimorphism differences in morphological
traits are a common phenomenon in insects, and their most conspicuous aspect is the size
and ultimately shape [13–16]. Investigating the pattern of morphological adaptation has
been an essential element in comparative biology and invasion biology, and particularly in
the study of organismal diversification and evolutionary innovation [17–19].

The subfamily Triatominae is well-known as a highly plastic subfamily of insects,
where morphometric studies have been used to understand the process of plasticity and
sexual dimorphism and infer the changes of these phenomena [20,21]. Triatoma infestans
(Hemiptera: Reduviidae) is an insect that presents a high level of morphological variation;
such variation was described by Dujardin et al. [20] as phenotypic plasticity, an important
process to increase or decrease in size in response to short-term environmental variation,
while shape variation has a genetic component [22].

Hernández et al. [23] found a relationship between nutritional status and head sexual
size dimorphism in triatomines from chicken coops and goat pens studied in their natural
environment. Dujardin et al. [24] reported a reduction of sexual dimorphism in head
measurements of T. infestans populations raised in a laboratory, in similar conditions to an
intradomiciliary environment, compared to sylvatic populations, due to the effects of high
population density and food competition, hence, females would be smaller than sylvatic
specimens because they have higher nutritional requirements.

The aim of this research is to unravel the pattern of morphological variation of Triatoma
infestans between two contrasting environments and evaluate the presence of sexual shape
and size dimorphism in the peridomestic habitat along a geographic gradient in Bolivia.

2. Materials and Methods
2.1. Study Area

The study was conducted in four geographical regions of Chuquisaca-Bolivia: two
locations in the inter-Andean valleys: Tarabuco/Sarufaya, high valleys (Lat. 19◦10′ S Long.
64◦54′ O) and Sucre/Surima, low valleys (Lat. 19◦29′ S Long. 65◦18′ O). Two in the Chaco
region, the first one located in the wet Chaco Monteagudo/Cañón Largo (Lat. 19◦48′ S
Long. 63◦57′ O), and the other in the dry Chaco Huacaya/Imbochi (Lat. 20◦37′ S Long.
63◦10′ O) (Figure 1). The inter-Andean valleys, in the mountainous relief, are in the way
of the humid air coming from the east, causing abundant rains. The high inter-Andean
valleys are at more than 2900 m above sea level, temperatures are around 17 ◦C, humidity is
40% per year approximately, and they have high plateau characteristics. Low inter-Andean
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valleys have a humidity of approximately 50%, the temperature is around 24 ◦C per year,
and they are below 2900 m above sea level [25].
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Figure 1. Coordinate information from the Military Institute of Geography of the four locations
where Triatoma infestans populations were sampled in Chuquisaca.

The wet Chaco is also found in the Tucumano–Boliviano region; it is a region of lower
mountains, the height of the mountains does not exceed 2600 m above sea level, at the base
of the mountains, the altitude is 900 m above sea level. It has a warm and humid climate;
the temperature is around 28 ◦C per year and humidity is close to 50% [25].

The dry Chaco region is located at the east of the Eastern Mountain Range, a region of
flat arid lands, related to Paraguay and Northern Argentina, which has a warm climate
with annual temperatures above 30 ◦C, and low humidity, around 20%, it is denominated
the Bolivian Boreal Chaco [25].

2.2. Insect Sampling and Preparation

A total of 110 adults of Triatoma infestans were examined, 57 females and 53 males,
distributed as follows: Tarabuco/Sarufaya (TS) 11; 11, Sucre/Surima (SS) 22; 18, Hua-
caya/Imbochi (HI) 13; 12, Monteagudo/Cañon Largo (MC) 11; 12 females and males,
respectively. All were collected in peridomestic locations (pens and chicken coops). We
used a gripper to collect the insects, and each insect was placed in a plastic container. The
collection was between July and September 2018. The collection of insects was carried out
for three weeks per location.

Adult insects were introduced in a plastic container. At least 11 insects of the same
sex were collected per location and were preserved in alcohol (96%) for further analyses.
In the laboratory, wings were mounted in slides with Euparal ® for the analysis using the
right and left wings in all cases. Each head was excised at the collar and mounted on a pin
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attached to a metal support. All wings and heads were photographed and measured with
a Celestron handheld digital microscope pro 5MP.

2.3. Morphometric Analysis

Eight landmarks were selected for dorsal views of the head, and nine landmarks of
the wings (Figure 2) and digitized using the software TpsDig2 V.231 [26]. For all digitized
individuals, the shape information was extracted using a Procrustes superimposition anal-
ysis, which is a procedure that removes the information of size, position, and orientation to
standardize each specimen according to centroid size [27].
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Figure 2. Graphical representation of the landmark positions in head and wing of Triatoma infestans.
(A) Head dorsal view; (B) wing view.

The measurement error (ME) was calculated using a Procrustes ANOVA in order to
detect digitizing errors in morphometric data. For this procedure, the original dataset
was compared with a control of repeated measures, and the values of the mean squares
(MS) of the individual values were compared with the error (dataset of the repeated
measurement) [28,29].

To characterize the head and wing shape variation, a principal component analysis
(PCA) was carried out based on the covariance matrix of shape. Canonical variate analysis
(CVA) methods were used to amplify the shape variation and visualize the sexual shape
dimorphism between T. infestans populations [30–32]. Mahalanobis and Procrustes mor-
phological distances were calculated and reported with their respective p-values after a
permutation test (10,000 runs). Multivariate regression of shape (dependent variable) on
centroid size (independent variable) was performed to analyze if the size has an influence
on the shape distribution (allometric effect) of T. infestans populations of Inter-Andean
valleys and Chaco. All the analyses were performed using the software MorphoJ V.1.06 [29]
and the R package Momocs [33].

3. Results

The Procrustes ANOVA for assessing the measurement error of head shape showed
that the mean square for individual variation exceeded the measurement error: MS error:
0.0000354342 < MS individual: 0.0001282749. The measurement error in the wings showed
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that the mean square for individual variation exceeded the measurement error (MS error:
0.000099151 < MS individual: 0.0010029078).

Principal component analysis showed that the first three PCs accounted for 52.882% of
the head shape variation (PC1:22.440%, PC2:16.373%, PC3:14.069%). The PCA of the wings
view showed that the first three PCs accounted for 61.055% (PC1:33.499%, PC2:16.613%,
PC3:10.743%). In order to localize the shape variation, the average shape was extracted
for the two localities of Inter-Andean valleys (Sucre/Surima and Tarabuco/Sarufaya) and
two localities of Chaco (Huacaya/Imbochi and Monteagudo/Cañon Largo). The dorsal
head view showed that individuals of T. infestans from HI were clearly different from the
TS, but with few superpositions of individuals with MC and SS and the wing view, the
superposition of individuals was more evident for all populations. (Figures 3–5).

Insects 2021, 12, x FOR PEER REVIEW 5 of 15 
 

 

3. Results 
The Procrustes ANOVA for assessing the measurement error of head shape showed 

that the mean square for individual variation exceeded the measurement error: MS error: 
0.0000354342 < MS individual: 0.0001282749. The measurement error in the wings showed 
that the mean square for individual variation exceeded the measurement error (MS error: 
0.000099151< MS individual: 0.0010029078). 

Principal component analysis showed that the first three PCs accounted for 52.882% 
of the head shape variation (PC1:22.440%, PC2:16.373%, PC3:14.069%). The PCA of the 
wings view showed that the first three PCs accounted for 61.055% (PC1:33.499%, 
PC2:16.613%, PC3:10.743%). In order to localize the shape variation, the average shape 
was extracted for the two localities of Inter-Andean valleys (Sucre/Surima and Tara-
buco/Sarufaya) and two localities of Chaco (Huacaya/Imbochi and Monteagudo/Cañon 
Largo). The dorsal head view showed that individuals of T. infestans from HI were clearly 
different from the TS, but with few superpositions of individuals with MC and SS and the 
wing view, the superposition of individuals was more evident for all populations. (Fig-
ures 3–5). 

 
Figure 3. PCA of the Triatoma infestans head dorsal view in four populations. Color code: green: Huacaya/Imbochi (HI); 
orange: Monteagudo/Cañon Largo (MC); blue: Sucre/Surima (SS), and pink: Tarabuco/Sarufaya (TS). 
Figure 3. PCA of the Triatoma infestans head dorsal view in four populations. Color code: green: Huacaya/Imbochi (HI);
orange: Monteagudo/Cañon Largo (MC); blue: Sucre/Surima (SS), and pink: Tarabuco/Sarufaya (TS).



Insects 2021, 12, 185 6 of 15
Insects 2021, 12, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 4. Principal component analysis (PCA) of the Triatoma infestans wing view in four populations. Color code: green: 
Huacaya/Imbochi (HI); orange: Monteagudo/Cañon Largo (MC); blue: Sucre/Surima SS), and pink: Tarabuco/Sarufaya 
(TS). 

Figure 4. Principal component analysis (PCA) of the Triatoma infestans wing view in four populations. Color
code: green: Huacaya/Imbochi (HI); orange: Monteagudo/Cañon Largo (MC); blue: Sucre/Surima SS), and pink:
Tarabuco/Sarufaya (TS).

The scatterplot of CVA shows differentiation between females and males (sexual shape
dimorphism) in heads and wings of T. infestans populations of Chaco and Inter-Andean
valley (Figure 6).

After extracting Mahalanobis and Procrustes distances (permutations 10,000 runs),
T. infestans did not show sexual shape dimorphism using Procrustes distances for both
structures and also for Mahalanobis was not evident in the head of the inter-Andean valleys.
According to the relationship between the Mahalanobis Distance (p < 0.0001), T. infestans
populations of Chaco showed sexual shape dimorphism in the head, but not for wings,
and, in addition, T. infestans populations of inter-Andean valleys presented dimorphism in
wings (Table 1).
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view. Green: Huacaya/Imbochi (HI); orange: Monteagudo/Cañon Largo (MC); blue: Sucre/Surima
(SS), and purple: Tarabuco/Sarufaya (TS).
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Figure 6. Scatterplot of the canonical variate analysis of Triatoma infestans populations of Chaco and Inter-Andean valley
(A) Canonical variate analysis (CVA) of head dorsal view Huacaya/Imbochi and Monteagudo/Cañon Largo; (B) CVA
of wing view Huacaya/Imbochi and Monteagudo/Cañon Largo; (C) CVA of head dorsal view Tarabuco/Sarufaya and
Sucre/Surima; (D) CVA of wing view Tarabuco/Sarufaya and Sucre/Surima. Orange: female/Huacaya-Imbochi; light
blue: male/Huacaya-Imbochi; gray: female/Monteagudo-Cañón Largo; purple: male/Monteagudo Cañón Largo; red:
female/Sucre-Surima: blue; male/Sucre-Surima; pink: female/Tarabuco-Sarufaya; black: male/ Tarabuco Sarufaya.

Table 1. Pairwise comparison using Mahalanobis distance and Procrustes distance between females
and males of Triatoma infestans inter-Andean Valley and Chaco population (* p < 0.0001).

View Region
Mahalanobis Distance Procrustes Distance

F/Chaco F/Valley M/Chaco F/Chaco F/Valley M/Chaco

Head
dorsal

F/Valley 1.81138 * 0.0123

M/Chaco 1.8254 * 2.2565 * 0.0132 0.0168 *

M/Valley 1.7989 * 1.3489 2.2707 * 0.0131 0.0073 0.0177*

Wings

F/Valley 2.5087 * 0.0235*

M/Chaco 1.3489 2.2660 * 0.0107 0.212

M/Valley 2.3459 * 1.5397 * 2.1843 * 0.0191 0.0187 0.0193

The multivariate regression showed that, although the allometric percentage was
lower, the influence of size was noticeable in the different traits evaluated, where shape
variation showed influence by allometry in head and wings; dorsal head view 3.73242%
p-value 0.0001 and wings view 3.1994% p-value < 0.0001. It is possible to identify that
T. infestans from the Inter-Andean valley are bigger than the specimens from Chaco (see
set of gray points at the left of Figure 7A and set of blue points at the right of Figure 7B.
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(Figure 7). When the analysis is separated between the four analyzed populations, a clear
sexual size dimorphism was also observed were males from inter-Andean valleys, and
Chaco was smaller in size for both of the traits compared to the females (Figure 8).
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4. Discussion

This study analyzed the morphological plasticity and sexual shape dimorphism of T.
infestans in two geographical environments, the inter-Andean valleys and Chaco and found
the following results: (A) sexual dimorphism in heads and wings; (B) significant effect of
environmental factors on size and shape; (C) impact of nutrition on head shape variation.

(A) In Bolivia, sylvatic-Andean T. infestans inhabits rock piles and feeds on animals
living in burrows. Morphologically it has a yellow connexivum, similar to the intradomicil-
iary variety. At the same time, the specimens from boreal Chaco that live in trees and feed
on birds have a dark connexivum [34–36]. Males often made their movements by flying
and prefer peridomestic and intradomicile environments; conversely, females have limited
dispersal capabilities, they remain in a single habitat, and they do not discriminate their
food source [21]. This research confirmed a significant morphological variation in the head
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and wings of T. infestans. In sylvatic environments, investigated populations of T. infestans
showed high levels of sex-based dimorphism. Results showed that females are larger
than males (discussed in Djuradin et al. [9]). In species like insects, a sexual dimorphism
observed in smaller size and shape of males is often revealed in many species of Diptera,
Lepidoptera, Hymenoptera and Coleoptera [37–43]. After further analyses, this survey
found that sexual dimorphism depends on geographic region. T. infestans populations
from Chaco had sexual shape dimorphism in the head but were not observed for wings,
while T. infestans populations of inter-Andean valleys had sexual dimorphism in wings.
According to Fairbairn [44] and Cox et al. [45], sexual dimorphism may be the result of
ecological and reproductive pressure. Sexual dimorphism in triatomines can be related to
feeding habits and population density [24,46,47]. In the Bolivian Chaco (Huacaya/Imbochi
and Monteagudo/Cañon Largo), T. infestans were found in the intra- and peridomestic
habitat, with increased population density compared to populations from the valleys. High
population density may determine an intraspecific competition for food, consequently
having males with smaller heads than females [48]. As discussed in Mikac et al. [49] for
coleopteran species and in Lemic et al. [42] for dipteran species, it is thought that bigger
wings are probably more aerodynamic and may also be useful for mated females that
are known to engage in migratory flights. Considering presented results and based on
literature review [43,49–52], this study provides opposite morphological evidence than
shown in Hernández et al. [21] that the migration in T. infestans can be attributed to the
females of this species.

(B) The insect size and shape were influenced by environmental factors. The geog-
raphy of inter-Andean valleys featuring mountains, temperatures between 17 and 24 ◦C
and humidity above 40%, and the structure of peridomestic environments, such as chicken
coops and pens, built with earth blocks that make them dark and wet, are unfavorable fac-
tors for the development of T. infestans microcolonies. In these unfavorable environmental
conditions, females have the priority in feeding, which has a direct influence on their bigger
wing size and shape [53–55]. T. infestans fly in the warmer months when temperatures get
close to 30 ◦C. At temperatures below 20 ◦C, T. infestans do not fly; therefore, re-infestation
of peridomicile to intradomicile becomes difficult because the insects must walk for feed-
ing [56]. Centroid size was used in this research as a measure of overall head and wing
size differences among T. infestans populations. Because of these high temperatures in
boreal Chaco (Huacaya/Imbochi) (temperature higher than 30 ◦C and humidity lower than
20%), the specimens were smaller compared to those from the valley. Vilaseca et al. [12]
similarly observed that the centroid size of T. infestans was larger in populations from
the inter-Andean valleys compared to specimens from Chaco. In Chaco, variations were
observed in T. infestans heads; males had a smaller head and a different shape compared to
female heads. According to Hernández et al. [48], changes in the males’ head morphology
have a dispersal genetic component. The variation in size among populations suggests
strong differential selection and sensitivity to changes in environmental conditions [57–61].
Reproductive studies on insects have shown that the biological cycles associated with high
temperatures would be shorter; therefore, the specimens tend to be smaller [8,9,53,62–65].
In contrast to size, analyses of organismal shape, which was proofed to be influenced by
allometry, provide more reliable information about the phenotypic variation of populations
representing high and stable heritability [66,67]. Although T. infestans head and wing shape
comparisons revealed some differences between populations, clear site-specific population
differentiation was not found. However, an environmental pattern in head and wing shape
variation was detected when populations were pooled by sex (as already described in
part A).

(C) Nutrition profile has been observed in variability in this study. Unfavorable
environmental conditions lead to circumstances in which females have the priority to feed,
therefore resulting in smaller males (in shape and size). Consequently, the females become
bigger than the males as an adaptation mechanism to the environmental pressures in order
to enhance fertility [53–55]. Males carry out the re-infestation process, so they tend to stay
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in the peridomicile (Chicken coops and pens) [21]. T. infestans mostly feed on bird blood.
According to Natero et al. [68] and Lunardi et al. [69], when triatomines feed on bird blood,
no variability in the head shape will occur. In this research, no dimorphism was observed in
the shape of the head because both females and males fed on bird blood. When analyzing
centroid size, females’ heads occur longer than male heads. Except for the intensity of
feeding, the type of blood host also could have an influence on morphological variation in
this species. According to Natero et al. [68], when T. infestans feeds on mammalian blood,
a morphological widening and shortening effect of the head is observed, in contrast to
individuals feeding on bird blood. Lunardi et al. [69] found phenotypic plasticity in Triatoma
williami based on feeding on a mammal or bird blood as an adaptation process to the host.
In this research, T. infestans from Chaco was found in the intra and peridomicile, and the
males tend to fly from the peridomestic to intradomicile and feed on human/mammal
blood, which evidently had a direct influence on the variability in size and shape of the
male heads comparing with female heads.

At the population level, the variation of the first three principal components showed
that there was no clear-cut separation between the populations, which is in agreement with
a high proportion of misassignments and the findings of low population structure and
no isolation by distance (using mitochondrial cytochrome b gene and microsatellite loci),
as demonstrated by Giordano et al. [4] and Marcet et al. [70]. According to these authors’
findings, T. infestans populations are genetically similar. The slight wing shape differences
detected (especially between wings) may be the result of emerging phenotypic plasticity.
Phenotypic plasticity is often defined as the change in the phenotypic expression of a
genotype in response to environmental factors [71] and has been shown to have significant
evolutionary consequences [71,72].

5. Conclusions

The morphological variation of T. infestans from two different environments has been
determined. The inter-Andean and Chaco populations showed the sexual size and shape
dimorphism in relation to environmental factors and nutrition. The results of the present
survey will serve as a starting point in further understanding the re-infestation processes
to redesign the science-based vector control programs.
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