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Simulation models of pedestrian dynamics have become an invaluable tool
for evacuation planning. Typically, crowds are assumed to stream unidirec-
tionally towards a safe area. Simulated agents avoid collisions through
mechanisms that belong to each individual, such as being repelled from
each other by imaginary forces. But classic locomotion models fail when
collective cooperation is called for, notably when an agent, say a first-aid
attendant, needs to forge a path through a densely packed group. We pre-
sent a controlled experiment to observe what happens when humans pass
through a dense static crowd. We formulate and test hypotheses on salient
phenomena. We discuss our observations in a psychological framework.
We derive a model that incorporates: agents’ perception and cognitive
processing of a situation that needs cooperation; selection from a portfolio
of behaviours, such as being cooperative; and a suitable action, such as
swapping places. Agents’ ability to successfully get through a dense
crowd emerges as an effect of the psychological model.
1. Introduction
Simulation models of pedestrian dynamics are widely used today especially for
evacuation planning [1–4]. Such models usually consist of unidirectional flows
of agents (simulated pedestrians) and are used to estimate the evacuation time
in emergency situations or to test safety concepts [5]. Simulations of such
models are a useful tool in the planning phase to detect critical high densities
for example to avoid casualties such as those reported at the Hajj on several
occasions [6, p. 164] or at the Love Parade music festival 2010 in Germany [7].

Locomotion models [8–10] work well for unidirectional flows because
they are mostly validated against empirical data [11]. They can provide helpful
insights and make crowd gatherings safer. But often locomotion models fail for
set-ups that seem only slightly different. For instance, when a first-aid attendant
needs to forge a path through a dense crowd to reach an injured person.When re-
enacting such a real-world situation in current simulation tools, agents often get
stuck and end up in a deadlock situation because there is no real interaction
between agents, compare figure 1.
1.1. Related work
Several authors extended existing locomotion models to manoeuvre agents
through virtual environments and to mitigate shortcomings of these models.
For instance, [12,13] let agents evade tangentially or sideways. Using such col-
lision avoidance strategies on a microscopic level often leads to lane formation
on a macroscopic level. But, pure physically inspired locomotion strategies like
collision avoidance do not work for very dense crowds as seen by the simulations
in figure 1. In the real world, humans adapt their behaviour [14, p. 11–12]. For
instance, humans just ask to be let through. Humans use perception, cognition
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social force model optimal steps model

(a) (b)

Figure 1. A walking agent (red) starts walking at the bottom area and tries
to reach the rectangular target area on top while confronted with a dense,
stationary crowd. In simulations, we cannot identify real interaction between
agents when using different physically inspired locomotion models. Either the
walking agent ‘ignores’ the dense, stationary crowd and walks on other
agents which could not happen in real life (a). Or the crowd blocks the walk-
ing agent completely because of the high density (b). The open source
simulator Vadere was used for the simulations. (a) Social force model and
(b) optimal steps model.
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and a repertoire of different behaviours. [15] made first steps to
integrate psychological findings into pedestrian dynamic
simulations to control the social force model [9]. [15]
integrateddifferent agent states like queuing or pushing behav-
iour. [16,17] extended cellular automata to overcome deadlock
situations in bidirectional pedestrian flows based on a more
cooperative behaviour of agents. [16] integrated ideas from
game theory and swerving preferences which are based on
previous successful swerving behaviour. Xue et al. conducted
their own experiment [18] and integrated a sort of ‘give way to
counterflowing agents’ into a cellular automaton. However,
both approaches were limited to cellular automata models,
[16] even to one-dimensional scenarios. Also other simulator
developers, both researchers and commercial ones [19,20],
extended existing locomotion models to better cover waiting
behaviour and other real-world situations. But all these exten-
sions were integrated without providing empirical data or
evidence. By contrast, [21] provided empirical evidence and
developed a model to simulate crowd behaviour with social-
cognitive agents with a focus onmusic festivals. They captured
the motivation of individuals by including various physio-
logical parameters like memory, bladder, stomach and
arousal and goal-oriented agents. But adding a plethora of
parameters on the individual level makes the model difficult
to understand. Feliciani & Nishinari [22] extended a cellular
automaton to allow greater densities and enabled swapp-
ing strategies for agents to maintain flow in counterflow
scenarios. Nevertheless, to our knowledge there is no systema-
tic operationalization of psychological processes to let agents
pass through a stationary crowd.We argue that the classic loco-
motion models do not capture collective cooperation of real
humans.

For us, the classic modelling process consists of making
real-world observations and then finding mathematical and
algorithmic formulations to describe the observed phenomena
well. After implementing this as computer programs, we are
able to carry out simulations to obtain further insights. In
fact, another reason why models for high-density situations
are still missing is the lack of empirical data. Numerous authors
conducted experiments with a strong focus on unidirectional
flow of pedestrians with moderate density [23–26] and coun-
terflow scenarios [27,28] or bottlenecks [29,30]. Other authors
focusedmore on collective phenomena in crowds. For instance,
[31] investigated the influence of barriers on the behaviour of
participants. They included the social psychology perspective
by using questionnaires to obtain insights into participants’
perception. And other authors focused more on egress and
queuing behaviour such as [32]. To our knowledge, [33] are
the first authors who conducted an experiment with a station-
ary crowd and who tested the effects on walking participants.
Even the exhaustive two-volume literature review [34,35] for
empirical methods and experiments in pedestrian dynamics
did not explicitly mention stationary crowds and their effects.
So far, experiments have been conducted, but no model was
derived or the model was described, but was not mapped to
a clean and reusable software architecture. In fact, until
recently, simulation frameworks for pedestrian dynamics com-
pletely lacked evidence-based models of cooperative actions,
such as group actions [36]. Since then, first proofs of concept
of specific situations have emerged, where empirical findings
from social psychology, not analogy from physics, inspire the
model. See [37,38]. Yet, to our knowledge, nobody has opera-
tionalized psychological findings into computer models of
crowds where an agents’ ability to pass through a dense
crowd emerges as an effect. We would like to close this gap.

But what should be the corner stone of such a psychologi-
cal model? Prima facie, it seems that individuals manage to
flow through dense crowds, and that this is achieved via
cooperation from the crowd, who adjust themselves and
move to give the individual a little space, rather than via
force (since the latter would breach social norms around
peaceful behaviour and politeness). For example, [26] show
that when individuals approach a crowd in counterflow
they do not simply walk into it nor do they simply stop but
rather there is some negotiation of space among individuals
to allow one to flow through the other. Thus, we argue that
we need a model of crowd cooperation.
1.2. Goals of our work and article structure
In this contribution, we aim to model collective behaviour in
a crowd so that the ability of agents to pass through dense
static crowds emerges. Our goal is to directly base the
model on empirical evidence and also to firmly put it into
the frame of current social psychology. Finally, we strive for
a reusable software structure and free and open-source
implementation of the model that can be generalized to a
large number of instances of cooperative collective behaviour.

The paper is structured as follows: In §2, we present a con-
trolled experiment which we conducted in 2018 with students.
We list our observations and formulate hypothesis which
we test statistically. The most important, albeit almost trivial
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Figure 2. The experiment set-up: a waiting crowd of 13 participants in a delimited area of 2.64 m2 is successively crossed by a participant (figure from [39]).
(a) Schematic set-up and (b) real set-up.
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observation is, that the participants were indeed able to get
through the crowd. In §3, we then describe the psychological
processes in such a situationandoperationalize it into aparsimo-
nious model. That is, we restrict the model to elements that we
deem absolutely necessary: the perception and subsequent
cognition of a situation that calls for behavioural changes,
the selection of a behaviour fromaportfolio, notably being coop-
erative, and the selection of a suitable action, such as swapping
positions. This operationalization represents a simple, generic
and reusable model allowing more interactions between agents
which can be easily implemented in different pedestrian simu-
lation programs. We implement our model in a parsimonious
computer program for which we run computer experiments in
which the desired phenomenon emerges: agents are able to
pass through a crowd. Finally, in §4, we evaluate our results.
We present ideas how to add detail for a better quantitative
match of second-order effects and we discuss how to generalize
the model to encompass other collective phenomena.
2. Experiment
2.1. Experiment set-up
In order to study the effects of high densities on a walking
person, we performed a controlled experiment in the foyer
of the Munich University of Applied Sciences on 12 October
2019 (11.45–13.00).

In the experiment, we observed how a participant walks
through a dense,waiting crowd. To this end,we kept 58 partici-
pants in a separate waiting room. The participants were
entertained by experiment assistants with quizzes and discus-
sions to keep the atmosphere as normal as possible. To avoid
any priming, the participants received minimal information.
The participants signed an informed consent form with the
title ‘Study on movements of pedestrians’. The form stated
that no physical risks were involved and that the experiment
was recorded on camera. We chose first-year students in their
second week as participants to ensure that they did not know
anything about the experiment’s intentions.

During the experiment, 13 participants stood in a delimited
area of 2.64 m2 (1.55 m× 1.70 m) as a waiting crowd. In each
experiment run, the walking participant successfully crossed
the crowd alongwhatwould be the y-axis in figure 2a. The den-
sity while crossing was ρ = 5.30 ped m−2. For each experiment
run, we randomly chose one person from the waiting room
and assigned this person as walking participant. For the very
first run, we also chose 13 persons from the waiting room
and assigned them as waiting crowd.

We took two measures to avoid training effects for the
waiting crowd: (1) after each run, a staff member shuffled
the waiting crowd. To this end, the waiting crowd were
asked to leave and re-enter the waiting area, so that the pos-
itions of the participants were shuffled. (2) After five runs,
seven random participants of the waiting crowd were
replaced by seven participants from the waiting room, who
were also chosen randomly. We also took several measures
to avoid observer biases like using a standardized experiment
procedure with consistent instructions for all participants.
The walking participants were instructed with the sentence
‘Go to the tree by crossing the crowd’. The waiting crowd
was instructed with ‘Wait in the delimited area’. See [39]
for a description of all measures. Tables on the left- and
right-hand side of the waiting area prevented the participants
from leaving the waiting area accidentally. The experiment
set-up is depicted in figure 2 and described in more detail
in [39].

In total, 58 students participated in the experiment.
Twenty-seven of them (men and women), aged 19–66, were
assigned as walking participants and performed 30 runs
(compare figure 3). We collected gender, age, height and
shoulder width for each walking participant.

The experiment was filmed from above at an angle of
around 60° (compare figure 2b). We recorded the experiment
with a camcorder Sony Handycam HDR-PJ780VE using a res-
olution of 1280 pixel × 720 pixel and 25 frames per second. The
raw video material had a length of 73min. We used the free
video analysis and modelling tool Tracker [40] to correct the
optical distortion and to track the trajectories of the walking
participant and the waiting crowd. For this purpose, we
applied Tracker’s ‘Auto-Tracker’ feature. See electronic sup-
plementary material, E1 for more information about
trajectory extraction. After trajectory extraction, we used self-
written Python scripts, more precisely Jupyter notebooks, to
analyse the data.
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2.2. Experiment results
We began by watching the experiment’s video footage. This
step helped us to verbalize the human behaviour we
observed and to formulate the following hypotheses:

— Pedestrians walking through a crowd are slowed down.
— The pedestrians in a waiting crowd return to their initial

positions after giving way to the ‘intruder’.
— Real humans can pass a crowd at high densities.

The last hypothesis, while seemingly trivial, is the most
important one, because this is where simulated agents have
failed so far. In a second step, we will test these hypotheses
and quantify effects.
Figure 4. Box plot for speed distribution (averaged instantaneous speeds) of
the walking participants inside and outside the waiting crowd.

Table 1. Detailed statistics for the measured speed distributions of the
walking participants inside and outside the waiting crowd.

speed (m s−1)

inside outside

sample size 30.00 30.00

mean 0.70 1.33

s.d. 0.19 0.25

min 0.44 0.93

25% 0.55 1.16

50% 0.63 1.36

75% 0.77 1.40

max 1.21 2.20
2.2.1. Experiment result: speed distributions
Firstly, we measured the instantaneous speed of the walking
participant inside and outside the waiting crowd. Outside
the crowd this gives an estimate of the ‘free-flow’ speed,
which is thewalking speed of a pedestrian if no external effects
force the pedestrian to slowdownor to speed up.Wemeasured
the ‘free-flow’ speed in front of the waiting crowd instead of
behind because the area in front is closer to the camera and
we expect a lower measurement error from optical distortion.
The instantaneous speed vi(t) for walking participant i at
time step t is defined as

vi(t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxi(t)

2 þ Dyi(t)
2

q

DT
, (2:1)

where ΔT = 1/25 s = 0.04 s (that is, in the Tracker
software we evaluated 25 camera frames per second) and
Δxi(t) = xi(t)− xi(t− 1).

Then we averaged the instantaneous speed values vi(t)
over all time steps N when the participant was inside the
measurement area

�vi ¼ 1
N

XN
t¼1

vi(t): (2:2)

Figure 4 and table 1 provide an overview of the averaged
instantaneous speeds of all walking participants.

Comparing the mean instantaneous speed of 0.70 m s−1

(inside) and 1.33 m s−1 supports our hypothesis that the
walking participants are slowed down by the waiting crowd.
At a density ρ of 14 persons per 2.64 m2, that is, ρ = 5.30
persons/m2, we measure a ‘slow-down’ factor of 1.33/
0.70 = 1.9≈ 2.

We also performed Student’s t-test to check if the waiting
crowd has an effect on a walking participant’s speed. For this,
we calculated for each walking participant i: Δvi = vi,in− vi,out.
Then, we applied a one-sided t-test with following
mathematical hypotheses:

— H0 : mean(Δvi)≥ 0
— H1 : mean(Δvi) < 0
— Significance level: 0.05
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walking participant. The plot includes the best-fitting continuous distributions
with a p-value � 0:90.

Table 2. Detailed statistics for the participants of the waiting crowd and
the Euclidean distance between participant’s initial and end position.

distances (m)

(metric 1)

sample size 400.00

mean 0.14

s.d. 0.11

min 0.00

25% 0.06

50% 0.11

75% 0.19

max 0.76
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The test statistic T ¼ ffiffiffiffi
N

p � (mean(Dvi)� 0)=s.d.(Dvi)
revealed a value of T =−10.75 for all N = 30 participants.
We drop the H0 hypothesis of no influence since our tests
statistic T is far below the significance limit of 0.05 of the cor-
responding t distribution, which is −1.70 at a p-value ≪ 0.01.

Whenwatching thevideo footage,we identified somepoten-
tial outliers in thedata. For instance,weobservedaparticular fast
participant outside and inside the waiting crowd. The partici-
pant stretched out the hands like a swimmer to ‘dive’ through
the crowd. We also observed a very slow participant inside the
waiting crowd whom some members of the waiting crowd
blocked intentionally. We decided to keep these outliers for
our statistical analysis to stay close to the real world where one
can also observe different techniques to cross a dense crowd.
Some of these techniques are faster or slower than others.

The measured mean free-flow velocity of 1.33 m s−1

outside the waiting crowd is very close to previous empirical
measurements like [41] with 1.34 m s−1. This strengthens our
belief that we gathered realistic data.
Table 3. Detailed statistics for the participants of the waiting crowd and
the maximum Euclidean distance

distances [m]

(metric 2)

sample size 400.00

mean 0.25

s.d. 0.16

min 0.00

25% 0.13

50% 0.22

75% 0.33

max 0.93
2.2.2. Experiment result: distribution of the waiting crowd
We want to shed light on the question of whether the waiting
crowd participants return to their initial positions after giving
way to an intruder. To analyse the movement of each partici-
pant of the waiting crowd, we looked at two metrics: first,
we measured the Euclidean distance between the initial
and the end position of each participant. Second, we looked
at the maximum Euclidean distance a waiting participant
walked. For this, we compared each position of a participant’s
trajectory1 with the trajectory’s initial position.

Then, we investigated if the extracted distances follow a con-
tinuous probability distribution. We tested the data against 94
distributions [42] and used the Kolmogorov–Smirnov test to
verify thegoodnessof fit.TheKolmogorov–Smirnov testassumes
as null hypothesisH0 that the sampled data and the tested distri-
bution follow the sameprobability distribution. In our survey,we
keep only distributions with a p-value greater 0.90. Figure 5 and
table 2 summarize the data for the first metric (the Euclidean dis-
tance between initial and end position). Figure 6 and table 3
summarize the data for the second metric (the maximum
Euclidean distance).
We cannot identify one single and best-fitting distribution
for each of the two metrics. However, we observe that the
best-fitting distributions are not of the same type for
the two metrics. We also observe that the distribution of
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the maximum distance is broader, with a heavy tail towards a
larger value.

We hypothesized that participants in the waiting crowd
return to their initial positions. But, it would be unrealistic to
expect them to hit the exact same spot. Also, people shift from
one foot to theotherwhichcausesthehead tosway forat least sev-
eral centimetres which is also reported by [43, fig. 3, p. 4]. Thus,
within an error margin, we would expect a distribution for the
first metric, which is centred around a value, a little off from
zero,bywhichwaiting individuals,onaverage,misstheiroriginal
position. This, in principle, is what we see. In any case, the
participants do not stay at the position of maximum difference.

We argue that the data supports a tendency to return,
where the mean distance from the initial position is only
0.14m with a standard deviation of 0.1 m.

2.2.3. Experiment result: trajectories and walking participant and
duration in waiting area

With a third set of measurements, we took a closer look at
how walking participants manoeuvre through the waiting
crowd. For this, we first plotted the trajectories of the walking
participants, see figures 7 and 8.

Then we measured the time the walking participants
spent in the rectangular waiting area of 1.55 m × 1.7 m
(width × height), see figure 9.
The trajectory plots show that allwalking participantswere
able to cross the waiting crowd. Instead of straight lines, we
observe curvy trajectories where walking participants move
around a waiting person or both seem to swap places. Our
measurements of thewaiting participants’maximum displace-
ment in figures 6, and 7 show that thewaiting participants also
move. We argue that this indicates interaction. In fact, during
the experiment we saw different techniques: communication
through eye contact or asking verbally, but also shoving the
waiting person aside. Recent virtual reality experiments that
track eye-gaze in dense crowds underline pedestrians’ focus
on the closest vicinity for interactions [44]. This supports our
hypothesis that collaboration with the next neighbours enables
pedestrians to navigate through a dense crowd. We will
use this finding to choose a suitable action in our model of
cooperative behaviour.

Figure 9 visualizes the duration a walking participant
spends inside the waiting area. It indicates that the interaction
process between the participants takes time. The mean dur-
ation of a walking participant’s stay inside the waiting area
is 7.88 s. Note, that if a walking participant walked through
the waiting area, on a straight line, with an instantaneous
speed of 0.70 m s−1 (measurement from table 1), it would
only take height/speed = 1.70 m/0.70 m s−1 = 2.43 s.
3. Model
3.1. The need for a psychology model complementing

pure locomotion
In the experiment, all walking participants were able to cross
the waiting crowd by interacting with the other participants.
From this, we derived our hypothesis that real humans can
pass a crowd at high densities. This simple hypothesis is essen-
tial since it is where pedestrian stream simulators often fail, see
figure 1. We will focus on this challenge with our new model
proposal. Attempts to solve the problem solely on the loco-
motion layer, through collision avoidance as depicted in
figure 10 do not work for very dense crowds which is shown
by the simulations in figure 1. In the real world, however,
humans adapt their behaviour [14, pp. 11–12] to the situation.
Humans use perception, cognition and a repertoire of different
behaviours. They also interact.
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We strive for a model that fulfils two important require-
ments: (1) firstly, the new model shall represent a generic
architecture which can be easily integrated into different
simulation tools, independent of the choice of locomotion
model, and that can be generalized to other instances of col-
lective cooperation. Thus, the new model will be beneficial
for the whole research community. (2) Secondly, the new
model shall be a faithful operationalization of psychological
processes which affect the behaviour of agents. That is,
it must be correct from a psychological perspective and it
must be sufficiently simple to be understood by different
research communities like computer scientists, physicists,
sociologists or psychologists.
3.2. Model of a psychology layer for collective
cooperation

Like for any other simulation software, a pedestrian stream
simulator’s core is a simulation loop inwhich time is incremen-
ted. In this loop, a locomotion model is responsible for finding
the next position for each agent in each simulated time step
(compare electronic supplementary material, listing S1).
Most of the current locomotion models [9,10,45,46] only
include physical aspects to navigate an agent through an
environment. For instance, obstacles repel an agent while
targets attract agents.

But, the key is to include also the psychological status of an
agent in each simulation step. This layer represents the mental
processes of perception and cognition of real humans [14,
p. 206ff.] and effects the behaviour of an agent. Additionally
that means, instead of having just one behaviour—that is,
moving towards a target—an agent must have a behavioural
repertoire from which the agent can choose from to react to
its environment. In the case of our experiment, that means
that agents (both walking and waiting)

— on the perception sub-layer, perceive other agents in a
sight/ search radius r;

— on the cognition sub-layer, realize that an agent cannot
move anymore (that is, the speed over the last n steps is
below a certain threshold) and they change their self-cat-
egory [47] from target-oriented to cooperative to follow
new social norms. We chose the term self-category here
because [48, p. 20] states that ‘self-categorization [·· ·]
becomes the psychological basis for crowd behaviour’
which is in our case collective cooperation;

— on the locomotion layer, being cooperative means that
agents swap places to reach their target.

Figure 11 visualizes the sequential processing of information
inside the introduced psychology layer. The lower layers, e.g.
cognition, process only the information from the direct upper
layer. That means, an agent firstly perceives environmental
stimuli, then an agent processes this information in the cognition
layer and enriches it with further information (in case of the
experiment thiswould be an agent’s speed). This simple architec-
ture reflects what real humans do: perceive, process and react to
this information with a specific behaviour. See figures in §3.3 to
see the model in action and how target-oriented agents become
cooperative and swap places to reach their target.

The main advantage of this clearly separated psychology
layer is that experts in psychology or other fields can implement
the perception and cognition sub-layers without knowing
implementation details of the pedestrian stream simulator.
A locomotion expert can implement the specific locomotion
strategies. For instance, if cooperative behaviour does not
mean swapping two agents, another locomotion strategy can
be implemented on the locomotion layer. This clean software
architecture makes it possible to work on a pedestrian stream
simulator by combining knowledge from different research
domains as proposed by [48, p. 46].



IPerception Model

// No member variables

void initialize (Topography topography)
void update (Collection <Agent> agents,
List <Stimulus> stimuli)

Simple Perception Model

Topography topography

void initialize (Topography topography)
void update (Collection <Agent> agents,
List <Stimulus> stimuli)
Stimulus rank Stimuli (List <Stimulus> stimuli,
Agent agent)

Other Perception Model

// Variables...

// Methods...

...

...

...

The Topography represents the environment,
i.e., it contains obstacles etc.. It is stored by a
model so that agents can retrieve this information.
The update() method iterates over all agents, ranks
the current environmental stimuli at a specific time step
(i.e., multiple stimuli can occur at a specific time step)
and stores the most important one inside the agent.

ICognition Model

// No member variables

void initialize (Topography topography)
update (Collection <Agent> agents)

Cooperative Cognition Model

Topography topography

void initialize (Topography topography)
void update (Collection <Agent> agents)

Other Cognition Model

// Variables...

// Methods...

...

...

...

The Cooperative Cognition Model uses the ranked
stimuli from the perception sub-layer and uses
additional information (e.g., the average speed
of the last n time steps) to decide which behaviour
to use next. Later on, the locomotion layer can retrieve
the information from the cognition sub-layer.

(a)

(b)

Figure 12. An UML diagram of the interfaces and classes of the perception
and cognition sub-layers. Public methods are denoted with green circles, pri-
vate methods are denoted with filled, red squares and member variables are
denoted with unfilled, red squares. (a) Interfaces and classes of the percep-
tion sub-layer. (b) Interfaces and classes of the cognition sub-layer.

Time step 1 Time step 4 Time step 29

(a) (b) (c)

Figure 13. A walking agent (red-encircled) starts walking in the green source
area and tries to reach the brown target area while the agent is blocked by a
waiting crowd consisting of 13 agents. The colours represent the current behav-
iour of an agent: blue is target-oriented behaviour and green is cooperative
behaviour. (a) Time step: when the simulation starts, all agents are target-
oriented. While the walking agent is attracted by the brown target, the waiting
crowd does not have a target and waits. (b) Time step 4: the agents of the wait-
ing crowd become cooperative because their speed falls below a certain
threshold. (c) Time step 29: the walking agent reaches the waiting crowd
and cannot move anymore. Thus, the walking agent also becomes cooperative.
The walking agent searches for a swap candidate (orange-encircled) and both
swap positions.
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Introducing this psychology layer (with sub-layers
perception, cognition and locomotion) modifies the
existing simulation loop electronic supplementary material,
listing S1 only very slightly and keeps the overall software
architecture simple and easy to implement according to the
KISS principle [49, p. 18; 50, p. 10], compare electronic
supplementary material, listing S2. perceptionModel and
cognitionModel are implementations of interfaces. Using
this design decision—the strategy pattern—extends a ped-
estrian stream simulator to a tool that can also test
psychological hypotheses. That means that it is possible to
change the perception and cognition model for each simu-
lation run and covers different real-world situations. For
instance, an experiment situation differs from a daily
commuting situation which affects humans’ perception and
cognition. This reflects also the fact that a simulation tool
cannot provide a ‘one-fits-all-situations’ model. Therefore,
we facilitate interfaces with only two methods here, see
UML diagram in figure 12.

Electronic supplementary material, listings S3 and S4
shows that it only requires 13 lines on the cognition sub-
layer and 24 lines on the locomotion layer to obtain collective
cooperative agents and to re-enact the experiment. For
example, if an agent (walking and waiting) cannot move
anymore, it becomes cooperative. Cooperative behaviour
results in swapping positions. The proposed psychology
layer was implemented in Vadere [51,52] because it is open
source and has a well-validated locomotion layer [53,54].
Vadere is an open source framework for the simulation of
microscopic pedestrian dynamics.

The following steps were carried out:
1. Add interfaces IPerceptionModel and ICognition-

Model (see UML diagrams in figure 12).
2. To re-enact the experiment set-up from §2.1, implement

SimplePerceptionModel and CooperativeCogni-

tion Model. SimplePerceptionModel is empty
because there were no external stimuli present in the exper-
iment. CooperativeCognitionModel changes an
agent’s self-category from target-oriented to cooperative if
an agent cannot move anymore (that is, its speed is below
a certain threshold by storing an agent’s psychology
status with agent.setSelfCategory(SelfCategory

newSelfCategory), see electronic supplementary
material, listing S3.

3. Extend the existing simulation loop: In each simulation
loop, invoke perceptionModel.update() and cog-

nitionModel.update(), see electronic supplementary
material, listing S2.



Time step 31 Time step 36 Time step 51

(a) (b) (c)

Figure 14. Cooperative behaviour of agents inside the waiting crowd. The
colours represent the current behaviour of an agent: Blue is target-oriented
behaviour and green is cooperative behaviour. (a) Time step 31: after swap-
ping positions, the walking agent (red-encircled) and the swap candidate
(orange-encircled) becomes target-oriented again because their speed is
above a certain threshold. (b) Time step 36: the walking agent becomes
cooperative again and swaps position with another cooperative agent,
which is closer to the target. (c) Time step 51: the walking agent found
its way through the dense crowd by using cooperative behaviour.
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Figure 15. Box plot for speed distribution of the walking agent inside and
outside the waiting crowd.

Table 4. Detailed statistics for the measured speed distributions of the
walking participants inside and outside the waiting crowd.

speed (m s−1)

inside outside

sample size 100.00 100.00

mean 0.16 1.31

s.d. 0.03 0.15

min 0.12 0.90

25% 0.14 1.20

50% 0.15 1.32

75% 0.17 1.41

max 0.24 1.68

y 
(m

)

x (m)
1.75 2.00 2.25 2.50 2.75 3.00 3.25

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

Figure 16. The trajectories of 25 walking agents inside the waiting area (red
rectangle). Inside the waiting area, the walking agents follow zig-zag trajec-
tories because they swap positions with agents of the waiting crowd. By
changing to a cooperative behaviour, all walking agents were able to
reach the target region. The agents of the waiting crowd are placed at
the same positions for all 100 simulation runs. Therefore, we did not see
a greater variety of the trajectories inside the waiting area.
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4. On the locomotion layer, evaluate agent.getSelfCa-

tegory() and react to it, see electronic supplementary
material, listing S4.

3.3. Re-enacting the experiment with the collective
cooperation model

The psychology layer was implemented in the pedestrian
stream simulator Vadere. We re-enacted the experiment set-
up from §2.1 as closely as possible by using the same dimen-
sions. We carried out 100 simulation runs with slightly
varying initial position of the walking agent but consistent
positions for the agents of the waiting crowd. Figures 13
and 14 show one of these simulation runs and visualize
how the walking agent (red-encircled) changes its target-
oriented behaviour to a cooperative one when the agent is
blocked by the waiting crowd.

To validate the simulations, we compare the simulation
results to the experiment results. In §2.2, we measured
the speed of the walking participant, the spatial distribu-
tion of the waiting crowd and the trajectories of the
walking participant. In our comparison, we omit the spatial
distribution of the crowd because, in the implemented
model, the agents of the waiting crowd just wait in the
waiting area and do not move at all. This is what we
assumed as—very simplified—waiting behaviour. That is,
the travelled distance by the agents of the waiting crowd is
zero. Therefore, it makes no sense to compare it with
the experiment participants who moved continuously at
least a bit.



mean: 9.90 s
s.d.: 2.24 s
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Figure 17. The duration of the walking agents inside the waiting area as a
histogram.
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The 100 simulations reproduce themeasured instantaneous
‘free-flow’ speeds at least qualitatively: the walking agents are
slowed down inside the waiting area from 1.31 m s−1 (outside)
to 0.16 m s−1 (inside) on average compared to 1.33 m s−1 and
0.70 m s−1 in the experiment, see figure 15 and table 4.

The speed of the walking agent inside the waiting crowd
is much lower than what we have observed in the exper-
iment. In the experiment, even if the walking participant
is blocked by the waiting crowd for some moments, the
walking participant constantly moves its body a tiny bit.
That means the speed of the walking participant is constantly
greater than zero. But in the simulation, it takes some simu-
lation steps until a walking agent becomes cooperative
when the agent is blocked by the waiting crowd. That is,
the agent’s speed is zero for a lot of simulation steps, which
lowers the average speed of the walking agents. Please keep
in mind that this is the very first version of such a psychologi-
cal model of collective cooperation and it will require some
sort of calibration in the future.

Nevertheless, in our simulations, we see that all
walking agents were able to cross the waiting crowd like in
the experiment with real humans, see figure 16. Also the
mean time of the walking agent inside the waiting area is
very close to the experiment observations: 9.90 ± 2.24 s in
simulation compared to 7.88 ± 2.31 s in the experiment, see
figure 17.
4. Conclusion
We identified a major shortcoming in current pedestrian
simulation models: the lack of collective cooperation which
means that agents fail at seemingly simple tasks, such as for-
ging a path through a dense crowd. Since empirical evidence
is extremely scarce we also presented a controlled experiment
to observe what really happens when participants pass a
waiting crowd: we placed students in a delimited area of
2.64 m2 and let other participants walk through this waiting
crowd. We took measures to avoid observer biases and to
obtain reliable data from the experiment. We derived three
hypotheses, namely: (1) real humans succeed in passing
through a crowd at high density. (2) Pedestrians walking
through a crowd are slowed down. (3) The pedestrians in
the waiting crowd mostly return to their initial positions
after giving way to the individual they allow through.
While seemingly trivial, the first hypothesis is vital, because
this is where classic locomotion models fail.

We presented a model where agents interact with each
other to allow collective cooperation. Agents are able to per-
ceive their environment, process this information and enrich
it with additional information (within the simulation) in a cog-
nition process. Then, agents select from a portfolio of possible
behaviours, notably being target-oriented, or being coopera-
tive. Actions on the locomotion layer follow, such as making
a step towards a target or swapping place with a cooperation
partner. The model is independent of the choice of locomotion
model. It is implementation within the Vadere simulation
framework is free and open-source.

In a re-enactment of the experiment situation, our simu-
lations qualitatively reproduce the empirical observations.
Most importantly, agents’ ability to pass through a dense
crowd emerges as an effect of the psychological model.

In the future, we hope that new experiments and field
observations will bring more qualitative and quantitative
information on behaviours in dense crowds so that we—or
other modellers—may add to the portfolio of behaviours,
and calibrate parameters for a better quantitative fit. Further-
more, our generic approach covers a wide range of real-world
situations of collective behaviours. As a next step, we would
like to recreate people’s collective reaction to perceived
threats within the same framework.
Data accessibility. We analysed the video material and extracted trajec-
tories of all participants. These trajectories and scripts for analysis
are placed in the ‘Pedestrian Dynamics Data Archive’ for public
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