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ABSTRACT

Genome-wide association study (GWAS) has been
the driving force for identifying association between
genetic variants and human phenotypes. Thousands
of GWAS summary statistics covering a broad range
of human traits and diseases are now publicly avail-
able. These GWAS have proven their utility for a
range of secondary analyses, including in particu-
lar the joint analysis of multiple phenotypes to iden-
tify new associated genetic variants. However, al-
though several methods have been proposed, there
are very few large-scale applications published so far
because of challenges in implementing these meth-
ods on real data. Here, we present JASS (Joint Analy-
sis of Summary Statistics), a polyvalent Python pack-
age that addresses this need. Our package incor-
porates recently developed joint tests such as the
omnibus approach and various weighted sum of Z-
score tests while solving all practical and compu-
tational barriers for large-scale multivariate analy-
sis of GWAS summary statistics. This includes data
cleaning and harmonization tools, an efficient algo-
rithm for fast derivation of joint statistics, an opti-
mized data management process and a web interface
for exploration purposes. Both benchmark analyses
and real data applications demonstrated the robust-
ness and strong potential of JASS for the detection
of new associated genetic variants. Our package is
freely available at https://gitlab.pasteur.fr/statistical-
genetics/jass.

INTRODUCTION

The human genetics community has now access to a
wealth of genome-wide association study (GWAS) sum-
mary statistics for a wide spectrum of phenotypes, rang-
ing from biometric measurements to molecular phenotypes
and most common diseases. For example, as of May 2019,
the NHGRI-EBI GWAS Catalog contains the results from
3989 GWAS (1). The tremendous value and practical utility
of those summary data have been demonstrated for a range
of secondary analyses (2–7). Indeed, working with GWAS
summary data solves both practical and ethical concerns,
such as the protection of the anonymity of the participants,
the secure storage of millions of variants across hundreds
of thousands of individuals and the harmonization of con-
sortium data.

The joint analysis of multiple phenotypes based on
GWAS summary statistics is currently a very active area of
research with dozens of approaches published in the past
few years (8–16). The primary goal of analyzing multiple
phenotypes jointly is to increase statistical power to detect
associated variants missed by univariate analyses (17–19).
However, large-scale real data multivariate GWAS analyses
are still rare despite recent extensive effort from the com-
munity. While published methods have shown efficiency in
simulated data and real data examples composed of few
GWAS, we found more demanding applications, including
dozens of GWAS performed from various platforms with
partial sample overlap, to be very challenging. Among most
prominent issues were harmonizing and cleaning heteroge-
neous summary statistics data format across studies, opti-
mizing computation time to deliver joint analysis results in
few minutes for several millions of single-nucleotide poly-
morphisms (SNPs), and summarizing and comparing joint
analysis results versus univariate results.

Moreover, an important aspect of exploring complex
multivariate data––here GWAS summary statistics of mul-
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tiple phenotypes––is the visualization and management of
results and data. This is a common issue in human genetics,
and a number of software have been published to help inves-
tigators coping with these issues. There are now many user-
friendly tools allowing for the annotation of results based
on existing functional database [e.g. Dalliance (20) and Top-
par (21)], the secure storage and extraction of results from
database (e.g. GWAS ATLAS (7)] or the plotting of results
integrating specific features (e.g. LocusZoom (22) and As-
socplots (23)]. Similarly, the dissemination of the methodol-
ogy for the joint analysis of multiple GWAS summary statis-
tics requires the development of robust and computation-
ally efficient tools. With thousands of GWAS studies now
publicly available, this requirement has become even more
crucial.

Here, we present JASS (Joint Analysis of Summary
Statistics), an integrated package for the joint analysis of
multiple GWAS summary statistics, including at the same
time analytical tools, visualization functions and an embed-
ded web interface. JASS provides the following features: (i)
functions for the fast and efficient computation of multi-
ple joint statistics from dozens to hundreds of GWAS re-
sults; (ii) an interactive web server for the visualization of
a selection of GWAS, along with the result of their joint
analysis; (iii) the possibility to install the software locally,
so that interested users might apply the analysis to their
own data in the safety of their own computation facility;
(iv) a command line interface for advanced users; and (v) a
nextflow (24) pipeline integrating GWAS cleaning, imputa-
tion and analyses into one tool. The paper is structured as
follows: first, we detail the main functionalities and the visu-
alization tools of JASS; second, we discuss the performance
optimization strategies we adopted; third, we provide some
technical details of the package; and last, we present appli-
cations using real GWAS summary data performed using
the public JASS server.

MATERIALS AND METHODS

Overview of JASS

JASS is a Python package that handles the computation of
joint statistics over sets of selected GWAS results through a
command line interface and/or a web interface. The deriva-
tion of joint statistics, and the generation of static plots to
display the results, as well as more advanced features such as
the implementation of user-defined statistics, can be easily
performed using the command line interface. Many of these
functionalities can also be accessed through a web applica-
tion embedded in the Python package, which also enables
the exploration of the results through a dynamic JavaScript
interface. The lists of available functions and features are
provided in Supplementary Tables S1 and S2, respectively.
Figure 1 shows a standard analysis workflow, including the
steps performed through companion packages.

Statistical tests implemented in JASS

A number of methods have been published for the joint
analysis of correlated GWAS summary statistics. We imple-
mented the two most common approaches that cover most

of the existing joint tests, although users also have the pos-
sibility to implement their own joint statistic and plug it in
the analysis. The first test is a standard omnibus approach
that combines k single GWAS statistics to form k degree of
freedom (df) statistics. For a given SNP, the omnibus statis-
tic can be expressed as

Tomni = zT�−1z, (1)

where z = (z1, z2, . . . , zk) is a vector of k Z-scores, derived
from the available GWAS summary statistics as zi = β̂i/σ̂i ,
where β̂i and σ̂i are the estimated regression coefficient and
its standard error for study i ; � is the covariance matrix be-
tween the Z-scores under the null and is assumed unique for
all SNPs analyzed. Under the null hypothesis of no associ-
ation between the SNP tested and any of the k phenotypes
tested jointly, Tomni follows a χ2 distribution with k df.

The second statistic is a weighted sum of Z-scores and
has the following form:

TsumZ =
(
wTz

)2

wT�w
, (2)

where w is a vector of weights assigned to each GWAS, and
applied uniformly to all SNPs analyzed. Under the null hy-
pothesis of no association between the SNP tested and any
of the k phenotypes tested, TsumZ follows a χ2 distribution
with 1 df. This joint test is the most discussed one in the
literature, and variations of this approach mostly consist in
optimizing the weighting scheme (e.g. 10,11). The users can
specify their own weighting scheme via a command line op-
tion.

Note that whichever multivariate statistic is used, the es-
timation of � is critical to ensure a correct type I error rate.
As done in our real data application, we strongly recom-
mend building that matrix using the intercept derived from
univariate and bivariate LDscore regression described by
Bulik-Sullivan et al. (6). However, users can provide their
own estimation of the covariance matrix or use a default es-
timator provided by JASS. Note that we integrated the LD-
score H0 matrix computation in our nextflow pipeline (see
the ‘Data pre- and postprocessing’ section).

Finally, besides approaches for the analysis of correlated
GWAS statistics, we also implemented the Fisher’s test and
the standard inverse-variance meta-analysis for investiga-
tors interested in performing classic meta-analysis. How-
ever, we emphasize that the validity of both approaches re-
quires univariate tests to be uncorrelated under the null,
which in general means no sample overlap across the GWAS
analyzed, or no correlation between the phenotypes consid-
ered. This hypothesis can be assessed by controlling the off-
diagonal terms of � are close to 0.

JASS input and output

The JASS package requires for input a set of GWAS sum-
mary statistics, and some metadata about these GWAS (e.g.
coded allele, sample size per SNP, etc.). Two additional
key arguments can be provided: (i) a matrix of the covari-
ance between statistics under the null hypothesis [i.e. �, see
Equations (1) and (2)]; and (ii) a map of regions that is used
to create summary results. If the covariance matrix is not
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Figure 1. JASS workflow. The figure shows the main steps of an analysis with JASS, including the preprocessing steps performed using either companion
packages (in yellow) or external software (in green).

provided by the user, it will be derived based on the ob-
served pairwise correlation between GWAS after filtering
out SNPs with P-values below a significance threshold (P
< 5 × 10−5), in order to remove likely associated variants
(25). Note that the primary purpose of the region map file
is to provide an overview of the main independent signals
and to improve exploration and visualization of the results.
It is not intended to provide a list of independently associ-
ated variants. The latter analysis should be conducted us-
ing suitable tools such as CO-JO (26). For meaningful in-
terpretation of the region-based results, we strongly suggest
to define the regions based on the SNPs’ linkage disequi-
librium (LD) between variants. If not provided by the user,
JASS will use regions based on LD recombination hotspot

computed using the approach proposed by Berisa and Pick-
rell (27) for European populations. From these input data,
the command line tool allows for multiple joint tests to be
performed: (i) the omnibus approach [Equation (1)]; (ii) the
sumZ approach [Equation (2)], where the user has to specify
a vector of weights; and (iii) any other alternative statistics
applicable to a vector of Z-scores.

Joint analysis results are stored into two tables. The most
significant SNPs by region are reported in the region table.
This table provides a simple way to count the number of in-
dependent significant loci. The results for all analyzed SNPs
are stored in the SumStaTab. Two main static plots can then
be generated from the joint analysis: (i) a so-called Man-
hattan plot, i.e. a scatter plot of genome-wide association
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signal showing the −log10 of the P-value of each region, ac-
cording to their position on the genome; and (ii) a quadrant
plot, which allows for a fast comparison of association sig-
nal between the joint test and single GWAS results. In brief,
the −log10 of the minimum P-value of each region from the
joint analysis is plotted as a function of the −log10 of the
minimum P-value from univariate GWAS analysis. The re-
sult is a four-quadrant scatter plot, where (i) the upper left
quadrant contains all the regions where the joint analysis is
significant when all the original GWAS are not, hence newly
detected regions; (ii) the upper right quadrant contains all
the significant regions identified with both strategies; (iii)
the lower right quadrant contains all the regions that are
significant for any one of the selected GWAS but not for
the joint analysis; and (iv) the lower left quadrant displays
the regions that contain no signals.

The web interface provides a complementary set of tools
for both analysis and visualization. Note that it is applica-
ble after all input data have been harmonized and merged
along all required information (Figure 1), and it currently
allows only for the omnibus test to be performed. Once a
set of GWAS has been analyzed, the user can proceed to
the exploration at the SNP level by clicking on a region.
This action will trigger the representation of an SNP level
heatmap of the Z-score across all GWAS analyzed jointly
and a zoomed Manhattan plot of the joint test associa-
tion results for that region. When implemented on a public
server, the web interface also offers the possibility of shar-
ing the results from an analysis through a ‘Share direct link’
button. It allows the user to generate a unique link for the
joint analysis they performed, avoiding other investigators
to replay the same analysis multiple times and an easy way
to access additional details from a published study.

Data pre- and postprocessing

A critical issue to ensure a valid multi-GWAS analysis is
the harmonization and cleaning of the input data. Raw
GWAS data are usually heterogeneous in their content and
format. To avoid the user series of time-consuming opera-
tions, we automatized all of these steps into a preprocess-
ing Python package tool (jass preprocessing) provided on
behalf of JASS. This companion package addresses the fol-
lowing: (i) it maps heterogeneous column names to standard
names (rsID, pos, A0, A1, Z); (ii) it derives Z-scores from
P-values and signed statistics (log odds ratio or linear re-
gression coefficients); (iii) when missing, it infers per-SNP
sample size from the effect estimate standard deviation and
the minor allele frequency; (iv) it filters SNPs with sample
size <75% of the maximum; and (v) it aligns coded genetic
variants with a reference panel. This reference panel should
be filtered out for strand-ambiguous variants and variants
with low frequency. In our example, we used 6 978 319 SNPs
selected using the European ancestry samples from the 1KG
project (28). This reference panel is available in the prepro-
cessing package.

Importantly, joint statistics commonly require complete
data to perform a statistical test. To increase the number of
SNPs with complete data, we chose to perform the system-
atic imputation of GWAS included in our real data exam-
ples. Because of the complexity of the task, we developed a

tool for the imputation of missing statistics in an indepen-
dent study implemented in the RAISS package (29). The in-
put and output formats of RAISS are the same as input for-
mat for the JASS package, so the imputation step can easily
be integrated in a JASS pipeline. Nevertheless, the impu-
tation of missing data can only be partial; therefore, JASS
includes a computationally optimized procedure to derive
joint statistics for each SNP only from the subset of GWAS
with available data.

We integrated these preprocessing steps into a nextflow
(24) pipeline, which provides several advantages for the
user: (i) automated transmission of preprocessed data to
subsequent analysis steps that greatly limit the number of
input data left to the user; (ii) if executed on an HPC cluster,
automatically parallelized subprocesses when possible; and
(iii) a stable computing environment by assigning a docker
container to each process.

Finally, despite careful preprocessing, it remains possible
that some features susceptible to impact the validity of mul-
tivariate tests are missing from the input data. For example,
GWAS might include summary results for imputed SNP
with relatively low imputation quality score (e.g. 0.3 ≤ R2 ≤
0.7). Such variants do not impact the validity of the univari-
ate screening, but can harbor differences in their covariance
� as compared to the other SNPs. Such differences can in-
duce false signals in a multivariate test. To handle such situ-
ations, we also propose a post-hoc filtering to remove likely
outlier signal. It consists in removing SNPs with genome-
wide significant multivariate signal (i.e. P-value <5 × 10−8)
in the absence of other signal with a P-value below a user-
specified threshold (10−6 by default) in the neighborhood
of the target SNP.

Technical details

Architecture. JASS is a Python package that can be run
both as a command line tool and as an embedded web ap-
plication, either on a local or on a public web server. An
overview of its architecture is illustrated in Figure 2, which
describes its primary components.

Data storage and computations. The analysis module of
JASS uses the pandas library for data processing, allowing
for convenient and fast computations over large datasets.
Furthermore, pandas includes a native support for HDF5
files, which JASS uses to store both the initial data and the
results of joint analyses. This format presents multiple ad-
vantages, including (i) generating cross-platform and com-
pressed files, (ii) enabling indexing (which later reduces the
access time when accessing the results during the interac-
tive exploration) and (iii) storing multiple data frames in a
single file.

Interactive web interface. The JASS web interface is imple-
mented in JavaScript, HTML and SVG. To browse the re-
sults efficiently, we use a plotly library. This library enables
the simultaneous display of very large numbers of points,
as encountered in JASS, where the size of GWAS matrices
to be explored can potentially reach hundred phenotypes
per several million SNPs. It is already used in other GWAS
analysis R packages, for example Manhattanly. The tables
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Figure 2. JASS architecture. The JASS Python package is composed of a central ‘analysis module’ that defines computational features, enables reading
input data and writing results to HDF files, and generating static plots as PNG files. These features can be accessed from a command line interface or from
an embedded web application powered by a Flask server that uses the connexion library and a JavaScript user interface using the plotly library that enables
the execution of joint analysis and the exploration of the results. In the latter case, the management of the analysis jobs requires the setup of a Celery server.

we use for selecting phenotypes and exporting results use
the jquery datatable plugin.

Web server. The web server provides all functionalities
(except for the initial data import), through a RESTful API.
This API is described with OpenAPI, and connected to the
Python JASS analysis module through the connexion li-
brary. It is used primarily by the web user interface, but
could also be used to run JASS analyses remotely, or with
other client frameworks. Contrarily to the command line
API, the statistics computation and plot generation oper-
ation is launched asynchronously, to avoid the potential
timeouts that can occur during its execution. The server uses
the Celery task queue to run these operations.

RESULTS

Balancing resource usage

The amount of data that has to be managed and processed
guided us to choose the architecture and the output format
for JASS. As discussed in the previous sections, there are
currently >3000 GWAS summary statistics available. These
GWAS currently contain approximately between 300 000
and 10 million genetic variants. However, future studies in-
cluding either additional imputed SNPs or sequence data
can potentially bring this total to up to 100 million variants
or more. Given these numbers, the loading and processing
of a multi-GWAS analysis would be intractable when using
either a standard laptop or a standard web server (which in-
cludes often <10 GB RAM). Therefore, emphasis has been

put on optimizing the memory usage, while preserving rea-
sonable execution times. This translated into two main com-
ponents in the JASS implementation.

First, while the analysis is done on a single SNP basis, we
constructed a region-based result on top of the single SNP
results. In brief, we defined genomic regions based on the
SNPs’ LD, and derived statistics and summary based only
the most significant SNP from each region. This region-
based result allows for both a very fast visualization at the
genome level in the web interface and a preliminary count of
independent signals, circumventing the loading of the whole
genome results. Here, we propose using regions based on
LD recombination hotspots computed using the approach
proposed by Berisa and Pickrell (27). Note that JASS offers
the possibility of using an alternative user-defined region
map. The map we used in our examples includes 1703 re-
gions. We derive in Figure 3A the distribution of the number
of SNPs per region in three arbitrary scenarios: 1M SNPs
from the Illumina Omni1-QuAd, 9.9M SNPs after imputa-
tion as available in (30) and 96M SNPs as available in the
latest UK Biobank genotype panel after imputation (31).
Overall, our approach shows a good scalability with an av-
erage of 590, 5812 and 54 664 SNPs per region, with maxi-
mum of 3470, 19 217 and 145 987 SNPs, respectively.

Second, we implemented a strategy where the computa-
tion of the joint analysis is performed iteratively on chunks
of 50 regions. The choice to process 50 regions at a time
corresponds to an optimal trade-off between computation
time and memory usage when analyzing multiple pheno-
types (e.g. ≥20, Figure 3B). Processing less regions per it-
eration would increase computation time and processing
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Figure 3. Resource usage and computation time. (A) The distribution of the number of SNPs per region when using the recombination hotspot map
proposed by Berisa and Pickrell (27) while using 1M SNPs from the Illumina Omni1-QuAd, 9.9M SNPs from a recent GWAS and 96M SNPs as available
in the latest UK Biobank genotype panel after imputation. (B) The trade-off between memory usage and computation time. JASS omnibus statistics was
computed for 4 traits and 3 192 045 SNPs (insulin) and 11 traits and 3 673 285 SNPs (metabolism). The y-axis is the peak in memory usage in megabytes
and x-axis is the time (in seconds) to perform the task. Labels attached to data points give the number of genomic regions processed at once. For example
the two boxes filled with a “2000” in the top left of the plot correspond to the case were the entire dataset is loaded in memory (as there is a total of 1703
regions in this example). Color represents the group of traits. (C) The computation time optimization. We computed the omnibus statistics for 3 673 285
SNPs for 11 traits; the y-axis is the time in seconds (logarithmic scale) and x-axis is the number of missing data in a pattern. The straight green line shows
the result from a naı̈ve computation loop approach over all SNPs, and the red line shows the results from our optimized algorithm.

more regions would increase dramatically memory usage.
The maximum memory usage being reached when all re-
gions are analysed in a single iteration. The resulting perfor-
mance makes it possible to compute a joint analysis in less
than a minute, while preserving the stability of the server.
Note that computation time was not a major issue in our
implementation, and this strategy addresses primarily mem-
ory usage burden due to the loading of the complete GWAS
results. This process is particularly critical when using the
JASS web server. Additionally, note that the Celery server
is by default configured to queue and run sequentially the
analyses launched potentially simultaneously on different
datasets, to avoid excessive loads on the memory or CPU
usage of the server. Finally, when analyzing jointly a large
number of phenotypes (e.g. >100), command line on a local
instance of JASS should be preferred.

Optimized algorithm for fast computation

It is well established that computation time of genome-wide
screening can be decreased dramatically by using matrix
product rather than through an iterative loop (e.g. (32). For
illustration purposes, we considered an example of a real
GWAS dataset including 11 traits and 3 673 285 SNPs after
filtering out SNPs with missing data. The naı̈ve loop-based
implementation (computing the statistic for each SNP one
by one and inverting the � matrix each time) took nearly
4 h. On the other hand, processing the same data with a
matrix product took 127.1 s (Figure 3C). However, matrix-
based derivation cannot be readily implemented in the pres-
ence of missing data. Missing values imply that the statistics

will differ with rows according to which traits are missing.
This is a particularly acute problem for the omnibus test,
which requires the inversion of the covariance matrix for
each SNP.

To solve this issue, we implemented an optimized algo-
rithm that treats jointly genetic variants displaying the same
missing value pattern. The computational cost of this op-
eration can be factorized because values are generally not
missing at random: missingness depends on the coverage of
the genome by the technology used for the studies, the tech-
nology itself and the genotype imputation approach that
was used. The algorithm first identifies patterns of missing
values in the Z-score matrix and computes �−1 only once
for each pattern. Each set of SNPs harboring the same pat-
tern is then analyzed using a matrix-based derivation. Fig-
ure 3C reports the execution time as a function of the num-
ber of missing value patterns in the data using the aforemen-
tioned real data example, after randomly incorporating an
increasing amount of missing data. As shown in this figure,
even with the number of missing value patterns set at its the-
oretical maximum (for 11 traits, this would be 211 = 2048
patterns), the execution time of the matrix-based compu-
tation is dramatically lower than the execution time of the
naı̈ve loop implementation (t = 499 s versus t = 14 365 s,
respectively).

Comparison to the existing code to perform joint analysis

We compared the functionalities and computational perfor-
mances of JASS against other approaches for the joint anal-
ysis of GWAS summary statistics. Out of the eight stud-
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ies (Supplementary Table S3), two did not provide code
(14,33), two provided loose R functions (11,12), one pro-
vided Python 2.7 scripts (3), one provided code in a non-
open source software (9) and two provided R packages
(10,13). The quality of documentation varied greatly from
one method to another going from its absence to a wiki de-
scribing in depth routine usage. Only one package offered
a command line interface. None of the advanced features
offered in JASS, such as the management of missing val-
ues, an accompanying Python 3 package to harmonize and
clean heterogeneous GWAS summary statistics and the pos-
sibility to deploy an interface server, were available in other
approaches.

Finally, to compare the execution time of JASS with the
HIPO (10) and MTAG (3) methods on a lipid example con-
taining four traits and 1 818 293 SNPs, HIPO, MTAG and
JASS ran, respectively, in 329, 212 and 33 s. To be fair with
the HIPO methods, the reported running time includes the
estimation of the genetic correlation matrix by the LDscore.
Note that no option is provided in the function to avoid re-
peating the estimation for each analysis.

Detection of new associations with JASS

We deployed an online implementation of JASS that cur-
rently includes 154 publicly available GWAS summary
statistics (http://jass.pasteur.fr/index.html, Supplementary
Table S4). These GWAS cover several common diseases
(e.g. asthma, type 2 diabetes, cardiovascular diseases) and
quantitative traits (e.g. body mass index, total cholesterol).
All GWAS were preprocessed using the JASS companion
package and were aligned to a reference panel of European
ancestry sample from the 1KG Project Phase 3 data (28).
Rare (MAF < 1%), non-biallelic and strand-ambiguous
SNPs were filtered out from the reference panel. These 154
GWAS represent only a fraction of all GWAS publicly avail-
able; however, there are already 2.3 × 1046 possible combi-
nations of phenotypes that can be analyzed jointly from this
subset. As there is currently no established strategy to deter-
mine which specific set of phenotypes should be considered
for joint test when addressing a specific biological question,
it illustrates the strong need of disseminating to the com-
munity a fast and user-friendly tool for multi-GWAS anal-
ysis. Our package offers the possibility of performing mul-
tiple exploratory analyses extremely fast. To illustrate and
demonstrate the potential of JASS, we performed three real
data applications using these data.

Example 1. In this first example, we considered a simple
scenario where an investigator is interested in complement-
ing results from genome-wide genetic association studies of
multiple insulin phenotypes. The goal is to perform a mul-
tivariate analysis to identify additional genetic variants as-
sociated with insulin phenotypes missed by the univariate
analyses. Here, we performed the analysis using the online
version of JASS, and as mentioned in the ‘Materials and
Methods’ section, we generated a unique and publicly avail-
able link for this specific analysis (see the Data Availabitity
section). We ran the omnibus test for the four insulin pheno-
types from the MAGIC consortium (insulin resistance, fast-
ing insulin, insulin secretion and fasting proinsulin) avail-

able (Supplementary Table S4). The main steps and corre-
sponding screenshots of the analysis are presented in Figure
4. After imputation and filtering SNPs with data on at least
two phenotypes, a total of 3 144 808 SNPs were available
for the analysis.

The univariate analyses identified 20 regions of interest
(Table 1). All except four were also significant with the joint
test (minimum PJASS was in the range [1.0 × 10−7; 6.9 ×
10−7] for those four regions). Conversely, the omnibus ap-
proach identified seven new regions. Several of these asso-
ciation signals map to genes with established links to in-
sulin. For example, rs12718928 (PJASS = 7.2 × 10−9) is 10
kb upstream the GRB10 gene, which encodes a growth fac-
tor receptor-binding protein that interacts with insulin re-
ceptors and insulin-like growth factor receptors (34). The
minimum P-value from the univariate analyses for this vari-
ant was 1.0 × 10−6 for insulin resistance. Another exam-
ple is variant rs560887 (PJASS = 2.6 × 10−13), an intron of
gene G6PC2, which has been reported to be associated with
multiple phenotypes, including in particular elevated fast-
ing plasma glucose and increased insulin release after oral
and intravenous glucose loads (35). None of the P-value for
the univariate test was nominally significant for that variant
(P-values are 0.44, 0.10, 0.11 and 0.52 for insulin resistance,
fasting insulin, insulin secretion and fasting proinsulin, re-
spectively). The difference in significance between univari-
ate and multivariate association for that variant suggests a
genetic effect on a combination of the original phenotypes
(e.g. difference or ratio between two insulin traits).

Example 2. In this example, we assume an investigator
wants to analyze jointly many phenotypes while assum-
ing a strong a priori on the expected multitrait association
pattern. Here, we used a set of 20 phenotypes related to
metabolism and displaying substantial genetic correlation
(Supplementary Figure S1). We applied the sumZ test from
the command line version of JASS while using the weights
based on the loading of the top 10 principal components
(PCs) of the genetic correlation matrix), as proposed in the
HIPO method (10). Genetic and null correlations were de-
rived using the LDscore approach (6). Each of the 10 analy-
ses took <3 min, illustrating the strong usability of JASS for
a fast exploration of various alternative multivariate tests.
For illustrating purposes, we present in Figure 5 the quad-
rant plot resulting from the analysis based on PC1.

The univariate GWAS identified a total of 300 associated
loci. Overall, each single PC analysis detected a few addi-
tional loci while missing approximately two-thirds of those
identified by the univariate screenings. As shown in Figure
6A for the first three PCs, the overlap across each PC was
relatively strong. We summarize in Figure 6B the detection
of new loci identified for each PC, and the cumulative num-
ber when using an increasing number of PCs. With 10 PCs,
the total number of new loci equals 101 if using the stan-
dard P-value threshold (5 × 10−8), or 67 if using a more
stringent threshold accounting for the 10 tests performed
(i.e. 5 × 10−9).

Example 3. In the last example, we consider a scenario
where an investigator wants to confirm the relevance of
SNPs near genome-wide significance for Crohn’s disease

http://jass.pasteur.fr/index.html
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Figure 4. Screenshot JASS interface for example 1. We present screenshots from the web interface of the three main steps for the analysis performed in
application 1. (A) Insulin-related GWAS available in the database are selected (insulin resistance, fasting insulin, insulin secretion and fasting proinsulin),
(B) the genome-wide results from the joint test are presented in a Manhattan-like plot of the omnibus test, showing the top −log10(P) per genomic region,
and (C) when a region of interest is selected, a dynamic heatmap of the Z-scores of the previously selected phenotypes is generated along a zoom on the
Manhattan plot showing the −log10(P) single SNP signal for the joint analysis.

(CD) through in silico replication of association across three
other inflammatory conditions: ulcerative colitis (UC),
rheumatoid arthritis (RA) and asthma. We show that per-
forming multitrait analysis on these phenotypes related to
the primary outcome can improve the validation of these
variants. All analyses were performed using summary statis-
tics from the aforementioned traits described in Supplemen-
tary Table S4. In practice, we first extracted for CD the most

associated SNP for each of the 1704 regions from (27) and
classified those top SNPs in three categories: (i) those with
P-value below genome-wide significance; (ii) those sugges-
tive for significance (i.e. having a P-value between 1 × 10−6

and 5 × 10−8); and (iii) those not significant. There were 33
candidate suggestive significant SNPs [group (ii), Supple-
mentary Table S5] for our replication analysis. For each of
these SNPs, we extracted the P-value for association for the
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Table 1. Top associated SNPs from example 1

RSIDa Chr. Geneb Position Ref. Alt. PIR PFASTING PIS PFPI PJASS

rs4298759 1 SNX7 99 194 323 A C 0.53 0.92 0.39 1.2 × 10−11 1.9 × 10−10

rs10913737 1 AXDND1 179 343 202 A G 1.7 × 10−8 1.8 × 10−10 0.088 0.043 2.6 × 10−10

rs578763 2 G6PC2 169 776 360 G T 0.43 0.096 0.13 0.34 2.2 × 10−13

rs10026163 4 LINC02438 19 533 790 T C 6.3 × 10−10 1.4 × 10−6 0.87 0.35 3.3 × 10−10

rs13169290 5 PCSK1 95 729 406 A G 0.66 0.62 0.60 3.4 × 10−34 7.8 × 10−32

rs56676529 6 CDKAL1 20 661 837 A C 0.18 0.061 8.3 × 10−14 0.13 5.9 × 10−13

rs12718928 7 GRB10 50 866 921 A G 1.1 × 10−6 1.3 × 10−5 2.8 × 10−5 – 7.2 × 10−9

rs11558471 8 SLC30A8 118 185 733 G A 0.71 0.21 0.00058 4.2 × 10−13 5.0 × 10−15

rs1840780 10 SLC9B1P3 38 984 149 T C 0.16 0.11 7.5 × 10−9 0.14 1.1 × 10−7

rs7924036 10 JMJD1C 65 191 645 G T 2.7 × 10−6 5.5 × 10−5 9.0 × 10−6 0.0039 3.5 × 10−10

rs7096101 10 KIF11 94 362 928 G A 0.46 0.085 3.0 × 10−13 0.033 2.2 × 10−14

rs4575195 10 TCF7L2 114 765 747 A C 0.0098 4.4 × 10−4 0.0010 9.6 × 10−28 2.4 × 10−31

rs11038913 11 AMBRA1 46 559 730 C T 0.071 0.028 0.12 4.9 × 10−18 1.5 × 10−17

rs11039182 11 MADD 47 346 723 C T 0.81 0.55 – 3.4 × 10−45 6.2 × 10−44

rs10901988 11 LINC02750 50 561 635 T C 0.033 0.76 0.12 3.3 × 10−6 7.8 × 10−12

rs57614870 11 ARAP1 72 435 983 G A 0.0059 4.1 × 10−4 0.14 4.1 × 10−46 1.2 × 10−47

rs11020114 11 MTNR1B 92 682 604 C T 0.017 0.83 3.2 × 10−17 1.7 × 10−4 1.1 × 10−32

rs703538 12 IGF1 102 900 185 A G 3.6 × 10−9 1.1 × 10−9 0.52 0.98 1.4 × 10−7

rs1146937 13 SPRY2 80 797 107 C T 0.76 0.96 0.42 1.7 × 10−8 6.9 × 10−7

rs336247 13 IRS2 110 476 671 A G 0.61 0.30 4.4 × 10−10 0.18 4.2 × 10−9

rs8013954 14 EAPP 34 997 280 T C 0.0023 0.28 0.77 0.49 5.5 × 10−9

rs2626454 14 LRFN5 42 879 735 C T 0.021 0.034 0.80 4.6 × 10−9 4.9 × 10−8

rs11856307 15 C2CD4A 62 399 093 C A 0.49 0.087 3.0 × 10−6 7.7 × 10−19 2.0 × 10−23

rs12438204 15 LARP6 71 126 593 G A 0.079 0.032 0.79 4.0 × 10−8 2.7 × 10−7

rs4790332 17 SGSM2 2 262 611 A G 0.011 0.028 0.26 5.8 × 10−11 2.1 × 10−10

rs11668296 19 ZNF254 24 177 790 T C 1.7 × 10−5 5.0 × 10−6 4.2 × 10−5 0.035 2.2 × 10−8

rs113781727 22 SGSM1 25 218 120 T C 2.1 × 10−6 7.6 × 10−6 6.0 × 10−6 – 4.6 × 10−9

bFor each significant region, we report P-values for the most associated SNP across all five tests (the joint test and the four univariate tests).
bNearest gene.
Genome-wide significant P-values are indicated in bold.
Missing values are coded as ‘–’.

three other phenotypes and from the omnibus test derived
using the command line version of JASS.

Of the 33 SNPs, 24% (N = 8), 18% (N = 6) and 61% (N
= 20) were replicated at the Bonferroni corrected P-value
threshold of 0.0015 (i.e. 0.05/33), for asthma, RA and UC,
respectively. The omnibus test outperformed all individual
univariate signals with an overall replication of 76% (N =
25), while performing a single test instead of three. Over-
all, 7 out of the 33 SNPs had P-values below the genome-
wide significance threshold (P < 5 × 10−8) with at least one
of the approach (Table 2). The omnibus test highlighted in
particular two SNPs not identified by the three individual
GWAS. The first one, rs3184504, is a missense mutation in
SH2B3. This variant is cited in >40 publications, many of
them related to T1D, celiac disease and other autoimmune
disorders. The second variant, rs267949, is an intron variant
of DAP on chromosome 5. While not identified in the uni-
variate GWAS we used, a previous study found association
between the DAP gene and UC (36).

DISCUSSION

The past few years saw a dramatic increase in the number
of publicly available GWAS summary statistics for a broad
range of phenotypes. This wealth of data is coming along a
strong interest from the community for multitrait analysis,
and multitrait association testing in particular. In this study,
we present JASS, a command line and web-based package
dedicated to the joint analysis of GWAS summary statis-
tics. JASS addresses the need for a fast and user-friendly

tool to perform various joint analyses of summary statistics.
Our package includes the two most popular multivariate ap-
proaches, an omnibus test and a weighted sum of Z-scores,
but allows for alternative approaches to be implemented by
advanced users. JASS also includes several complementary
functions both for a dynamic synthesis and visualization
of large-scale results and for the preprocessing of hetero-
geneous GWAS data, a critical step for valid multivariate
analysis.

Using existing GWAS summary statistics, we showed the
flexibility and strong computational performances of our
package as compared to the existent. We further performed
three arbitrary real data applications to demonstrate the
potential of JASS. These examples cover various scenar-
ios, including the joint analysis of related phenotypes for
the identification of new associated loci missed by univari-
ate analyses, the exploratory analysis of alternative weight-
ing schemes to identify specific genetic components across
a large number of traits and the validation of suggestive as-
sociations for a given phenotype using multivariate anal-
ysis applied to correlated phenotypes. We also deployed a
publicly available web instance of JASS (http://jass.pasteur.
fr) currently including 154 preprocessed and harmonized
GWAS summary statistics, and covering several common
diseases and quantitative traits. This installation-free in-
stance of JASS allows nonexperts to performed various
complementary analyses relevant to their specific study.

Our JASS software is complementary to standard meta-
analysis approaches, as implemented, for example, in
METAL (37) or GWAMA (38). These meta-analysis tools

http://jass.pasteur.fr
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Figure 5. Quadrant plots derived from example 2. The quadrant plot shows the best signal per region from the multivariate test (y-axis) as a function of
the best signal for the same region from the univariate analysis (x-axis). We focused on the sumZ test using weights defined as the loadings of the first PC
of the genetic correlation matrix times the inverse of the covariance matrix. Green dots represent regions identified by the univariate test only, red dots
represent regions identified by the multivariate test only and blue dots are regions identified by both approaches. Left panel includes all regions [note that
−log10(P-value) >160 has been replaced by 160]. Right panel is a zoom centered around the genome-wide significance level (P = 5 × 10−8).

Figure 6. Overview of results from example 2. We performed the sumZ test for the analysis of 20 phenotypes while using weights inspired from the HIPO
approach, i.e. using the loadings from the 10 first PCs of the genetic correlation matrix, weighted by the inverse of the covariance matrix. (A) The overlap
of identified loci across the univariate screening and the top 3 PCs. (B) The number of loci found associated for each PC on top of those identified by the
univariate screening at a P-value threshold of 5 × 10−8. The red line indicates the cumulative number of additional signals when merging new signals from
an increasing number of PCs. The blue line indicates the same cumulative number of new signals after applying Bonferroni correction accounting for the
total number of PCs analyzed.

focus on combining association results from independent
GWAS performed for the same phenotypes, and are typi-
cally used in consortium data. They incorporate approaches
for the combined analysis of effect estimates, such as the
inverse-variance weighted meta-analysis, or P-values, such
as the Fisher’s test, whose validity relies on the assump-
tion of independence between GWAS. The primary objec-

tive of JASS is to combine statistics from multiple pheno-
types from potentially correlated GWAS, and is therefore
a generalized version of the aforementioned approach. For
example, the inverse-variance weighting meta-analysis is a
special case of the sumZ test using the square root of the
sample size as weight. Similarly, the Fisher’s test should be
approximately similar to the omnibus test in the special case
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Table 2. Validation of SNPs from example 3

RSID Chr. Position Ref. Alt. Gene PCD PAsthma PRA PUC PJASS

rs7514098 1 8 177 632 A G LOC107984915 9.8 × 10−8 0.64 0.027 4.1 × 10−11 3.3 × 10−9

rs4845604 1 151 801 680 A G RORC 6.1 × 10−7 0.16 0.37 1.6 × 10−11 2.3 × 10−9

rs267949 5 10 743 929 T C DAP 1.3 × 10−7 0.063 9.3 × 10−7 4.9 × 10−5 1.5 × 10−8

rs174564 11 61 588 305 G A FADS2 7.1 × 10−7 1.4 × 10−8 5.7 × 10−4 0.061 6.0 × 10−10

rs3184504 12 111 884 608 T C SH2B3 5.7 × 10−7 8.5 × 10−5 3.0 × 10−7 5.5 × 10−6 1.2 × 10−12

rs2836881 21 40 466 299 T G LOC107985484 5.7 × 10−7 0.31 0.41 1.1 × 10−32 3.5 × 10−27

rs138788 22 35 729 721 G A TOM1 7.2 × 10−8 0.14 0.58 2.9 × 10−8 1.4 × 10−6

Genome-wide significant P-values are indicated in bold.

of no correlation between GWAS. On the other hand, meta-
analysis tools often include a number of quality control
(QC) functions applicable to univariate GWAS (e.g. filtering
SNPs based on imputation quality or the significance of the
test for Hardy–Weinberg equilibrium). Because JASS ad-
dresses follow-up analysis of validated published GWAS, it
does not include such QC functions. However, our pipeline
does address potential QC issues that are specific to the joint
analysis of summary statistics. For example, we incorporate
our recently developed RAISS (29) approach for the impu-
tation step, as well as filtering based on the sample size used
per SNP.

There are various multivariate analyses that can be per-
formed from a given set of GWAS summary statistics.
Different tests (e.g. omnibus or sumZ, as implemented
in JASS), different parameters (e.g. alternative weighting
scheme for sumZ) and the choice of a subset of pheno-
types to be analyzed jointly will lead to the identification
of different loci. To our knowledge, there are no established
guidelines for setting an optimal approach. Moreover, as
discussed in previous studies, alternative models likely cap-
ture complementary components of the genetic architecture
of the traits under study. The JASS packages not only of-
fers the possibility to explore quickly a range of alternative
models, but is also a first step toward building an integrated
platform including both multitrait association testing and
the generation of biological hypothesis on the underlying
genetic structure.

DATA AVAILABILITY

A JASS public server currently including 154 clean and
harmonized GWAS is available at http://jass.pasteur.fr
For local use, the source code of JASS can be found at
https://gitlab.pasteur.fr/statistical-genetics/jass. Instal-
lation, configuration and data import instructions are
included and linked from the README.md file. The
JASS software is released under the terms of the MIT
license (see https://gitlab.pasteur.fr/statistical-genetics/
jass/blob/master/LICENSE). The preprocessing package
is available at https://gitlab.pasteur.fr/statistical-genetics/
JASS Pre-processing. The imputation package is avail-
able at https://gitlab.pasteur.fr/statistical-genetics/raiss.
The nextflow pipeline integrating all JASS preprocessing
steps (GWAS harmonization, GWAS imputation and
H0 covariance matrix computation) is available at https:
//gitlab.pasteur.fr/statistical-genetics/jass suite pipeline.
Finally, the link to the analysis of insulin phenotype
is: http://jass.pasteur.fr/directLink.html?phenotypes=

z MAGIC HOMA-IR,z MAGIC FAST-INSULIN,
z MAGIC IS,z MAGIC FPI.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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Trégouët,D.A. and Kraft,P. (2014) Maximizing the power of
principal-component analysis of correlated phenotypes in
genome-wide association studies. Am. J. Hum. Genet. 94, 662–676.

20. Geihs,M., Yan,Y., Walter,K., Huang,J., Memari,Y., Min,J.L.,
Mead,D., Hubbard,T.J., Timpson,N.J., Down,T.A. et al. (2015) An
interactive genome browser of association results from the UK10K
cohorts project. Bioinformatics 31, 4029–4031.

21. Juliusdottir,T., Banasik,K., Robertson,N.R., Mott,R. and
McCarthy,M.I. (2018) Toppar: an interactive browser for viewing
association study results. Bioinformatics 34, 1922–1924.

22. Pruim,R.J., Welch,R.P., Sanna,S., Teslovich,T.M., Chines,P.S.,
Gliedt,T.P., Boehnke,M., Abecasis,G.R. and Willer,CJ. (2010)
LocusZoom: regional visualization of genome-wide association scan
results. Bioinformatics 26, 2336–2337.

23. Khramtsova,E.A. and Stranger,B.E. (2017) Assocplots: a Python
package for static and interactive visualization of multiple-group
GWAS results. Bioinformatics 33, 432–434.

24. Di Tommaso,P., M,C., Floden,E.W., Barja,P.P., Palumbo,E. and
Notredame,C. (2017) Nextflow enables reproducible computational
workflows. Nat. Biotechnol. 35, 316–319.

25. Liu,Z. and Lin,X. (2018) Multiple phenotype association tests using
summary statistics in genome-wide association studies. Biometrics 74,
165–175.

26. Yang,J., Ferreira,T., Morris,A.P., Medland,S.E., Madden,P.A.,
Heath,A.C., Martin,N.G., Montgomery,G.W., Weedon,M.N.,
Loos,R.J. et al. (2012) Conditional and joint multiple-SNP analysis
of GWAS summary statistics identifies additional variants influencing
complex traits. Nat. Genet., 44, 369–375.

27. Berisa,T. and Pickrell,J.K. (2016) Approximately independent linkage
disequilibrium blocks in human populations. Bioinformatics 32,
283–285.

28. Auton,A., Brooks,L.D., Durbin,R.M., Garrison,E.P., Kang,H.M.,
Korbel,J.O., Marchini,J.L., McCarthy,S., McVean,G.A.,
Abecasis,G.R. et al. (2015) A global reference for human genetic
variation. Nature 526, 68–74.

29. Julienne,H., Shi,H., Pasaniuc,B. and Aschard,H. (2019) RAISS:
robust and accurate imputation from summary statistics.
Bioinformatics 35, 4837–4839.

30. Schizophrenia Working Group of the Psychiatric Genomics
Consortium (2014) Biological insights from 108
schizophrenia-associated genetic loci. Nature 511, 421–427.

31. Bycroft,C., Freeman,C., Petkova,D., Band,G., Elliott,L.T., Sharp,K.,
Motyer,A., Vukcevic,D., Delaneau,O., O’Connell,J. et al. (2018) The
UK Biobank resource with deep phenotyping and genomic data.
Nature 562, 203–209.

32. Prive,F., Aschard,H., Ziyatdinov,A. and Blum,M.G.B. (2018)
Efficient analysis of large-scale genome-wide data with two R
packages: bigstatsr and bigsnpr. Bioinformatics 34, 2781–2787.

33. Yang,G., Sau,C., Lai,W., Cichon,J. and Li,W. (2015) USAT: a unified
score-based association test for multiple phenotype–genotype
analysis. Genet. Epidemiol., 344, 1173–1178.

34. Morrione,A. (2000) Grb10 proteins in insulin-like growth factor and
insulin receptor signaling (review). Int. J. Mol. Med. 5, 151–154.

35. Rose,C.S., Grarup,N., Krarup,N.T., Poulsen,P., Wegner,L.,
Nielsen,T., Banasik,K., Faerch,K., Andersen,G., Albrechtsen,A.
et al. (2009) A variant in the G6PC2/ABCB11 locus is associated
with increased fasting plasma glucose, increased basal hepatic glucose
production and increased insulin release after oral and intravenous
glucose loads. Diabetologia 52, 2122–2129.

36. Anderson,C.A., Boucher,G., Lees,C.W., Franke,A., D’Amato,M.,
Taylor,K.D., Lee,J.C., Goyette,P., Imielinski,M., Latiano,A. et al.
(2011) Meta-analysis identifies 29 additional ulcerative colitis risk
loci, increasing the number of confirmed associations to 47. Nat.
Genet. 43, 246–252.

37. Willer,C.J., Li,Y. and Abecasis,G.R. (2010) METAL: fast and
efficient meta-analysis of genomewide association scans.
Bioinformatics 26, 2190–2191.

38. Magi,R. and Morris,A.P. (2010) GWAMA: software for
genome-wide association meta-analysis. BMC Bioinformatics 11, 288.


