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Quantitative in Vivo Detection of Brain Cell Death after Hypoxia 
Ischemia Using the Lipid Peak at 1.3 ppm of Proton Magnetic 
Resonance Spectroscopy in Neonatal Rats

This study was performed to determine the accuracy of proton magnetic spectroscopy 
(1H-MRS) lipid peak as a noninvasive tool for quantitative in vivo detection of brain cell 
death. Seven day-old Sprague Dawley rats were subjected to 8% oxygen following a 
unilateral carotid artery ligation. For treatment, cycloheximide was given immediately 
after hypoxic ischemia (HI). Lipid peak was measured using 1H-MRS at 24 hr after HI, and 
then brains were harvested for fluorocytometric analyses with annexin V/propidium iodide 
(PI) and fluorescent probe JC-1, and for adenosine-5’-triphosphate (ATP) and lactate. 
Increased lipid peak at 1.3 ppm measured with 1H-MRS, apoptotic and necrotic cells, and 
loss of mitochondrial membrane potential (∆Ψ) at 24 hr after HI were significantly 
improved with cycloheximide treatment. Significantly reduced brain ATP and increased 
lactate levels observed at 24 hr after HI showed a tendency to improve without statistical 
significance with cycloheximide treatment. Lipid peak at 1.3 ppm showed significant 
positive correlation with both apoptotic and necrotic cells and loss of ∆Ψ, and negative 
correlation with normal live cells. Lipid peak at 1.3 ppm measured by 1H-MRS might be a 
sensitive and reliable diagnostic tool for quantitative in vivo detection of brain cell death 
after HI. 
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ORIGINAL ARTICLE 
Neuroscience

INTRODUCTION

Despite continuing improvements in perinatal and neonatal 
intensive care medicine, birth asphyxia and the resultant hy-
poxic ischemic encephalopathy (HIE) still remains a major 
cause of neonatal mortality and permanent neurologic sequel-
ae such as cerebral palsy, mental retardation, learning disabili-
ty, and epilepsy in survivors (1). Currently, hypothermia has 
emerged as the only available effective intervention to improve 
the outcome of HIE (2). However, the identification of infants 
who might benefit from hypothermia, and the monitoring of 
therapeutic responsiveness after intervention for neonates with 

severe brain injury continue to be the most difficult dilemmas 
in clinical practice (2). Therefore, the development of new diag-
nostic tools that can detect the brain cell death quantitatively in 
in vivo settings, and thereby can early predict the ultimate out-
come of HIE is an urgent big clinical subject. 
  Proton magnetic spectroscopy (1H-MRS) is a noninvasive in 
vivo technique that increases the accuracy of diagnosis com-
pared to the use of routine magnetic resonance imaging (MRI) 
alone, and is often performed to qualitatively diagnose diseases 
of the central nervous system (3). As a parameter of 1H-MRS, 
increased signal intensity of the lipid peak at 1.3 ppm has high 
diagnostic value of brain lesion because this peak is absent in 
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healthy brain tissue (4). Increased lipid peak could detect and 
quantify different degrees of apoptosis both in vitro and in vivo 
(4-7). Lipid peak was also observed in necrotic cell death (4, 7). 
These findings strongly suggest that 1H-MRS visible lipid peak 
has a great potential to become a reliable noninvasive tool for 
detection and quantification of cell death in vivo, and also use-
ful in the early outcome prediction of HIE. 
  In our previous studies, we have shown that flow cytometric 
detection of apoptotic and necrotic cell death with annexin V 
and propidium iodide (PI) (8) and flow cytometric monitoring 
of changes in the mitochondrial membrane potential (∆Ψ) with 
fluorescent probe JC-1 (5,5́ ,6,6́ -tetrachloro-1,1́ ,3,3́ -tetraethyl- 
benzimidazolcarbocyanine iodide) (9) are both sensitive and 
reliable techniques in the quantitative evaluation of neonatal 
brain injury. We have also observed that inhibition of apoptosis 
with cycloheximide significantly reduces the ensuing cerebral 
infarction in the newborn rat pup model of hypoxia and isch-
emia (10). In the present study, to verify the accuracy of 1H-MRS 
lipid peak as a noninvasive tool for quantitative in vivo detec-
tion of brain cell death, we measured 1H-MRS peak at 1.3 ppm 
at 24 hr after hypoxia ischemia in the newborn rat pup model of 
HIE and cyclohexamide treatment, and compared with the ex-
tent of brain injury measured by flow cytometric analyses of 
annexin V/PI and JC-1.

MATERIALS AND METHODS

Animal model
The experimental protocols were reviewed and approved by 
the animal care and use committee of the Samsung Biomedical 
Research Institute in Seoul, Korea. This study also followed the 
institutional and National Institute of Health guidelines for lab-
oratory animal care (C-A4-108). We randomly divided rat pups 
into three groups: normoxia control (NC, n = 5); hypoxia isch-
emia control (HI, n = 9); and hypoxia ischemia with cyclohexi-
mide treatment (HI-CHX, n = 14). Unilateral carotid artery liga-
tion was induced in seven-day-old Sprague Dawley rat pups 
(Daihan Biolink Co., Seoul, Korea) under anesthesia by inhala-
tion of a mixture of halothane and 2:1 nitrous oxide and oxygen. 
The neck was incised in the midline, and the right common ca-
rotid artery was permanently ligated with 4-0 silk. The total time 
of surgery in each animal never exceeded five minutes. Follow-
ing surgery, rats were returned to their mother for recovery and 
feeding for 2 hr. Sham operation was done for the NC group, and 
maintained in room air with their mother. The pups in other 
groups were exposed for 120 min to hypoxia (8% O2, 92% N2) by 
placing them in an air-tight chamber partially submerged in a 
temperature-controlled water bath to maintain the ambient 
temperature inside the chamber at a constant 36oC. In the HI-
CHX group, rat pups received an intraperitoneal injection of 
cycloheximide at a dose of 0.6 mg/kg after a 2-hr recovery peri-

od, and an equal volume of normal saline was administered to 
the HI group. The rat pups were then returned to their mothers. 
At 24 hr after the hypoxic insult, newborn rats were examined 
by magnetic resonance imaging (MRI) and localized 1H-MRS. 
After MRS analysis, rats were sacrificed under deep pentobar-
bital anesthesia (60 mg/kg, intraperitoneal), and brains were 
removed and dropped into cold phosphate buffered saline 
(PBS). Part of the brain cortex was removed for FACS analysis 
(8-10).

MRI/1H-MRS
All spectra were acquired using a 4.7 Tesla Bruker Biospec MRI/
MRS system (Bruker, Fällanden, Switzerland) 24 hr after HI. T2-
weighted MRI was performed to identify the HI lesion and to 
obtain localizer images. A 7-mm-diameter round surface coil 
placed on the intact scalp over the parietotemporal lobe was 
used to transmit and receive the signal. A 2 × 2 × 3 mm3 single 
voxel was chosen on the parietotemporal area for MRS as a vol-
ume selective spectroscopy sequence and the following acqui-
sition parameters were used: repetition time = 3,000 msec, time 
to echo (TE) = 30 msec, and number of scans = 128. To differen-
tiate the lipid signal from lactate appearing at 1.3 ppm, the spec-
trum was acquired with TE of 135 msec and those signals not 
inverted at 1.3 ppm were confirmed as lipid signals.  

Flow cytometry
The brain was divided into hemispheres and the meninges were 
removed. The cortex was chopped up, placed in 2 mg/mL col-
lagenase, diapase and 1 ×  trypsin (0.25%) in PBS solution and 
incubated for 10 min at 37oC. PI (1 μL of 1 mg/mL; Sigma, St. 
Louis, MO, USA) and annexin V-fluorescein isothiocyanate 
(FITC) (5 μL of 0.5 mg/mL; Pharmingen, San Diego, CA, USA) 
were immediately added to 95 μL of cell suspension containing 
more than 1 × 106 cells to fluorescently label apoptotic and ne-
crotic cells. After incubation for 15 min at room temperature, 
each sample was mixed with 1 mL of annexin V binding buffer 
(10 mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid 
[HEPES]-NaOH, pH 7, 140 mM NaCl, 2.5 mM CaCl2) in a parti-
cle analyzing system tube (1.5 mL, Ø 55 mm × 12 mm, Sarstedt, 
Germany). Flow cytometric analysis was carried out using a 
particle analyzing system and Partec FloMax software (Partec, 
Munster, Germany) equipped with an argon ion laser tuned to 
a wavelength of 488 nm. Green FITC-annexin V fluorescence 
was measured at 530 ± 15 nm, and red PI fluorescence was mea-
sured at 600 nm. To exclude dead cells or debris, a primary gate 
based on physical parameters (forward and side light scatter, 
respectively) was set. 
  Fluorescent probe JC-1 (Molecular Probes, Eugene, OR, USA) 
was used to measure mitochondrial membrane potential. The 
dissociated cortical cell suspension was adjusted to a density of 
1 × 106 cells/mL and stained with 1 μL of JC-1 (2 mg/mL) at 37oC 
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for 20 min. JC-1 was excited with the 488 nm argon laser, and JC-1 
green and orange fluorescence was measured on FL1 (530 ± 15 
nm band pass filter) and FL2 (575 ± 13 nm band pass filter) chan-
nels (11). Within the gated region, a minimum of 20,000 cells 
were scanned and analyzed. FL-2 versus FL-1 blotting and a 
high-speed cell sorter FACS Aria (Becton Dickinson, San Jose, 
CA, USA) were used for cell sorting gates. All databases were 
maintained with Flow Jo software (Tree Star, Ashland, OR, USA).

Brain ATP and lactate measurements
Reserved brain tissue was dropped in 1.6 mL of 3 M perchloric 
acid and homogenized. The homogenate was centrifuged at 
12,000 g for 10 min. A 1 mL-sample of the supernatant was care-
fully removed into another tube with neutralizing solution (2.23 
M K2CO3, 0.5 M triethanolamine, 2:3 mixture). The solution was 
centrifuged at 1,800 g for 10 min. The supernatant was analyzed 
for adenosine-5́ -triphosphate (ATP) and lactate. ATP content of 

Fig. 1. Representative MRI, 1H-MRS and flow cytometry data for the ipsilateral cerebral cortex after hypoxia-ischemia injury in each group. Flow cytometry data fall into four areas: 
Q1 (annexin V-/PI+), Q2 (annexin V+/PI+), Q3 (annexin V-/PI-), and Q4 (annexin V+/PI-). Positive annexin V denotes apoptosis and positive PI denotes necrosis. (A) Magnetic reso-
nance image. (B) Proton magnetic resonance spectroscopy (MRS) with TE 30 msec. (C) MRS with TE 135 msec. (D) Flow cytometry with annexin V & PI. (E) Flow cytometry with 
JC-1. NC, normoxic control; HI, hypoxic ischemia; HI-CHX, hypoxic ischemia with cycloheximide; FC, flow cytometry.
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the brain homogenate was measured using a luciferin-lucifer-
ase assay kit (ATP bioluminescence assay kit, Roche Molecular 
Biochemicals, Mannheim, Germany), and lactate concentra-
tion was determined with a lactate dehydrogenase kit. 

Statistical analysis
All data are presented as the mean ± standard deviation. Statis-
tical comparisons between groups were performed using the 
Kruskal-Wallis test and the Mann-Whitney test. The correlation 
coefficients for the relationships between MRS and flow cytom-
etry findings were obtained by Spearman correlation tests. SPSS 
version 17 (Statistical Package for Social Sciences; SPSS Inc., 
Chicago, IL, USA) was used for all statistical analyses. A P value 
< 0.05 was considered statistically significant. 

RESULTS

MRI/1H-MRS findings 
Representative MRI/1H-MRS findings of each group are shown 
in Fig. 1. T2 weighted brain MRI images obtained at 24 hr after 
HI showed brain infarction in the HI group, and the extent of 
brain infarction was attenuated in the HI-CHX group. As shown 
in Fig. 1 of HI-CHX group, increased lipid peak at 1.3 ppm was 
observed even without definite T2 weighted MRI images of 
brain infarction in a couple of cases, and this finding is quite 
similar with other previous reports (12). There were no signifi-
cant differences in the N-acetyl aspartate (NAA), choline and 

creatine levels of 1H-MRS between the experimental groups. 
Significantly increased lipid peak at 1.3 ppm and lipid/NAA, 
lipid/creatine and lipid/choline ratios observed in the HI group 
compared to the NC group were significantly attenuated in the 
HI-CHX group (Fig. 1, Table 1). The increased lipid peak ob-
served in both HI and HI-CHX was not inverted at TE 135 msec. 

Flow cytometry 
Representative flow cytometry findings with annexin V and PI 
of each group are shown in Fig. 1. Significantly increased levels 
of oncotic (annexin V-/PI+, Q1), necrotic (annexin V+/PI+, Q2), 
and apoptotic (annexin V+/PI-, Q4) cells in the HI group were 
significantly attenuated in the HI-CHX group (Fig. 1, Table 1). 
However, improvement of the HI induced reduction in the nor-
mal live (annexin V-/PI-, Q3) cells with CHX treatment did not 
reach a statistical significance.
  The JC-1 (green+/red-) dot plot denoted mitochondrial mem-
brane depolarization, which is indicated by a shift in JC-1 fluo-
rescence from red to green. Loss of ∆Ψ (JC-1: green+/red-) ob-
served in the HI group compared to the NC group was also sig-
nificantly improved in the HI-CHX group (Fig. 1, Table 1).

Brain ATP and lactate levels 
Brain ATP and lactate levels in the HI group were slightly but 
significantly reduced and increased respectively compared to 
the NC group. These abnormalities observed in the HI group 
showed a tendency to improve without statistical significance 

Table 1. MRS metabolite ratios, flow cytometry, ATP, and lactate levels of each group

Parameters NC (n = 5) HI (n = 9) HI-CHX (n = 14)

Lipid/NAA 0.51 ± 0.21 2.77 ± 0.71* 0.86 ± 0.76†

Lipid/Creatine 0.58 ± 0.28 3.18 ± 0.67* 1.29 ± 1.97†

Lipid/Choline 0.28 ± 0.12 1.69 ± 0.73* 0.47 ± 0.46†

Annexin V-/PI+ (Q1,%) 0.60 ± 0.20 2.68 ± 1.80* 0.59 ± 0.36†

AnnexinV+/PI+ (Q2,%) 2.07 ± 1.13 12.19 ± 9.47* 4.45 ± 3.03†

Annexin V-/PI- (Q3,%) 81.81 ± 3.33 68.12 ± 10.18* 78.36 ± 7.43
Annexin V+/PI- (Q4,%) 14.11 ± 5.90 23.05 ± 8.68* 16.91 ± 4.85†

JC-1 Green+/Red- (%) 9.85 ± 6.10 38.14 ± 20.53* 17.05 ± 15.06†

ATP (mmol/kg) 2.72 ± 0.46 1.86 ± 0.85* 2.42 ± 0.61
Lactate (nmol/kg) 2.82 ± 0.43 3.72 ± 0.91* 2.91 ± 0.95

Data are expressed as mean ± standard deviation. *P value < 0.05 compared to NC; †P value < 0.05 compared to HI. NC, normoxic control; HI, hypoxia-ischemia; HI-CHX,  
hypoxia-ischemia with cycloheximide; NAA, N-acetyl aspartate; PI, propiidum iodide; JC-1, 5,5 ,́6,6´-tetrachloro-1,1́ ,3,3´-tetraethylbenzimidazolcarbocyanine iodide; ATP, 
adenosine-5´-triphosphate. 

Table 2. Spearman’s correlation coefficients of MRS and flow cytometry

Parameters
Coefficient value (P value) for

Lipid/NAA Lipid/Creatine Lipid/Choline

Annexin V-/PI+ (Q1,%) 0.535 ( < 0.001) 0.403 (0.007) 0.442 (0.003)
Annexin V+/PI+ (Q2,%) 0.597 ( < 0.001) 0.541 ( < 0.001) 0.594 ( < 0.001)
Annexin V-/PI- (Q3,%) -0.541 ( < 0.001) -0.487 (0.001) -0.53 3 ( < 0.001)
Annexin V+/PI- (Q4,%) 0.465 (0.002) 0.420 (0.005) 0.454 (0.002)
JC-1 Green+/Red- (%) 0.597 ( < 0.001) 0.588 ( < 0.001) 0.592 ( < 0.001)

NAA, N-acetyl aspartate; PI, propiidum iodide; JC-1; 5,5́ ,6,6́ -tetrachloro-1,1́ ,3,3 -́tetraethylbenzimidazolcarbocyanine iodide.



Ahn SY, et al.  •  MRS Lipid Peak for Neonatal Brain Hypoxic Injury

http://jkms.org    1075http://dx.doi.org/10.3346/jkms.2013.28.7.1071

in the HI-CHX group (Table 1).

Spearman’s correlation analysis
In correlation analyses, the lipid/NAA, lipid/creatine and lipid/
choline ratios of 1H-MRS showed significant positive correlation 
with the oncotic (annexin V-/PI+, Q1), (secondary) necrotic 
(annexin V+/PI+, Q2) and apoptotic (annexin V+/PI-, Q4) cells 
and loss of ∆Ψ measured with JC-1, and significant negative 
correlation with the normal live (annexin V-/PI-, Q3) cells mea-
sured with the flow cytometry (Table 2, Fig. 2). 

DISCUSSION

In the present study, increased lipid peak at 1.3 ppm and the 
lipid/NAA, lipid/creatine and lipid/choline ratios of 1H-MRS 
observed in the HI group compared to the NC group were sig-
nificantly attenuated in the HI-CHX group. In accordance with 
the 1H-MRS data, increased apoptotic and necrotic cells mea-
sured by flow cytometry with annexin V/PI, and the loss of ∆Ψ 
measured with fluorescent probe JC-1 observed in the HI group 
compared to the NC group were significantly attenuated in the 
HI-CHX group. These findings verify the accuracy of 1H-MRS 
lipid peak as a noninvasive tool for quantitative in vivo detec-
tion of brain cell death during HIE. 
  As single voxel at the paritotemporal area MRS data were an-
alyzed in the present study, there might be variation in MRS 
measurements according to voxel location. However, other 
multi-voxel MRS results (3, 13-15) have shown that the discrep-
ancy, if any, according to the target voxel location might not be 
clinically significant.
  In the present study, consistent with our previous studies (10, 
16), CHX significantly attenuated the HI induced loss of ∆Ψ and 
increase in both apoptotic and necrotic brain cell death. More-
over, the lipid peak of 1H-MRS was increased even before MRI 
detection of brain infarction. These findings suggest that the 
lipid peak of 1H-MRS might be a very sensitive and reliable di-
agnostic tool not only for the early detection of brain injury but 
also for in vivo real time monitoring for therapeutic efficacy af-

ter intervention during HIE. However, as cyloheximide is harm-
ful to human, further studies for monitoring responsiveness to 
therapeutic hypothermia, the only currently available interven-
tion for asphyxia brain injury, will be necessary for future clini-
cal translation.
  Proton magnetic resonance spectroscopy provides informa-
tion about metabolites and brain function without exposure to 
radiation, and is thus a useful non-invasive method for research 
of brain development and detection of changes in metabolic 
states in HI brain injury (17). In the pathogenesis of neonatal HI 
injury, lipolysis of the neuronal membrane releases free fatty 
acids and diacylglycerides, starting within a few minutes from 
the onset of injury and continuing thereafter. Macrophage break-
down of cell membranes leads to lipids accumulate in necrotic 
tissue (18, 19) and, at 1.3 ppm, 1H-MRS (TE 30 msec) can detect 
lipid signals which strongly correlated with the amount of tri-
glycerides and cholesterol esters extracted from brain samples 
in the rat model of stroke (4). A lactate peak at 1.3 ppm has also 
been detected in 1H-MRS (TE 30 msec), so that lipid and lactate 
overlaps in MRS spectra. In the present study, to differentiate 
the spectra of lipid from lactate at 1.3 ppm, an MRS spectrum 
with TE 135 msec, which indicate lactate levels as typical dou-
blet inversion of lipid signal, was acquired. Our results of MRS 
spectrum with TE 135 msec displayed the lipid signal which 
consistently showed an upward peak without doublet inversion 
(20), and this affirms that detected lipid signal intensity is clear-
ly representative with cancellation of lactate interference. 
  In our previous studies, we have shown that flow cytometric 
analysis with annexin V/PI is a sensitive and reliable technique 
for rapid quantification of apoptotic and necrotic brain cell 
death during HIE (9). In the present study, lipid peak of 1H-MRS 
showed significant correlation with the annexin V+/PI- apoptot-
ic cells and annexin V+/PI+ secondary necrotic cells measured 
by flow cytometry with annexin V/PI. These findings indicate 
that the lipid peak at 1.3 ppm measured with 1H-MRS would be 
a sensitive and reliable technique for quantitative in vivo detec-
tion of both apoptotic and necrotic brain cell death during HIE. 
  Brain injury during birth asphyxia occurs biphasically not only 

Fig. 2. Correlation of the lipid/NAA ratio with the flow cytometry results. Q2 (annexin V+/PI+) cells (A), Q3 (annexin V-/PI-) cells (B), and JC-1 (green+/red-) damaged cells (C). 
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during ‘primary energy failure’ resulting from cellular hypoxia 
but also ‘secondary energy failure’ during the reoxygenation and 
reperfusion period (21). The degree of ‘secondary energy fail-
ure’ reflects the extent of brain damage and thus predicts ulti-
mate outcome such as mortality and neurodevelopmental out-
come (2). Our data of significantly reduced brain ATP level in 
the HI group compared to the NC group measured at 24 hr after 
HI indicates HI-induced secondary energy failure. Slight but 
significant increase in the brain lactate level, and significant 
loss of ∆Ψ measured with JC-1 implicate that loss of ∆Ψ rather 
than cellular hypoxia is primarily responsible for the brain cell 
death during ‘secondary energy failure’, and the peak at 1.3 ppm 
observed with 1H-MRS primarily represents lipid rather lactate 
peak. Furthermore, our data of significant correlation of lipid 
peak measured by 1H-MRS with loss of ∆Ψ measured with JC-1 
suggests that the extent of brain cell death due to loss of ∆Ψ dur-
ing secondary energy failure could be quantitatively monitored 
real time in vivo. 
  In conclusion, increased lipid peak at 1.3 ppm measured by 
1H-MRS during HIE showed significant correlation with the ex-
tent of loss of ∆Ψ measured by JC-1 and both apoptotic and ne-
crotic brain cell death measured by flow cytometry with annexin 
V/PI. These findings suggest that lipid peak at 1.3 ppm measured 
by 1H-MRS would be a sensitive and reliable diagnostic tool for 
quantitative in vivo detection of brain cell death during HIE. 
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