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Intensive fundamental and clinical research in cancer immunotherapy has led to the

emergence and evolution of two parallel universes with surprisingly little interactions: the

realm of hematologic malignancies and that of solid tumors. Treatment of hematologic

cancers using allogeneic hematopoietic cell transplantation (AHCT) serendipitously led

to the discovery that T cells specific for minor histocompatibility antigens (MiHAs)

could cure hematopoietic cancers. Besides, studies based on treatment of solid tumor

with ex vivo-expanded tumor infiltrating lymphocytes or immune checkpoint therapy

demonstrated that anti-tumor responses could be achieved by targeting tumor-specific

antigens (TSAs). It is our contention that much insight can be gained by sharing the

tremendous amount of data generated in the two-abovementioned universes. Our

perspective article has two specific goals. First, to discuss the value of methods

currently used for MiHA and TSA discovery and to explain the key role of mass

spectrometry analyses in this process. Second, to demonstrate the importance of

broadening the scope of TSA discovery efforts beyond classic annotated protein-coding

genomic sequences.

Keywords: genomics, major histocompatibility complex, mass spectrometry, minor histocompatibility antigen,

peptide, proteogenomics, RNA sequencing, tumor-specific antigen

INTRODUCTION—CLASSIFICATION OF ANTIGENIC TARGETS

MHC-associated peptides (MAPs) are by-products of protein degradation by proteasomes and
other proteases (1). However, while all proteins ultimately undergo proteolytic degradation, only
some of them generate MAPs (2, 3). Indeed, the biogenesis of MAPs is regulated by several
mechanisms operating at the transcriptional, translational, and post-translational levels (4, 5).
Notably, MAPs preferentially derive from proteins degraded during or in the minutes following
translation, perhaps by specialized “immunoribosomes” (6).

Four groups of MAPs can be targeted for T-cell based immunotherapy of hematologic cancers:
MiHAs, tumor-associated antigens (TAAs), mutated TSAs (mTSAs), and aberrantly expressed
TSAs (aeTSAs). MiHAs are encoded by genomic regions with two cardinal features: they contain
germline polymorphisms, and they are expressed in both normal and neoplastic cells (7, 8).
TAAs derive from unmutated genes that are expressed in normal cells but are overexpressed in
cancer cells. In several studies, TAAs have been defined according to the overexpression of the
corresponding RNA or source protein. This criterion is not entirely satisfactory considering that (i)
T cells seeMAPs, not RNA or proteins, and (ii) there is no linear correlation between the abundance
of MAPs and the abundance of their source RNA or protein (9–11). Ideally, TAAs should therefore
be defined according to MAP abundance on normal vs. neoplastic cells. TSAs are MAPs present
only on cancer cells. Identification of mTSAs is relatively straightforward: these MAPs are coded
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by transcripts bearing somatic mutations such as single
nucleotide variants, fusion transcripts, etc. (12, 13). Identification
of aeTSAs is more challenging since they are unmutated MAPs
that can arise from any genomic region via cancer-specific
aberrations in gene expression (e.g., alterations in histone or
DNA methylation) or splicing (14–17).

Identification of aeTSAs rests on the demonstration that
these unmutated MAPs are present only on cancer cells. Two
strategies have been used to achieve this goal. The first one hinges
on comparison of the immunopeptidome (MAP repertoire) of
cancer cells vs. that of normal cells (18–20). MAPs found only
on cancer cells following mass spectrometry (MS) analyses are
labeled as cancer-specific. The limitation of this approach is that
some putative aeTSAsmay not be entirely cancer-specific because
it is currently impossible to obtain the entire MAP repertoire of
all types of normal cells. This is particularly true for medullary
thymic epithelial cells (mTECs) which have a unique ability to
promiscuously express more genes than other types of somatic
cells (21). For example, mTECs express several TAAs, that would
otherwise qualify as aeTSAs, such as MAGE-A1, MAGE-A3,
MAGE-A4, NY-ESO, and CEA (22). Since mTECs induce central
immune tolerance, MAPs expressed in mTECs are expected to
be poorly immunogenic. It has heretofore been impossible to
analyze the immunopeptidome of mTECs because the number
of mTECs that can be obtained from a human subject [≈106

cells (23)] is inferior to the number required for comprehensive
MS analyses (≈108 cells) and mTECs cannot be expanded ex
vivo. The second strategy is based on the simple principle that
a MAP cannot be present if its source RNA is not expressed.
Accordingly, MAPs identified in cancer cells by MS analyses are
labeled as aeTSAs only when their source RNA is not expressed
in any tissue or organ, including mTECs (14, 16). A caveat of
this approach is that presence of a MAP-coding RNA is necessary
but not sufficient for expression of this MAP at the peptide level.
Hence, this strategy may be too stringent and discard some bona
fide aeTSAs that would be cancer-specific at the peptide but not
the RNA level.

IDENTIFICATION OF TUMOR-SPECIFIC

ANTIGENS

Since the focus of this series is on genetic variants, we will
concentrate on TSAs and MiHAs for the rest of this article.
This does not mean that TAAs are not interesting targets. The
main caveat of TAAs is that they are expected to be poorly
immunogenic because they are seen as self-MAPs by T cells.
However, transfection of CD8T cells with a high-affinity WT1-
specific TCR yielded promising results in a seminal trial on
prevention of AML relapse after allogeneic hematopoietic cell
transplantation (24). Notably, no off-target toxicity was observed
despite the fact that WT1 is expressed by hematopoietic stem
cells, urogenital epithelia, and by mesothelial and fibroblastic
cells of the peritoneum, the pleural cavity, and the pericardial
cavity (24, 25). Moreover, a vaccine targeting the PR1 TAA
also induced PR1-specific immune response in patients with
myeloid malignancies (26). Nonetheless, the majority of clinical

trials involving TAAs have shown a limited therapeutic potential
(27, 28). In contrast to TAAs, TSAs, and MiHAs represent non-
self MAPs for autologous and allogeneic T cells, respectively (16,
29, 30).Wewill limit our review to TSAs andMiHAs presented by
MHC class I molecules because the number of studies on MHC
II MAPs is relatively limited.

Many studies have been performed in search of TSAs
in various tumor types. In most cases, putative TSAs (aka
neoantigens) have been identified based on exome sequencing
and algorithms that predict MHC binding, without MS
validation. This approach is fraught with two major caveats:
limited scope and low accuracy.

Limited Scope
Exons represent only 2% of the genome, whereas 75% of
the genome can be transcribed and potentially translated
(31). Indeed, MS analyses identified MAPs derived from all
sorts of allegedly non-protein-coding regions: introns, 5′UTRs,
3′UTRs, long non-coding RNAs, and intergenic regions (14).
Accordingly, many allegedly non-coding regions are in fact
protein coding, and translation of “non-coding regions” has
been shown to generate numerous MAPs (32–34) some of
which were retrospectively identified as targets of TILs and
autoreactive T cells (35, 36). In addition, the vast majority
of TSAs, and of aeTSAs in particular, derive from allegedly
non-coding regions (14). We estimate that mTSAs encoded by
canonical exonic open reading frames represent <10% of human
TSAs (14). Furthermore, the number of exonic mTSAs should
be exceedingly low in leukemias because their mutational load
is orders of magnitude lower than that of solid tumors such as
melanoma. In fact, to the best of our knowledge, only one mTSA
has been unambiguously validated by MS in acute leukemias:
this HLA-A∗02:01–binding peptide results frommutations in the
NPM1 gene that cause the translation of a C-terminal alternative
reading frame (15). Another mTSA derived from a BCR-ABL
fusion protein was identified via MS analyses in 2001 (37), but
was not found in a larger cohort of subjects in 2019 (38), and its
immunogenicity was called into question (39). The status of this
putative TSA therefore remains unclear.

Low Accuracy
The story of the TEL-AML1 fusion peptide provided one of the
first hints that, in the absence of MS validation, predictions based
on reverse immunology could be misleading. The TEL-AML1
fusion protein results from a 12; 21 chromosomal translocation
and is an important transforming factor in B-cell precursor acute
lymphoblastic leukemia. Based on MHC-binding predictions,
a TEL-AML1 fusion peptide that could bind to HLA-A∗02:01
was identified (40). Priming of T cells against this peptide
generated cytotoxic T cells that recognized autologous leukemic
cells (40). However, when tested experimentally, binding of this
peptide to HLA-A∗02:01 was very weak and its immunogenicity
very low. Furthermore, the peptide was not endogenously
processed by cells because it was cleaved by proteasomes (41).
Hence, the TEL-AML1 fusion peptide was a false discovery,
and killing of leukemic cells by T cells primed against the
TEL-AML1 fusion peptide (40) was most likely due to the
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inherent cross-reactivity of T cells which is further amplified
in T-cell lines (42). Indeed, positive selection in the thymus
preferentially rescues cross-reactive T cells (43) and a single
T-cell receptor may recognize more than a million different
MAPs (44). Recently, a particularly eloquent demonstration of
the low accuracy of mTSA predictions was provided by Löffler
at al. who performed comprehensive multi-omic analyses of 16
primary human hepatocellular carcinomas (20). Based on exome
and transcriptome sequencing data, MHC-binding algorithms
predicted that individual tumors would present an average of
118 exonic mTSAs. Remarkably, none of the 1,888 predicted
exonic mTSAs were detected by MS analyses (20). In view of
this, the exciting claim that exonic mTSAs can be found in
myeloproliferative neoplasms and childhood acute lymphoblastic
leukemia must be met with enthusiasm and skepticism since no
MS validation was performed on the predicted TSAs (45, 46).

How should we design TSA discovery projects in
hematopoietic cancers? We propose that two elements should be
taken into consideration. First, we believe that searches limited
to exonic TSAs considerably underestimate the diversity of the
TSA repertoire (47). According to initial analyses of primary
acute lymphoblastic leukemia samples, the vast majority of
TSAs are aeTSAs derived from unmutated allegedly non-coding
sequences. This analysis led to the discovery that endogenous
retroelements (EREs), which are part of our non-coding genome,
are a rich source of TSAs. EREs can be defined as remnants of
the ancient exogenous retroviruses that infected germ line cells
and represent around 43% of the human genome (48). Under
physiological conditions, most ERE sequences are silenced, but
can be re-expressed in cancer through epigenetic dysregulation
of the cancer genome (49). The expression of such sequences can
lead to MHC-I presentation of “viral-like” peptides and activate
T cells (50). Accordingly, our team identified three ERE-derived
TSAs in human ALL samples (14). Moreover, it was shown
that the env gene of HERV-K was highly upregulated in AML
(51), suggesting that this gene could contribute to AML TSA
landscape. Notably, since they are unmutated, aeTSAs can be
shared by many patients (52, 53). Second, we strongly suggest
that MS analyses should be performed either at the discovery
or at the validation stage for all TSAs that might be used as
therapeutic targets. Indeed, most bioinformatically “predicted
TSAs” not validated by MS analyses probably represent false
discoveries. This being said, MS has its own limitations (54).
Actually, in the discovery mode, “shotgun MS” is biased toward
the most abundant peptides and misses low abundance MAPs
(55). Alternatively, targeted MS analyses decreases the detection
threshold by about 10-fold, but can be performed only on a
limited number of peptides of known amino acid sequence (56).
Given the rapid pace of improvements in MS technology it may
soon be possible to combine the breadth of shotgun MS with the
sensitivity of targeted MS (11, 54).

Once TSAs are discovered, the major remaining challenge
is to evaluate their immunogenicity. A recent report suggests
that about 80% of virus-derived MAPs validated by MS are
immunogenic in mice (57). However, we have no evidence
that the rules governing immunogenicity of viral MAPs in
mice will apply to TSAs in humans. We reported that the

strength of anti-TSA immune response in mice was regulated
by two parameters: TSA expression level and the frequency of
TSA-responsive T cells in the preimmune (naïve) repertoire
(14). However, since only five TSAs were studied, these
data should be considered preliminary. For the time being,
TSA immunogenicity cannot be predicted, and has to be
tested experimentally.

IDENTIFICATION OF ACTIONABLE MINOR

HISTOCOMPATIBILITY ANTIGENS

MiHAs are MAPs derived from polymorphic genomic regions.
Since over 660 million single nucleotide variants (SNV) and
indels have been identified in human populations (58), the
potential human MiHA landscape is very broad. Even though
MiHA can originate from non-synonymous SNVs in exons or
in non-coding regions (32, 59, 60), we will focus herein on
exonic MiHAs because they are easier to identify than those
generated from atypical transcripts, and probably sufficient to
enable immunotherapy of hematologic cancers. Discovery of the
first MiHAs in mice (61–64) and humans (65–67) has been a
major endeavor, if not a technical tour de force. However, the
pace of MiHA discovery increased rapidly with progress in next
generation sequencing and MS. For instance, proteogenomic
studies led to the identification of over 6,000MiHAs presented by
themost commonHLAhaplotype in European Americans: HLA-
A∗02:01;B∗44:03 (60). As for TSAs, MS analyses are instrumental
in MiHA discovery/validation because only a small proportion of
SNV generate MiHAs (59). Over 90% of MiHA loci are bi-allelic
with a dominant allele (that generate MAPs) and a recessive
allele (that generates no MAPs) (59, 60, 67). In a few cases,
both MiHA alleles are co-dominant. Thus, if we consider MiHAs
coded by dominant alleles as winners, it follows that inmost cases
a single SNV is sufficient to transform winners into losers (the
recessive alleles). This is an eloquent reminder that we cannot
predict the molecular composition of the immunopeptidome
based on our limited understanding of the complexity of the
MAP processing pathway (2, 59). More importantly, out of the
thousands of MiHAs that we identified, only a minority represent
attractive targets for immunotherapy of hematologic tumors with
allogeneic T cells (60). Indeed, most MiHAs as non-actionable
targets because of their low population frequency and/or their
expression in normal epithelial cells.

Allelic Frequency
As long as it is expressed in tumor cells, a TSAmay be considered
a potential target. For MiHAs, things are more complicated: in
order to be actionable, an MiHA must be present in the recipient
and absent in the donor.We refer to this situation as a therapeutic
mismatch. The probability to have a therapeutic mismatch is
maximal when the allelic frequency of the target MiHA is 0.5 and
decreases as the allele frequency approaches the two extremes of 0
and 1 (68). However, because of human population history, most
bi-allelic loci have a very common and a very rare allele, with
population frequencies of >0.99 and <0.01, respectively (58).
MiHAs having an allele frequency of 0.01 or 0.99 would yield a
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low frequency of therapeutic mismatch: in the first case, MiHA-
positive recipients would be rare, whereas in the second case,
MiHA-negative donors would be difficult to find. If we consider
that actionable MiHA loci must have a minor allele frequency of
≥0.05, then about 92.6% of MiHAs have to be discarded (60).

Tissue Expression Profile
CD8T cells targeted to a single MiHA can eradicate tumor
cells without causing GVHD, even if expression of the target
MiHA is not restricted to hematopoietic cells (69–71). Two
elements provide a plausible explanation for the fact that
hematopoietic cells are inherently more sensitive than epithelial
cells to anti-MiHA T cells: (i) MHC molecules (and therefore
MiHAs) are more abundant on hematopoietic cells than
epithelial cells and (ii) in one experimental model, MiHA-specific
T cells preferentially infiltrated tissues containing VCAM-
1+ microvessels, that is, the bone marrow and tumor sites
(30, 70). Notably, eradication of leukemia cells cannot be
achieved by targeting any MiHA. Only MiHAs recognized
by CD8T cells with high functional avidity are effective in
mouse models (30, 71–74). As a corollary, we speculate that
in clinical trials it may be preferable to target multiple MiHAs
simultaneously. Since increasing the number of targeted MiHAs
enhances the risk of GVHD (75), it would appear justified to
target mainly hematopoietic MiHAs. One additional advantage
of targeting non-ubiquitous MiHAs is that “antigen excess”
(ubiquitous MiHAs) favor exhaustion of anti-MiHA T cells
(76). As for TSAs, the question of MiHA expression by
normal cells is not a trivial issue. In practice, we assessed
the expression profile of MiHA-coding RNAs in normal
tissues, then discarded MiHAs coded by ubiquitously expressed
transcripts, and kept only MiHAs preferentially expressed in
hematopoietic cells relative to epithelial cells (60). This led
to the elimination of two-thirds of MiHAs. In fine, out
of the 6,773 MiHAs presented by HLA-A∗02:01 and HLA-
B∗44:03, only 39 had a minor allele frequency of ≥0.05 and
an adequate tissue expression profile (60). This number was
sufficient to yield at least one therapeutic mismatch in 90% of
related and 98% of unrelated HLA∗02:01/HLA-B∗44:03-positive
donor-recipient pairs (60). We conclude that the landscape
of human exonic polymorphisms is vast enough for MiHA-
targeted immunotherapy of practically all subjects suffering from
hematologic cancers. In practice, this would require systems-level
analyses of the MiHA repertoire presented by other common
HLA allotypes.

TUMOR-SPECIFIC ANTIGENS AND MINOR

HISTOCOMPATIBILITY

ANTIGENS—TRANSLATIONAL

CHALLENGES

In addition to antigen discovery per se, scientists involved in
the development of TSA- and MiHA-targeted immunotherapies
have to address two main challenges: the complexity of

precision medicine and the engineering of cost-effective delivery
technologies. In the case of TSAs, vaccines appear to be a
reasonable delivery strategy to begin with, but the level of
precision needed is not inherently obvious. On one side,
advocates of individualized vaccines who focus mainly on exonic
mTSAs do believe that de novo TSA discovery should be
performed for individual patients (77, 78). Others, prefer to
target shared TSAs (mainly aeTSAs) and rather foresee the
development of pre-assembledmulti-epitope vaccines containing
a series of TSAs presented by specific HLA allotypes (16, 79).
In all cases, it is imperative to improve the immunogenicity
of TSA vaccines. Accordingly, several different platforms using
enhanced vaccine technologies and improved co-stimulatory
agents (adjuvants, superantigens, mature dendritic cells) are
currently being tested for multiple tumor types including
leukemia and lymphoma (28, 77, 80, 81). In the case of MiHAs,
whose complexity is more limited than that of TSAs, delivery is
probably the major barrier. Almost all pre-clinical research on
MiHA-targeted immunotherapy has involved adoptive transfer
of allogeneic T cells. Translating this into clinical practice will
only be possible when we can count on reliable methods for
ex vivo generation of sufficient numbers of fit (not exhausted)
MiHA-responsive T cells (82–84). Finally, for both TSAs and
MiHAs, the strength of anti-leukemic immunotherapy could be
further increased with more sophisticated TCR-based therapy
using transfected TCRs or bispecific biologics (24, 39, 85).
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