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ABSTRACT
Deamidation of asparagine (Asn) and isomerization of aspartic acid (Asp) residues are among the most 
commonly observed spontaneous post-translational modifications (PTMs) in proteins. Understanding and 
predicting a protein sequence’s propensity for such PTMs can help expedite protein therapeutic discovery 
and development. In this study, we used proton-affinity calculations with semi-empirical quantum 
mechanics and microsecond long equilibrium molecular dynamics simulations to investigate mechanistic 
roles of structural conformation and chemical environment in dictating spontaneous degradation of Asn 
and Asp residues in 131 clinical-stage therapeutic antibodies. Backbone secondary structure, side-chain 
rotamer conformation and solvent accessibility were found to be key molecular indicators of Asp 
isomerization and Asn deamidation. Comparative analysis of backbone dihedral angles along with 
N-H proton affinity calculations provides a mechanistic explanation for the strong influence of the identity 
of the n + 1 residue on the rate of Asn/Asp degradation. With these findings, we propose a minimalistic 
physics-based classification model that can be leveraged to predict deamidation and isomerization 
propensity of proteins.
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Introduction

Protein stability is at the center of biological mechanisms 
spanning molecular pathways and therapeutic 
interventions.1–3 Proteins are subject to various post- 
translational modifications (PTM) that are essential for their 
function, e.g., glycosylation, acylation. Some of these PTMs are 
spontaneous chemical reactions that lead to degradation, such 
as deamidation of asparagine (Asn→Asp/iso-Asp), isomeriza-
tion of aspartic acid (Asp→iso-Asp) and oxidation of Met/Trp 
residues.4,5 These spontaneous chemical modifications often 
serve as a key indicator of stress that elicits a physiological 
response.6 Bio-manufactured therapeutic proteins, including 
peptides, vaccines, monoclonal antibodies (mAbs), and viral 
capsids, are subject to physical and chemical stressors during 
manufacturing that result in accumulation of various PTMs.7– 

11 Spontaneous chemical modification can negatively impact 
the biomolecule’s therapeutic efficacy, quality and developabil-
ity by altering the structure and/or molecular properties of the 
protein. For instance, isomerization of an Asp residue alters the 
backbone connectivity and deamidation of an Asn residue 
imparts a negative charge (Figure 1), both of which can result 
in altered functional consequences.12,13 Often protein engi-
neering strategies are used to mitigate the negative impacts of 
such chemical modifications, but this is carried out in an 
iterative manner, which leads to prolonged development 
cycle for therapeutic proteins.14–16 Understanding and predict-
ing the propensity of a therapeutic protein to undergo chemical 
degradation can expedite development timelines.17–20

Deamidation of an Asn residue has been experimentally 
well characterized.21–23 Among the multiple pathways that 
are feasible, pH-dependent base-catalyzed nucleophilic attack 
has been shown to be the predominant pathway.23–26 The 
reaction is irreversible and proceeds via a 3-step process: 1) 
base-catalyzed deprotonation of the n + 1 amide, 2) nucleo-
philic attack of the anionic nitrogen on the side-chain carbonyl 
group and a subsequent ring closure that leads to the formation 
of a succinimide intermediate, and 3) hydrolysis of the succi-
nimide into Asp or iso-Asp (Figure 1). Similarly, the isomer-
ization reaction can proceed from an Asn or Asp residue via 
the same succinimide intermediate pathway. There are 
mechanistic parallels and kinetic dissimilarities between the 
isomerization and deamidation reactions.13,27,28 

Experimentally, it has been shown that the degradation half- 
times of Asn (or Asp) residue in small peptides can vary by 
orders of magnitude depending on the residue at n + 1 position 
on the C-terminal end.21,29–32 Previous studies using pentapep-
tides by Robinson et al.33 have shown a higher likelihood of 
chemical degradation if the n + 1 neighboring residue of the 
Asn residue is a Gly, Ala, Ser or Thr. Based on these peptide- 
level studies, the NX and DX (where X could be G/A/S/T) are 
often considered hotspots for degradation in proteins. 
However, such peptide-level sequence rules are not necessarily 
applicable to folded proteins. For example, a recent study by Lu 
et al.34 reported an experimental survey of 131 clinical-stage 
therapeutic antibodies (henceforth referenced as the Adimab 
dataset), which revealed vast discrepancies in the range of 
deamidation and isomerization propensities among antibodies 
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that did not follow the sequence-dependent hotspot rules. For 
instance, there were 27 deamidation sites with the hotspot NG 
sequence in the complementary-determining region (CDR), of 
which only 14 underwent deamidation. A similar trend was 
observed in the case of isomerization (16 of 44 DG sites 
isomerized). Furthermore, chemical degradation was observed 
at NY, NW, DR and DY motifs that are not considered hot-
spots based on the peptide-level studies. The results reported in 
Lu et al. indicate a gap in our knowledge of how the 

neighboring residues contribute to the chemical degradation 
propensity in proteins.

Multiple computational strategies, from physics-based 
approaches (e.g., quantum mechanics/molecular mechanics 
(QM/MM), molecular dynamics (MD) simulations)29,30,35,36 

along with machine-learning models,17,20,37 have been devel-
oped over the past two decades to predict deamidation and 
isomerization in peptides and proteins. Several detailed com-
putational models explored site-specific effects using QM/MM 
calculations at the peptide level. For example, ab initio calcula-
tions on Gly-containing peptide mimetic model compound 
(N-formyl-glycinamide) revealed how the conformation of 
the molecule affects the proton-affinity of the backbone 
amide (Figure 2). 38 However, it is unclear if this trend is 
generalizable to Asp and Asn residues where the n + 1 residue 
is not Gly. Multiple machine learning (ML) models have been 
proposed that were trained on a number of structure-based 
features such as secondary structure, local flexibility, size of the 
neighboring residue, and solvent exposure.17,20,37,38 While 
computationally facile and practical in nature, ML-based mod-
els often focus exclusively on prediction without necessarily 
offering mechanistic insight into causality. Sometimes impor-
tant mechanistic and structural details such as conformational 
dynamics, key for the reaction’s feasibility, are neglected. 
Lastly, given that these models are trained on a limited set of 
data points using pre-assumed input features, their general-
izability to new datasets remain unclear.

Here, we used proton-affinity calculations with semi- 
empirical QM, microsecond long equilibrium MD simulations, 
and a conformational analysis of all of the antibody structures 
in the Protein Data Bank (PDB; www.rcsb.org) to provide 
insight into the effect of neighboring residues in dictating the 
chemical degradation at Asn/Asp site of proteins. Based on the 
analysis of a large set of the Adimab dataset, including 1000 
+ Asn/Asp sites in the CDR region, we propose a physics-based 

Figure 1. Deamidation (1a) and Isomerization (1b) reaction mechanisms showing 
deprotonation (1) of the n + 1 amide leading to the formation of succinimide 
intermediate (2) and hydrolysis of succinimide (3) into aspartic acid (3a) or iso- 
aspartic acid (3b).

Figure 2. Dependence of proton affinity of small molecule N-formyl-glycinamide on backbone conformation. (a) the deprotonation reaction and calculation of proton 
affinity as the heat of formation of the forward reaction, (b) the proton affinity distribution of the small molecule N-formyl-glycinamide as a function of the backbone 
dihedral angles, and (c) the most acidic and basic conformations based on the proton affinity distribution.
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classifier model that can accurately predict the propensity of 
deamidation and isomerization of a protein sequence. The 
model relies on decomposing the major steps of the reaction 
(deprotonation, nucleophilic attack, and hydrolysis) as confor-
mational degrees of freedom and inferring the reaction pro-
pensity based on the thermodynamic feasibility of exploring 
those conformations.

Results

Conformational determinants of deprotonation

Peptide backbone conformation and amide acidity. 
Deprotonation of the amide nitrogen in proteins has been 
experimentally characterized to proceed via a base-catalyzed 
reaction that is quite spontaneous even at acidic 
conditions.31,39–41 Several studies have investigated the depen-
dence of backbone amide acidity on the conformation and 
chemical environment using QM/QMMM calculations.29,30,35– 

37 In pioneering studies, Radkiewicz et al.26,27 used N-formyl- 
glycinamide as a model compound representing a peptide bond 
to calculate the relative proton affinity as a function of the ϕ and 
ψ dihedral angles (using HF/6-31 + G*//HF/3-21 G). The calcu-
lations showed that conformations along the ψ dihedral angle 
had a larger impact on the backbone acidity of peptide bond 
relative to the ϕ angle. Here, we carried out density functional 
theory (DFT) calculation to estimate proton affinity for the same 
model compound at the M062X/6-311++G (d, p) level of theory 
in both gas phase and aqueous phase continuum SMD 
(Solvation Model Based on Density) solvent environment. Our 
results agree with the earlier studies: proton affinity of backbone 

amide varies significantly with respect to changes in the back-
bone conformation (Figure 2b and S1). Specifically, in α-helical 
conformation the proton bonded to the amide experiences 
a repulsive force from the adjacent carbonyl carbon as a result 
of a di-electric instability with the amide nitrogen (Figure 2c) 
i.e., proton affinity of the model compound is lower in the α- 
helical conformation centered around −60° ≤ ψ ≤ 60°, Figure 2b. 
The gas phase semi-empirical QM calculations using MOPAC 
with PM6-D3H4,47 PM7 and RM1 Hamiltonians (see methods 
and Figure S1) are also consistent with DFT results.

To better understand the mechanism by which peptide 
backbone conformation affects amide acidity, we extended 
the proton affinity calculations as a function of backbone ϕ & 
ψ dihedral angles to different DX and NX dipeptides, Figure 3 
and Figures S2-S16. As reported previously,33 fold differences 
are observed in reaction half-lives of pentapeptides due to the 
variations in the n + 1 residue. For instance, an interesting 
comparison can be made between Gly and Ala as n + 1 residue. 
In solution, GGNGG and GGNAG peptides show high pro-
pensity to adopt an α-helical conformation,41,42 yet their dea-
midation half-lives are an order of magnitude different (1.03 
and 21.1 d, respectively).33 From the proton affinity calcula-
tions, we observed that the amides in both NG and NA are 
indeed acidic around −60° ≤ ψ ≤ 60° conformations 
(Figure 3a). However, the amide proton affinity in the NA 
peptide significantly changes as a function of the ϕ angle. 
Specifically, the backbone amide of the NA residue is more 
acidic in conformations where ϕ > 0 compared to ϕ < 0 within 
the same boundary of −60° ≤ ψ ≤ 60°. In other words, the 
proton affinity of NA peptide is also dependent on the type of 
the helical conformation (right-handed α-helix versus left- 

Figure 3. Conformational determinants of proton affinity in NG and NA dipeptides. a) the gas-phase proton-affinity calculated with the semi-empirical PM6 Hamiltonian 
as a function of ϕ & ψ angles (upper panels) and the kernel density estimation plots of ϕ & ψ angles for the respective NG and NA motifs observed in the PDB database 
of crystallized antibodies (lower panels). b) Representative conformations and the possible ways in which the values of ϕ & ψ affects proton affinity: beta sheet (b1, 
basic), right-handed helix (b2, basic), and left-handed helix (b3, acidic).
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handed α-helix). A right-handed α-helix conformation places 
the methyl side-chain group in close proximity to the backbone 
amide that offers protection from exposure to the base and/or 
hydrolysis (Figure 3b, conformation 2).

Similarly, it can be inferred from the proton affinity plots for 
different [N/D]X dipeptides (Figures S2-S16) that amide acid-
ity in right-handed α-helix conformations is affected by the 
side chain of the n + 1 residue. The side chain-mediated 
protection increases with increasing the size of nonpolar, 
hydrophobic (i.e., Phe > Ile > Leu > Val > Ala). On the other 
hand, the presence of a polar hydroxyl or carbonyl groups in 
the n + 1 side chain (as in Asp, Ser, Thr, Asn, Tyr) facilitates the 
deprotonation of the amide by solvent-mediated electrostatic 
interactions. In any left-handed α-helix conformation, or in the 
case of Gly, the protection from the n + 1 residue is completely 
lost (Figure 3b, conformation 3), which is consistent with the 
previous results based on the model compound.26,27

Crystal structure analysis. It must be noted that a large 
fraction of combinations of ϕ & ψ dihedral angles explored in 
the dipeptide models are energetically inaccessible in folded 
proteins. To identify the relevant secondary structures for the 
NX and DX motifs in proteins, we collected ϕ & ψ angle 
distribution from all the antibody crystal structures available 
in the PDB. These distributions were analyzed using kernel 
density estimation (KDE) to arrive at the probability density 
function (PDF) of conformational preference for [N/D]X resi-
dues in ϕ & ψ space (Figure 3a and Figures S2-S16). 
Comparing the proton affinity calculations with the conforma-
tional PDF reveals that [N/D]G sites mainly populate the acidic 
left-handed α-helical conformations, whereas [N/D]A sites 
largely favor the basic right-handed helix (ϕ < 0 region) or 
the beta sheet. The latter agrees with a previous work showing 
that a steric interaction between the methyl group and the 
terminal carbonyl oxygen destabilizes all structures with 
ϕ ~ 120°, relative to glycine dipeptides.43 These results clearly 
explain why [N/D]A sites are often orders of magnitude less 
prone to degradation than [N/D]G sites.

A comprehensive analysis of the proton affinity calculations 
and conformational PDF (Probability Density Function) in ϕ & 
ψ space for all the [N/D]X sites (Figures S2-S16) revealed that 
the frequency of observing a residue in the acidic region from 
the PDB is strongly correlated with the likelihood of the residues 
to undergo degradation. In particular, we observed that the most 
frequently modified, or canonical, [N/D]X sequences based on 
various reports (i.e., DG,44–46 DS,14,47,48 DD,48 DT,20 DH,49 NG, 
NS, NN, and NT12,20,33,44) mainly favor the left-handed helix in 
the Ramachandran plot, i.e., the backbone is acidic and any side- 
chain protection by the n + 1 residue is completely lost 
(Figure 3b, conformation 3). Interestingly, the strongest left- 
handed helix population is seen for DG and DS, followed by 
DH, DD, and DN. Similarly, for deamidation motifs, 
a decreasing population of left-handed helix is observed in the 
order of NG, NS, NN and NT.

To better illustrate this point, we plotted the normalized 
probability of secondary structure conformations (area under 
the PDF surface bound by the region in ϕ & ψ space) for [N/D] 
X motifs in all of the antibodies in the PDB against the normal-
ized minimum proton affinity calculated for the corresponding 
dipeptides in the same conformational region (Figure 4, S17 

and S18). The canonical NX motifs (NG, NS, NN, and 
NT12,20,33,44) clearly aggregate in the bottom right quadrant 
of the plot (yellow boxes in Figure 4), which corresponds to 
a high probability of adapting a low proton affinity conforma-
tion within each bounding box (αR,αL and β) defined in 
Figure 3. In contrast, non-canonical motifs (e.g., NV, NL, 
NM, NC, NI, NF, NE, ND) either largely favor a basic beta- 
sheet conformation (Figure 4c, top-right quadrant), or a basic 
right-handed helix (e.g., NI, NM, and ND in Figure 4a, top- 
right quadrant). A similar trend is observed for DX motifs 
(Figure 4d-4f, S19 and S20), canonical motifs such as DG, DS 
and DD fall either within or very close to the high-risk quad-
rants. A few exceptions to this trend are DY, DF and DL that 
are unexpectedly placed in the low proton affinity region of the 
beta sheet conformation, Figure 4d. However, a side-by-side 
comparison of the proton affinity calculation plots and con-
formational PDF plots for these three residues (Figures S11, 
S14 and S15) suggests that: 1) these motifs indeed highly favor 
a β-sheet conformation, and 2) on average, the proton affinity 
is still much higher in the β-sheet region compared to αR and 
αL. In fact, the minimum proton affinity value for these three 
motifs (Figure 4d) is defined by an abrupt decrease in the rough 
proton affinity surface, and it is not representative of the overall 
trend.

Overall, Figure 4 demonstrates the role of a combined effect 
of secondary structure and the identity of the n + 1 amino acid 
side chains in impacting chemical degradation. Therefore, we 
use the ϕ & ψ backbone dihedral angle of the peptide bond at 
an [N/D]’s n + 1 position as a metric to identify sites that have 
higher propensity to deprotonate: 1) β-sheet conformation is 
less deprotonation prone, 2) the left-handed α-helix regions 
(−60° ≤ ψ ≤ 60°, ϕ > 0°) is acidic for all amino acids that have 
a nonpolar (A, V, L, I) or bulkier side-chain groups (F, W), 
and 3) on the contrary, for small polar amino acids (G, S, T, D) 
both the left and right-handed α-helix (−60° ≤ ψ ≤ 60°) con-
formations are acidic.

Application to therapeutic antibodies. Next, we explored 
the relationship between backbone conformations of the [N/ 
D]X sites in the CDR regions of 131 therapeutic mAbs and 
their reported degradation rates. This dataset corresponds to 
1039 [N/D] X sites (498 Asp and 541 Asn) of which 30 DX 
and 39 NX sites were prone to degradation (reactive). To 
obtain the backbone conformation preference, we calculated 
the conformational free energy surface (FES) in the ϕ & ψ 
space for the n + 1 residue from microsecond long equili-
brium MD simulations of the antigen-binding fragment (Fab) 
structures. We arbitrarily chose a value of 2kBT energy barrier 
or ~1 kcal/mol to define energetically favorable conforma-
tions, i.e., in the FES, a region whose energy values are 
<1 kcal/mol are likely to be sampled under equilibrium con-
ditions. The n + 1 residues were considered to be in a left- 
handed or right-handed α-helix if the minimum energy values 
in the regions of FES where −60° ≤ψ ≤ 60° and ϕ > 0, or ϕ < 0, 
were <1 kcal/mol.

Figure 5 shows that the calculated conformational distribu-
tion (PDF) of reactive and non-reactive residues correspond 
very well with the expected conformational preference seen in 
proton affinity calculations. The experimentally reported non- 
reactive residues show a preference to the right-handed α-helix 
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or the β-sheet conformation, while the reactive residues show 
large preference to the left-handed helical conformation. 
Figure 7 (D1) reveals a correlation between the rate of degrada-
tion and the probability of the backbone amide being found in 
the acidic regions. With the exception of two sites, the degrada-
tion rates fall below the desirable 5% cutoff for all the [N/D]X 
sites that are in a basic backbone conformation (i.e., Free Energy 
>1 kcal/mol, which corresponds to either a beta-sheet or a right- 
handed helix when the n + 1 residue is nonpolar). However, the 
results in Figure 7 (D1) suggest that an acidic backbone con-
formation (Free Energy < 1 kcal/mol) does not always result in 
high degradation rates (% Degraded > 5). A high propensity for 
a basic conformation can prevent the site from degradation, but 
lack thereof is not sufficient for degradation.

The backbone conformational preference of NX and DX 
residues under equilibrium conditions as a single descriptor 
was found to classify the reactive vs non-reactive residues at 
65% accuracy (Table 1). This shows that proton affinity 
inferred from the secondary structure of n + 1 residue is 
a decisive descriptor to predict degradation propensity of NX 
and DX sites.

Conformational determinants of cyclization

Once deprotonation is enabled by the acidity of the back-
bone, the next step in the reaction is ring closure leading to 
succinimide formation via nucleophilic attack between N- 
atom of the n + 1 residue and Cγ of the ASN/ASP residue 
(Figure 1). In order for the nucleophilic attack to be fea-
sible, the N- and Cγ should come closer than distances of 
3.0 Å (near-attack conformation).29,30 In folded proteins, 
side-chain interactions, including hydrogen bond forma-
tion, can limit the conformational flexibility of Asn/Asp 
residues to visit near attack conformations. This in turn 
can disfavor succinimide formation. Multiple side-chain 
orientations can result in the near attack conformation 
(Figure 6a). Conformational degrees of freedom affecting 
the distance between Cγ and Nn+1 can be defined as 
a function of the two dihedral angles ψ & χ1.

To identify the relevant conformations that enable 
a nucleophilic attack distance, we sampled the free energy 
space of ψ & χ1 angles in Ace-GGNAG-Nme pentapeptide 
using Metadynamics simulations. By applying an additive his-
torical bias, Metadynamics pushes the system to explore 

Figure 4. Plots of the normalized probability of secondary structure conformations for NX (upper panels) or DX (lower panels) motifs for antibody structures in PDB 
(X-axis) and the normalized minimum PM6 proton affinity heat of formation observed in the same region in Y-axis. The yellow boxes show motifs that are likely to adapt 
the corresponding conformation (X-axis) resulting in a low relative proton affinity. The gray boxes highlight motifs that are less likely to adapt the corresponding 
conformation but will result in a low proton affinity. The regions outside gray and yellow represent high proton affinity motifs and conformations (less prone to 
degradation). The residues in the yellow boxes are most often the hot spot residues.
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conformations that are kinetically limited in an equilibrium 
simulation50. There are six low energy states in the ψ & χ1 space 
(Figure 6b), of which two regions are coincident with the near 
attack conformation distance (Figure 6c). With this informa-
tion, we looked at the correlation between the near attack side- 
chain conformation and the experimental rates reported in the 
Adimab dataset. As with the backbone conformation, we 
looked at the FES from the equilibrium MD simulation. The 
side chains were considered to be in a near-attack conforma-
tion if the minimum energy values in the regions of FES where 
−100 < χ1< −20 and −60 < ψ < 60 (Figure 2b, region 2), or 20 
< χ1 < 100 and ψ < −60 or ψ > 60 (Figure 2b, region 1), were 
<1 kcal/mol.

Figure 7, D2 shows that when the side chain is not in 
a near-attack conformation (i.e., Free Energy > 1 kcal/mol), 
the reaction rates largely remain below the 5% cutoff, with 
a few exceptions. Otherwise, the residue may or may not be 
reactive, as suggested by the large number of data points 
below and above 5% for Free Energy <1 kcal/mol. 
Therefore, the side-chain conformation indeed proved to 
be a useful descriptor in identifying reactive residues 
(Figure 7, D2). The overall accuracy of the prediction was 
at 40%, but when used in combination with the backbone 
conformation rule, i.e., both the acidic conformation and 
the near attack conformations are energetically feasible, the 
accuracy of the classification model improves to 75% 
(Table 1).

Solvent accessibility

Water plays an important role in the deamidation and iso-
merization reaction as a proton donor/acceptor. Both the 
base catalyzed deprotonation and hydrolysis of succinimide 
intermediate to Asp/iso-Asp are only feasible in the presence 
of water molecules (Figure 1). In previous studies, solvent 
accessibility weakly predicted the reaction propensity.19,20,33 

These previous calculations were done on static protein 
structures that lacked proper structural relaxations that 
may affect solvent accessibility calculations. Our solvent 
accessibility calculations use a dynamic approach in combi-
nation with intuitions about the reaction. Here, we calcu-
lated the solvent accessibility at a residue level. In order to 
capture the dynamic aspect of the solvent occupancy, we 
represented solvent accessibility as a fraction of time in 
which the Asn/Asp residue remained accessible (see meth-
ods). Using this value, we once again sought to classify the 
Asn/Asp residues in the Adimab set as reactive vs non- 
reactive. Figure 7, D3 shows that solvent-inaccessible side 
chains (time fraction of solvent exposure < 75%) are indeed 
protected from the reaction. However, a large number of 
both reactive and non-reactive cases are seen in the solvent- 
accessible region (time fraction of solvent exposure > 75%). 
The overall accuracy in predicting the reactivity using the 
solvent-accessible surface area as a single descriptor is 39%, 
which is no better than the performance of the near attack 
conformation metric.

Figure 5. Kernel density estimation plots for the ϕ & ψ dihedral angles populated in MD simulations combined for all 1039 residues that neighbor Asp (top) or Asn 
(bottom) in the Adimab dataset. The ϕ & ψ angle distributions were collected from μs long equilibrium MD simulations and classified as reactive (left) and non-reactive 
(right) based on the measurements reported in the Adimab dataset. A clear pattern emerges around the left-handed α-helix conformation in reactive cases that is 
distinct from the non-reactive cases on the right.
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Figure 6. Conformational space that enables near-attack distances increasing the propensity for succinimide formation. a) The structural orientation of the reactive (1a 
and 2a) and non-reactive (2b and 3) side-chain conformations, characterized by ψ & χ, for an aspartic acid residue shown in ball and stick representation. b) Free-energy 
surface in the space of ψ & χ dihedral angles and c) the corresponding distance between Cγ and the n + 1 amide nitrogen calculated from metadynamics simulation of 
Ace-GGNAG-Nme pentapeptide.
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Figure 7. Performance of individual descriptors in discriminating degraded Asp (top) and Asn (bottom) residues from the Adimab dataset. The percentage degradation 
values reported in the Adimab study are represented on the X-axis. The Y-axis in the leftmost panel (D1) is the free-energy barrier at the deprotonation prone backbone 
helical conformation of the n + 1 residue. The Y-axis in the middle panel (D2) is the free-energy barrier at the near-attack conformation defined by the ψ & χ angles. The 
Y-axis in the rightmost panel (D3) is the time fraction when the Asp/Asn residue remains solvent accessible. The red cutoff markers indicate the values that determine if 
a residue is prone to degradation or not. The blue shaded regions indicate the false negative predictions (experimentally observed to degrade but classified as non- 
reactive) and the gray shaded region indicates the false positives (predicted reactive but not evidenced experimentally).
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Combined model

As discussed above, deamination and isomerization reac-
tions can be described in the three consecutive steps: 
deprotonation, cyclization, and hydrolysis. Using 
a multiscale computational approach, we were able to test 
the propensity of degradation in the Adimab dataset using 
these physics-based metrics. Since all three steps are essen-
tial for the reaction, we sought to check if a combination of 
the three metrics would improve the classification accuracy: 
(D1) deprotonation – as represented by the free-energy 
profile of ϕ, ψ angles of the n + 1 residue recovered from 
the MD simulation, (D2) cyclization – as represented by the 
free-energy profile of χ1, ψ angles also recovered from the 
MD simulation, and (D3) hydrolysis – as represented by 
the solvent accessibility calculated as the fraction of solvent 
occupied state in MD trajectory. The decision tree that we 
used to classify if an Asn/Asp residue is likely to degrade is 
shown in Figure 8. The Adimab dataset discussed herein is 
disproportionately distributed toward true negatives (non- 
reactive) vs true positives (reactive), so this presented 
a challenge to interpreting common statistical measures 
such as accuracy. We instead chose to use balanced accu-
racy, Matthew’s correlation coefficient (MCC) and Cohen’s 
Kappa score (CKS) as the statistic to compare the three 
individual descriptors, as well as combinations. We also 
created a naïve predictor that would predict all the residues 
as non-reactive; this naïve predictor will score 0 on both 
the MCC and CSK statistic. As can be seen from Table 1, 
the physics-based classifier model based on the three 
descriptors offers an overall balanced accuracy of 83% in 
predicting the isomerization and deamidation sites. All 
three descriptors have a better MCC and CKS score 

compared to the naïve predictor. Similarly, any combina-
tion of two descriptors performed moderately better than 
a single predictor. The combined model using all three 
descriptors is better at predicting non-reactive residues 
over reactive residues, which could be useful in 
a therapeutic manufacturing setting where the cost of pre-
dicting a reactive residue as non-reactive is higher. This 
combined mechanistic model acts as a good screening cri-
terion in identifying antibodies that are prone to chemical 
degradation via deamidation or isomerization.

Finally, we investigated the impact of simulation sampling 
time and number of replicates on the reliability of the predic-
tion results. Both the sampling time and conformation 
sourced from multiple replicates have a direct impact on the 
probability of observing kinetically limited events in equili-
brium simulations. We calculated accuracy metrics: MCC, 
specificity, sensitivity, and accuracy, as a function of different 
simulation lengths and numbers of replicas (Figure 9). We 
find that accuracy and specificity plateau in the 10-to-100 ns 
regime, whereas more robust performance indicators such as 
MCC and sensitivity show improvement with longer simula-
tions, regardless of the number of replicates. Furthermore, 
predictions were more reliable when the conformations were 
collected from multiple short replicates over conformations 
from one long simulation. This is directly attributable to 
a decrease in the number of false positives with increased 
number of replicas that has been observed in similar studies 
performed by others.51 Overall, our method is robust when 
conformations are sourced from at least three replicate simu-
lations of the system each at least 100 ns long. This replication 
and duration give an optimal trade-off between accuracy and 
computational investment.

Table 1. Performance analysis for the physics-based classifier model using different combinations of the descriptors: (D1) backbone dihedral conformation of the n + 1 
residue, (D2) side-chain dihedral conformation of Asn/Asp residue, (D3) fraction of time the Asn/Asp residue remains solvent accessible. Combinations are represented 
by DXX where the X represents the descriptors.

Type TP* FN* FP* TN* Accuracy Accuracy† Precision Recall F1 Score F0.5 Score MCC‡ CKS§

ASN-D1 20 3 173 345 0.67 0.77 0.95 0.67 0.77 0.87 0.23 0.12
ASN-D2 21 2 301 217 0.44 0.67 0.95 0.44 0.57 0.75 0.14 0.05
ASN-D3 23 0 316 202 0.42 0.69 0.96 0.42 0.54 0.73 0.16 0.05
ASN-D12 19 4 130 388 0.75 0.79 0.95 0.75 0.83 0.90 0.26 0.16
ASN-D13 20 3 92 426 0.82 0.85 0.96 0.82 0.87 0.92 0.34 0.24
ASN-D23 21 2 183 335 0.66 0.78 0.96 0.66 0.76 0.86 0.23 0.12
ASN-naïve 0 23 0 518 0.96 0.50 0.92 0.96 0.94 0.92 0.00 0.00
ASN-D123 19 4 62 456 0.88 0.85 0.96 0.88 0.91 0.94 0.40 0.32
ASP-D1 22 2 186 288 0.62 0.76 0.95 0.62 0.73 0.84 0.23 0.11
ASP-D2 22 2 318 156 0.36 0.62 0.94 0.36 0.48 0.68 0.11 0.03
ASP-D3 21 3 312 162 0.37 0.61 0.94 0.37 0.49 0.68 0.10 0.03
ASP-D12 20 4 118 356 0.76 0.79 0.95 0.76 0.82 0.89 0.28 0.18
ASP-D13 20 4 133 341 0.72 0.78 0.95 0.72 0.80 0.88 0.26 0.16
ASP-D23 20 4 205 269 0.58 0.70 0.94 0.58 0.69 0.82 0.17 0.08
ASP-naïve 0 24 0 474 0.95 0.50 0.91 0.95 0.93 0.91 0.00 0.00
ASP-D123 19 5 77 397 0.84 0.81 0.95 0.84 0.88 0.92 0.34 0.26
ALL-D1 42 5 359 633 0.65 0.77 0.95 0.65 0.75 0.86 0.23 0.12
ALL-D2 43 4 619 373 0.40 0.65 0.95 0.40 0.53 0.72 0.13 0.04
ALL-D3 44 3 628 364 0.39 0.65 0.95 0.39 0.52 0.71 0.13 0.04
ALL-D12 39 8 248 744 0.75 0.79 0.95 0.75 0.83 0.90 0.27 0.17
ALL-D13 40 7 225 767 0.78 0.81 0.95 0.78 0.84 0.90 0.30 0.19
ALL-D23 41 6 388 604 0.62 0.74 0.95 0.62 0.73 0.85 0.20 0.10
ALL-naïve 0 47 0 992 0.95 0.50 0.91 0.95 0.93 0.92 0.00 0.00
ALL-D123 38 9 139 853 0.86 0.83 0.95 0.86 0.89 0.93 0.37 0.29

*TP – True positive, FN – False Negative, FP – False positive and TN – True Negative. † Balanced accuracy calculated with weighted distribution of positives and 
negatives. ‡ Matthew’s Correlation Coefficient ranges from −1.0 to +1.0, where the negative values indicate a bad predictor. § Cohen Kappa Score ranges from −1.0 to 
+1.0, similar to the MCC statistic but a better indicator to compare an imbalanced dataset.
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Discussion

Spontaneous chemical degradation at the Asn/Asp residues 
is an important problem that affects the developability of 
the protein therapeutics. Typically, the issues of chemical 
degradation are encountered at later stages in the 

development, at which point iterative protein-engineering 
efforts are used to mitigate these modifications. Such itera-
tive efforts prolong development timelines and delay the 
delivery of lifesaving therapeutics to patients. Multiple 
computational strategies ranging from QM calculations to 

Figure 9. Assessing sensitivity of model accuracy to the variations in simulation length (1–500 ns) and replicas (1 and 3).

Figure 8. Flowchart showing the decision scheme used to determine if a given Asn/Asp residue is likely to degrade in folded proteins.
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machine learning models have been proposed to predict 
degradation in Asn/Asp. Very few such tools (if any) gen-
eralize for high-throughput screening. We leveraged prior 
theoretical and experimental findings on the Asn/Asp 
degradation reactions to carry out multiscale analysis to 
comprehensively evaluate the chemical degradation in 
1039 residues (498 Asp and 541 Asn) spanning 131 ther-
apeutic mAbs. In doing so we made several notable obser-
vations. First, amide acidity in right-handed α-helix 
conformations is highly dependent on the n + 1 residue; 
a nonpolar n + 1 side chain decreases the amide acidity 
through protection from exposure to the base and/or 
hydrolysis. The protection from the n + 1 side chain is 
completely lost in left-handed α-helix conformations, as 
well as in the case of Gly. Second, specific regions of the 
Asn/Asp’s side-chain conformational space facilitate a near- 
attack conformation and are energetically more favorable in 
reactive sites. Third, solvent-inaccessible side chains are 
protected from the reaction. From an experimentally vali-
dated set, we were able to connect molecular intuition from 
the reaction mechanism to a real-life scenario. Using just 
three descriptors that are fundamental to the protein struc-
ture one can heuristically classify the likelihood of the 
protein to undergo chemical degradation at the ASN/ASP 
sites. Although we have exclusively examined mAbs in this 
study, we believe that the structural and chemical insights 
described herein are broadly applicable and generalizable to 
all proteins and protein-based therapeutics.

Materials and methods

Experimental dataset

The validation data contained 498 Asp and 541 Asn residues in 
the CDR loops of 131 therapeutic mAbs published by Lu et al.34 

The isomerization events were analyzed at low pH stress (pH 
5.5) for 2 weeks at 40°C. A total of 31 isomerization sites were 
identified with total modification measurements ranging from 
2.1% to 44.0%. The deamidation data were obtained at high pH 
stress (pH 8.5) for 1 week at 40°C. A total of 39 deamidation 
sites were reported with degradation levels ranging from 2.0% 
to 67.7%. We used a threshold cutoff of 5.0% for both isomer-
ization and deamidation events to classify reactive versus non- 
reactive.

QM calculations

Semi-empirical QM (SQM) calculations to calculate proton 
affinity were performed using GAUSSIAN0952 and 
MOPAC201653 software packages. To rule out any uncertain-
ties in the proton affinity calculations, we carried out DFT 
calculation of proton affinity for N-formyl-glycinamide at 
M062X/6-311++G(d,p) level of theory in both gas phase and 
aqueous phase continuum SMD solvent environment.54 The 
gas phase calculations where then repeated in MOPAC with 
PM6-D3H4,55 PM7 and RM1 semi-empirical methods (SI).54 

The regions of proton affinity qualitatively matched across 
DFT and SQM levels of theory, albeit with variations in the 
energy values as expected due to variations in the theory and 

the Hamiltonian. DFT, although accurate, remained prohibi-
tive for exploring conformations across all dipeptides. Semi- 
empirical QM methods PM6-D3H4, RM1 and PM7 each had 
discontinuities and convergence issues in sampling conforma-
tions of polar side chains. The choice of the SQM functional 
had a direct impact on how the proton-affinity of a specific 
conformation is interpreted. We chose to err on the side of 
caution and took a consensus of the proton-affinity plots from 
all three functionals to make interpretations. SQM functional 
are in constant improvement and being corrected for short 
range interactions, recalculating proton-affinity with those 
improved potentials can improve interpretations. Overall, we 
tried to make only qualitative inferences from the QM calcula-
tions and we refrained from interpreting the exact energy, as 
that is beyond the scope of this study.

Dipeptides of the Ace-NX-Nme and Ace-DX-Nme, as 
well as their corresponding deprotonated anions (where 
X can be single letter code of all 20 amino acids), were 
generated using OpenBabel.56 The generated structures 
were subject to geometry optimization under PM6 level of 
theory to arrive at an initial structure. A 2D PES scan at 
PM6-D3H4, PM7 and RM1 levels of theory. The scan was 
performed at 10° intervals spanning the entire 
Ramachandran region. A total of 1369 data points were 
scanned for each dipeptide and its corresponding anion. 
At each step, geometry optimization was requested to 
adhere to TIGHT convergence criterion while the angles 
being scanned would be kept constant. The resulting PES 
were used to arrive at the proton affinity expressed in the 
heat of formation for the forward reaction as described in 
Figure 2. The discrete energy points were interpolated and 
plotted using linear spline interpolation as implemented in 
the sklearn and matplotlib57 python packages.

PDB library

We downloaded the PDB file of all the antibody (and antibody- 
like molecules such as Fab, scFv) that have crystal structure 
deposited in the PDB from SAbDab (The Structural Antibody 
Database http://opig.stats.ox.ac.uk/webapps/newsabdab/ 
sabdab/).58,59 We arrived at 3493 structures, which were then 
cleaned, energy minimized and isolated from any other 
ligands. Using these structures, we calculated backbone dihe-
dral angles of all Nx and Dx residues from the Fab domain. All 
the PDB handling was performed using MDanalysis60 and 
PyTraj61 python tools. The backbone dihedral angle distribu-
tion from this data was used for calculating 2D kernel density 
estimation using the SciKit-Learn python package.62

KDE calculation

In order to compare the KDEs that were calculated from the 
PDB and the backbone dihedral angles observed in the MD 
simulations, we first classified each [N/D]X site as reactive or 
non-reactive based on the deprotonation metric. We collected 
the ϕ & ψ angle distribution for all these sites across all MD 
trajectories. This data was used to calculate the second kernel 
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density estimation plot in Figure 5, using the same scikit-learn 
package as before.

Molecular dynamics simulation

Molecular Operating Environment (MOE)63 software from 
Chemical Computing Group was used to homology model 
each of the Fab domain of all the antibodies accessed in the 
Adimab dataset. The Fab homology modeling tool in MOE 
constructs the full Fab domain using only the Fv sequences 
from the Adimab set as input. The Fab structures were energy 
minimized to remove any steric clashes. The energy minimiza-
tion was performed using SANDER program in Amber2015.64 

The protonation states at pH 5.5 and 8.5 were assigned using the 
PDB2PQR tool. The two pH values mimic the buffer conditions 
in which the reactivity was estimated in the Adimab experiment.

Energy-minimized Fab structures were then prepared for 
equilibrium MD simulations by solvating the structure in 
a cubic box of TIP3P explicit water (model).65 It was ensured 
such that the Fab was positioned at a minimum 10 Å distance 
from the edge of the box. The system was then adjusted to have 
a net neutral charge by adding Na+ and Cl- counter ions. 
Hydrogen Mass Repartitioning was performed on the solute 
atoms to enable long simulation time steps of 4 fs.66

The GPU implementation of Amber 2015 MD software 
package64 with the SPFP precision model was used for the 
MD simulation. The simulations proceeded by relaxing the 
system with 2000 steps of conjugate-gradient energy minimi-
zation. Harmonic restraining potentials with the force constant 
of 10 kcal/mol/Å2 were imposed to restrain the solute to its 
initial structure, post which the system was brought to an NPT 
ensemble with the pressure maintained at 1 atm and the ther-
mostat set to 300 K over the course of 200 ps, while the protein 
was restrained using a harmonic positional restraint of 10 kcal/ 
mol/Å2. The system was then equilibrated for 1 ns with 
a restraint force constant of 1 kcal/mol/Å2 on the protein 
structure maintaining the pressure and temperature at the 
same levels. The system was then subject to equilibrium MD 
simulation at NPT ensemble without any restraints at a time 
step of 4 fs. Long-range interactions were cut off at 9 Å and 
restricted range limited interactions. Coulombic interaction 
was calculated using the Particle Mesh Ewald algorithm for 
long-range electrostatics. The thermostat was maintained at 
300 K with Langevin dynamics and collision frequency set to 
1 ps−1. The simulation was carried out for 500 ns during which 
the SHAKE algorithm was applied to constrain all bonds invol-
ving hydrogen atoms. Two other replicates of the 500 ns 
simulation were performed instantiated with a different ran-
dom number to bring the combined sampling time to 1.5 μs. 
Trajectory snapshots were saved at 10 ps intervals and used for 
downstream analysis. The combined trajectories from three 
simulations were used for the analysis.

CPPTRAJ software in AmberTools64 was used to analyze 
the trajectories. The FES in the space of ψ and ϕ dihedral angles 
were calculated from bin populations using Gi = -kB T ln(Ni 
/Nmax), where kB is Boltzmann’s constant, T is the temperature, 
Ni is the population of bin i and Nmax is the population of the 
most populated bin.

Bins with no population were given an artificial barrier 
equivalent to a population of 0.5. Solvent-accessible surface 
area was calculated using the MSMS package67 using a probe 
radius of 1.4 and triangle density of 3.

Advanced sampling using metadynamics

Metadynamics simulations were carried out using the 
GROMACS201868 MD engine patched to interface with 
PLUMED.69 Metadynamics was performed in the well- 
tempered50 scheme along the conformational space of ψ & χ 
angles, as collective variables, of the pentapeptide Ace- 
GGNAG-Nme. The choice of collective variables was based 
on the atoms connecting the dihedral angles that will affect 
the distance between n + 1 amide and the side-chain gamma 
carbon. The simulations used the same forcefield and MD 
parameters with 2 fs time steps. Bias was added at every 500 
steps with a sigma of 0.1 and bias of 1.0 kcal/mol. The simula-
tion was carried out for 1 μs and the trajectory was analyzed 
after unbiasing the simulation using the standard reweighting70 

procedure implemented in PLUMED. The free energy surface 
and corresponding distance distribution was plotted using 
matplotlib.
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