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Genomic DNA is the best “unique identifier” for organisms. Alignment-free phylogenomic
analysis, simple, fast, and efficient method to compare genome sequences, relies
on looking at the distribution of small DNA sequence of a particular length, referred
to as k-mer. The k-mer approach has been explored as a basis for sequence
analysis applications, including assembly, phylogenetic tree inference, and classification.
Although this approach is not novel, selecting the appropriate k-mer length to obtain
the optimal resolution is rather arbitrary. However, it is a very important parameter
for achieving the appropriate resolution for genome/sequence distances to infer
biologically meaningful phylogenetic relationships. Thus, there is a need for a systematic
approach to identify the appropriate k-mer from whole-genome sequences. We present
K-mer–length Iterative Selection for UNbiased Ecophylogenomics (KITSUNE), a tool
for assessing the empirically optimal k-mer length of any given set of genomes of
interest for phylogenomic analysis via a three-step approach based on (1) cumulative
relative entropy (CRE), (2) average number of common features (ACF), and (3) observed
common features (OCF). Using KITSUNE, we demonstrated the feasibility and reliability
of these measurements to obtain empirically optimal k-mer lengths of 11, 17, and ∼34
from large genome datasets of viruses, bacteria, and fungi, respectively. Moreover, we
demonstrated a feature of KITSUNE for accurate species identification for the two de
novo assembled bacterial genomes derived from error-prone long-reads sequences,
and for a published yeast genome. In addition, KITSUNE was used to identify
the shortest species-specific k-mer accurately identifying viruses. KITSUNE is freely
available at https://github.com/natapol/kitsune.
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INTRODUCTION

Genome sequences have been used widely for species
identification with high accuracy and have been useful
to many research areas in the biotechnological (Costessi
et al., 2018), environmental (Vandenkoornhuyse et al.,
2010), evolutionary (Bruger and Marx, 2018; Sands, 2019),
and clinical sciences (Balloux et al., 2018). With the rapid
technological development of genome sequencing, more and
more organisms have been sequenced across all kingdoms
(Galagan et al., 2005; Land et al., 2015; Houldcroft et al., 2017;
Chen et al., 2019; Rexroad et al., 2019). The enormous amount
of data generated by sequencing has made it challenging to
compare sequences with alignment-based approaches such as
BLAST (Altschul et al., 1990). The alignment-based approach
generally requires significant memory and is time consuming,
making the comparison of multi-genome-scale sequence data
infeasible. Therefore, alignment-free methods for biological
sequence analysis have been developed and perform well
for comparative genomics and metagenomics, while also
being less time consuming than alignment-based methods
(Ren et al., 2018).

The alignment-free approach, which is simple, efficient,
and fast, relies on looking at the distribution of small
consecutive pieces of DNA sequences, called k-mers. The
k-mer–based approach has been applied to several types of
biological sequence analyses, including assembly (Sohn and
Nam, 2018), phylogenetic tree inference (Bernard et al., 2016,
2019; Thankachan et al., 2017; Zhang et al., 2017; Tang
et al., 2019; Choi and Kim, 2020), and microbial/microbiome
classification (Brinda et al., 2015; Ondov et al., 2016; Lu et al.,
2017; Jain et al., 2018; Tang et al., 2019; Wood et al., 2019).
A detailed assessment of different k-mer-counting algorithms
was reported by Manekar and Sathe (2018), and rigorous
comparisons and benchmarking of different alignment-free
methods were provided in published reviews (Bonham-Carter
et al., 2014; Zielezinski et al., 2017, 2019). Although the
k-mer–based approach is not novel, selecting the appropriate
k-mer length to obtain the good resolution in specific
applications can be arbitrary. Nevertheless, k-mer length is a very
important parameter in alignment-free phylogenetic inference
(Bernard et al., 2019).

Empirically optimal k-mer is defined as the k-mer length
that give a good discrimination among a considered set of
genomes. A previous study attempted to calculate empirically
optimal k-mer length based on cumulative relation entropy
(CRE) and relative sequence divergence (Wu et al., 2009), which
provided a foundation to choose the empirically optimal k-mer
length. Bai et al. (2017) proposed a theoretical framework to
define the empirically optimal k-mer length based on Markov

Abbreviations: ACF, average number of common features; CHIKV, Chikungunya
virus; CRE, cumulative relative entropy; H, Shannon diversity index; HIV, human
immunodeficiency virus 1; IAV, influenza A virus; KITSUNE, K-mer–length
Iterative Selection for UNbiased Ecophylogenomics; KSHV, Kaposi’s sarcoma-
associated human herpes virus; MRS, Man, Rogosa, and Sharpe; NCBI, National
Center for Biotechnology Information; OCF, observed common features; SARS-
CoV-2, severe acute respiratory syndrome coronavirus 2; ZIKV, Zika virus.

chains modeling and the Chi-square statistic. However, we
proposed a three-step approach based on information content
(Zhang et al., 2017) to more systematically assess the empirically
optimal k-mer length. Our approach produced a successful
alignment-free phylogenomic analysis of thousands of viral
genomes (Zhang et al., 2017). Here, we present KITSUNE (K-
mer–length Iterative Selection for UNbiased Ecophylogenomics)
software for identifying the empirically optimal k-mer length
from a given set of genomes for phylogenomic analysis. The
“empirically optimal k-mer length” could be defined as a selected
k-mer length that gives a well distributed genomic distances
that can be used to infer biologically meaningful phylogenetic
relationships. In addition, the software provides various genomic
distance estimations based on the k-mer frequency profile that
can be used for inferring phylogenomic trees, identifying species,
and identifying unique species-specific sequences for use as
genetic markers.

METHODS

Software Implementation
K-mer–length Iterative Selection for UNbiased
Ecophylogenomics was implemented in Python programming
language version 3.6. KITSUNE first uses Jellyfish software
(Marcais and Kingsford, 2011) to generate a k-mer frequency
profile from a FASTA file and stores the k-mer profile in sparse
matrix format. This is a suitable representation because k-mer
profiles are usually sparse due to the very large number of
possible k-mers (<4k), and this representation still allows for an
efficient calculation.

The Three-Step Approach to Identify Empirically
Optimal K-mer Length
This k-mer frequency profile enables users to calculate three
values, which are used for the three-step approach (Zhang
et al., 2017) as summarized in Figure 1. KITSUNE provides
three key commands, which are “cre,” “acf,” and “ocf,” to
calculate cumulative relative entropy (CRE), average number of
common features (ACF), and observed common features (OCF),
respectively. The formulas for CRE, ACF, and OCF are as follows:

1. CRE:

CRE
(
l
)
=

∞∑
k=l

RE
(
Fk, F̂k

)
(1)

RE
(
Fl, F̂k

)
=

∑
i

fi,llog2
fi,l
f̂i,k

(2)

Here, l is the feature (k-mer) length, fi,l is the observed feature
frequency of feature i of length l, and f̂i,l is the expected feature
frequency formulated from the Markov model of feature i, as
described in a previous study (Wu et al., 2009). The CRE value
indicates the amount of information from the genome sequence
encoded in a k-mer profile; it represents the relative information
content of an individual genome over k-mer lengths. The CRE
decreases monotonically as k-mer length increases (Figure 1C).
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FIGURE 1 | A 3-step approach for identifying empirically optimal k-mer length with KITSUNE. The KITSUNE begins with the following: (A) select a given set of
genomes (T) that will be used for subsampling genomes (G) from T for N times and (B) apply the three-step approach at the desired range of k-mer lengths using
CRE to obtain the lower bound of k-mer length (using the <10% of maximum CRE as the cut-off), using ACF to obtain the upper bound of k-mer length (using the
>10% of maximum ACF as the cut-off), and using OCF to select the k-mer lengths that have the highest diversity within the identified bounds. (C) Illustration of ACF,
CRE, and OCF for a single sampling. (D) The final step is to repeat the calculation for different samplings N times. (E) Empirically optimal k-mer lengths based on
individual samplings (dots) and mean values (boxplots) for viral (red), bacterial (green), and fungal (blue) genome datasets.

The k-mer lengths that give a CRE of close to zero for an
individual genome are selected to infer approximate information
for increasingly longer k-mer lengths (Wu et al., 2009).

2. ACF:

ACF
(
l
)
=

∑
j6=i

c(gi, gj, l)
(T − 1)

(3)

Average number of common features is calculated as an ACF
between one to all genomes where c(gi, gj, l) is a number of
common k-mers of length l between genome gi and genome gj,
and T is the number of genomes in the dataset. ACF represents
the commonality between 2 genomes. The k-mer length that gives
a value of zero value for ACF will produce a random relationship.

In contrast, very high ACF will give poor discrimination because
most of features are in common (Zhang et al., 2017). Therefore,
the k-mer lengths that do not give ACF = 0 are selected.

3. OCF:

Observed common features includes unique and non-unique
k-mers based on the occurrence of k-mers among all considered
genomes at a specific k-mer length. The probability of features

being found in individual genomes (pi,
T∑
i=1

pi = 1) is calculated

and used as the input for calculating the Shannon diversity index
(H) to estimate the level of similarity and dissimilarity across all
considered genomes, where i represents the individual genome
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and N is the total number of considered genomes. pi can be
calculated as Ci/Ok, where Ok (Ok ≤ 4k) is the number of all
observed k-mers for a specific k-mer length k, and Ci are the
number of k-mers found in i genome (1≤ i≤ T), see Zhang et al.
(2017) for example of the calculation.

H = −
T∑
i=1

piln pi (4)

H gives the degree of commonness of k-mers among all consider
genomes, therefore a higher value for H is preferred to keep
higher diversity in the commonness of k-mers.

Further detail on this three-step approach is available in our
previous study (Zhang et al., 2017). In most cases, an empirically
optimal k-mer length would give CRE and ACF values that
are 10% of their maximum values and where the k-mer is not
unique to a genome. CRE and ACF will give a minimum and
maximum boundary for the k-mer length. Then, the Shannon
diversity index based on OCF will be used to select the k-mer
length in the range obtained from ACF and CRE that has
the highest diversity (H). The k-mer selected based on the
three-step approach gives the optimal distance among the viral
genomes that can be used to delineate biologically meaningful
phylogenetic relationships (Zhang et al., 2017). Each of these
measurements gives the user a quantitative value to guide them
on which k-mer length should be selected for further analysis.
The CRE, ACF, and OCF complement each other in selecting
the empirically optimal k-mer in a dataset of interest because
they measure an empirically optimal range of k-mers from a
different perspective.

Genomic Distance Estimation
K-mer–length Iterative Selection for UNbiased
Ecophylogenomics provides 18 methods for calculating
the genomic distance based on standard dissimilarity: i.e.,
Bray–Curtis, Canberra, Chebyshev, City Block (Manhattan),
Correlation, Cosine, Euclidean, Jensen–Shannon, Squared
Euclidean, Dice, Hamming, Jaccard, Kulsinski, Rogers–
Tanimoto, Russell–Rao, Sokal–Michener, Sokal–Sneath, and
Yule. KITSUNE also provides the transformation distance
based on the formula presented by Fan et al. (2015),
which is used for Mash (Ondov et al., 2016) and FastANI
(Jain et al., 2018) for genomic distance calculation, that is

Transformation distance = −
1
k

ln
(

2j
1+ j

)
(5)

where k is the considered k-mer length and j is the
similarity index (1 – distance) between two genomes.
The transformed genomic distances can be used for
species identification.

Overview of KITSUNE Features and Uses
The input files for KITSUNE are the genome sequences of
the organism of interest in standard FASTA format. KITSUNE
provides three core functions, “cre,” “acf,” and “ocf” to calculate
the CRE, ACF, and OCF, respectively, which are the three
matrices for empirically optimal k-mer length identification,

at a given k-mer length. The three functions are used as the
basis to identify the empirically optimal k-mer length of a
given genome sequences, based on the proposed three-step
approach in the wrap-up function “kopt.” Users can specify
the largest k-mer length for the “kopt” function, and the
empirically optimal k-mer length will be reported if available;
users can change the cut-off values for the two matrices
(CRE and ACF). In addition, KITSUNE provides the function
“dmatrix” for genomic distance calculations reported in the
matrix format with the option of many distances method with
or without transformation (Eq. 5). These functions provide a
convenient analysis of empirically optimal k-mer length coupling
the genomic distance calculations in the same package. Lastly,
because “acf ” calculates the ACF between genome sequences,
the user can apply the function to identify a unique k-mer
for an organism of interest. KITSUNE is designed to analyze
assembled genomes, not data from deep sequencing; however,
the identified empirically optimal k-mer length could guide
the analysis of deep-sequencing data using other alignment-
free tools.

Publicly Available Datasets Used in the
Study
Genome Datasets
We downloaded nucleotide FASTA files for 8,967
viral reference genomes and 8,861 complete bacterial
genomes from the National Center for Biotechnology
Information (NCBI) database and 729 fungal genomes
from the JGI MycoCosm database (Grigoriev et al.,
2014). These datasets were used to identify empirically
optimal k-mer lengths and to identify species in each
domain. All of genomes in the datasets is listed in the
Supplementary Table 1.

Yeast Genome for Evaluating the Identification of
Fungal Species Identification at Different k-mer
Lengths
We used the well-characterized Saccharomyces cerevisiae genome
strain CEN.PK113-7D genome (Jenjaroenpun et al., 2018) to
evaluate the ability of KITSUNE to identify species using different
k-mer lengths. The yeast genome was downloaded from NCBI
under BioProject accession number PRJNA398797.

Escherichia coli-Shigella Dataset for Evaluating the
Identification of Closely Related Species
Escherichia coli reference genomes from known five phylogroups,
which are A, B1, B2, D, and E (Gordon et al., 2008; Skippington
and Ragan, 2011), and Shigella sp. genomes that were used
previously for phylogenetic analysis (Bernard et al., 2016; Lu
et al., 2017) were downloaded from the NCBI database. Only
chromosomal genome sequences were used for the analysis. All
of genomes in the datasets is listed in the Supplementary Table 1.

Selected Viral Genomes for Evaluating the
Identification of Shortest Species-Specific Sequence
We arbitrarily selected and downloaded seven complete
viral genomes associated with human diseases from
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different taxonomic ranks from NCBI: Chikungunya virus
(CHIKV), Dengue virus (DENV) (Kinney et al., 1997),
human immunodeficiency virus 1 (HIV) (Martoglio et al.,
1997), influenza A virus (IAV) (Fields and Winter, 1982),
Zika virus (ZIKV) (Wongsurawat et al., 2018a,b), severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
(Harcourt et al., 2020), and Kaposi’s sarcoma-associated
human herpes virus (KSHV) strain GK18 (NC_009333)
(Rezaee et al., 2006) (a DNA virus that can interact
with the host through an RNA/DNA hybrid mechanism)
(Wongsurawat et al., 2020).

Bacterial Culture and DNA Purification
Lactobacillus plantarum BCC9546 (BIOTEC culture
collection, Thailand) (Chokesajjawatee et al., 2020)
was grown in (Man, Rogosa, and Sharpe) MRS broth
at 30◦C for 16 h. The genomic DNA was extracted
with the Wizard Genomic DNA Purification Kit
(Promega, United States).

Streptococcus suis HU_SS30, isolated from a human
patient in Thailand, was grown in 10 mL of Todd Hewitt
broth (Oxoid Limited, Hampshire, United Kingdom)
containing 0.2% yeast extract at 37◦C with 5% CO2
for 18 h. The genomic DNA was extracted with the
Quick-DNATM Fungal/Bacterial Microprep Kit (Zymo
Research, Irvine, CA, United States). The study was
carried out in strict compliance with the recommendations
and approval of the ethical committee of Thammasat
University (Protocol Number 10/2557) and the biosafety
committee of Thammasat University (protocol number
021/2557 and 036/2561).

Whole Genome Sequencing Using the
Oxford Nanopore Technologies Platform
Approximately 400 ng of purified DNA from each bacterial
species was used as the input for the Rapid Barcoding Kit
RBK004 (ONT, United States) to prepare the sequencing
library. The library was loaded into an R9.4/FLOMIN106
flow cell in a MinION sequencing device. MinKNOW
software was used to control the sequencing run and data
acquisition for 48 h. The raw fastq data was deposited in the
Sequence Read Archive database under BioProject number
PRJNA644942

ONT Data Processing and de novo
Genome Assembly
The raw Oxford Nanopore Technologies (ONT) signals were
base-called using Albacore v2.3.4 (ONT) to generate FASTQ
reads, and adapter sequences were trimmed with Porechop v0.2.3
using default parameters. Genome assembly was performed
on reads that were longer than 200 bp. Flye assembler
(Kolmogorov et al., 2019) version 2.5 was applied to the
assembled genomes using default parameters to obtain the
complete chromosomes and plasmids. The assembled contigs
were visualized and plotted using Bandage software version 0.8.1
(Wick et al., 2015).

RESULTS

Identification of Empirically Optimal
K-mer Lengths for Viral, Bacterial, and
Fungal Genomes Using KITSUNE
K-mer–length Iterative Selection for UNbiased
Ecophylogenomics provides three matrices—CRE, ACF,
and OCF—to identify the empirically optimal k-mer length for a
given set of genomes (T) for making alignment-free comparisons
between genomes (Figure 1). The empirically optimal k-mer
length was calculated based on our three-step approach (Zhang
et al., 2017; see Figure 1B): step (1) we selected k-mers length
that gave CRE < 10% of the maximum to define the lower bound
of k-mer length (minimum k); step (2) we selected k-mers length
that gave ACF > 10% of the maximum to define the upper bound
of k-mer length (maximum k); and step (3) we selected k-mer
length within the minimum and the maximum of k-mer length
that yield the highest diversity index (H) based on OCF.

We applied the KITSUNE workflow (see Figure 1) to
identify the empirically optimal k-mer length for our selected
reference viral genomes (T = 8,967 genomes), complete bacterial
genomes (T = 8,861 genomes), and fungal genomes (T = 729
genomes). Identifying the empirically optimal k-mer length
requires many iterations over different k-mer lengths; therefore,
using all genomes in the iterative calculations requires significant
computational resources. Instead, we used a random sampling
approach to perform the iterative calculations across considered
k-mer lengths on subsets of all genomes/subsample (G genomes)
several times (N times). For the viral and bacterial genome
datasets, we sampled 100 genomes (G = 100) 100 times
(N = 100). For the fungal genome dataset, we sampled eight
genomes (G = 8) 300 times (N = 300); this was due to the
larger genome size of fungi and our available computational
resources (RAM ∼ 200 GB). For the example of an iteration
shown in Figure 1C, CRE gave a minimum k-mer length
of 11 and ACF gave a maximum k-mer length of 15; a
k-mer length of 11 was selected because it gave the highest
diversity (H) within the k-mer length range of 11 and 15.
The results for empirically optimal k-mer length derived
from the iterative calculation are summarized in the boxplots
in Figure 1E. We identified the empirically optimal k-mer
length to be 11 for the viral genome dataset and 17 for the
bacterial genome dataset.

Interestingly, the empirically optimal k-mer length, identified
with individual sampling (subsample), was the same value
for the viral and bacterial datasets. On the other hand, the
empirically optimal k-mer length obtained from individual
sampling of the fungal genome dataset varied from 23 to
43, with a mean of 37, indicating the insufficient sample
size (G = 8). The subsample size is an important factor;
therefore, we evaluated the impact of subsample size for
the viral genome dataset. We found that a subsample of
20 viral genomes was sufficient to achieve convergence from
individual iterations and gave the same empirically optimal
k-mer length of 11 as subsample of 100 viral genomes
(Supplementary Figure S1).
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Comparison of Genomic Distances
We next compared different methods for calculating genomic
distances using our empirically optimal viral k-mer length
of 11, derived from 100 viral genomes as an example.
We arbitrarily selected 11 methods, computed genomic
distances, and compared them as shown in Figure 2. We
also included the Mash method (Ondov et al., 2016) and
the Afann method (Tang et al., 2019) in the comparison.
Mash uses the MinHash/Sketching algorithm (Broder,
1977; Indyk and Motwani, 1998) to reduce the data size
of k-mer frequency profiles and calculates the distance by
a transformation of the Jaccard index, which is calculated
from MinHash based on the formula presented by Fan
et al. (2015) (Eq. 5). Afann uses neural network regression
to adjust the sequence biases and then calculates genomic
distance using background adjustment methods such as d2S
and d2Star (Reinert et al., 2009). The computational time
and memory use of different methods, including Mash, and
Afann (with the 100 viral genomes), were compared, as
illustrated in Figure 2A. As expected, the Mash method had
the second shortest computational time and lowest memory use
because the data were compressed by the MinHash/Sketching
algorithm (Broder, 1977; Indyk and Motwani, 1998). The
computational time for the d2Star distance derived from
Afann was the shortest, but Afann used more memory than
the others. The distances derived from KITSUNE required
similar computational times, which were longer than Afann
and Mash software.

We next computed the genomic distances of the 100 viral
genomes using the standard distance formula for the 10
individual methods and compared them with the genomic
distances calculated with Mash (Supplementary Figure S3).
The scatter plots for all of the 10 distances had clear linear
relationships with each other but not with the Mash distance.
Unlike Mash distances, which have a normal distribution
(see diagonal boxes), the 10 distances had a strong right-
hand skew close to 1. The d2Star distances derived from
Afann had a sharp distribution of around 0.5. However, all
of them had a good correlation based on rank (Spearman’s
rank correlation coefficient >0.69). We then applied the
transformation formula (Eq. 5) presented by Fan et al. (2015)
to calculate distances for all 11 methods and d2star then
compared them together with the Mash distance (Figure 2B).
After transformation, there was a clear linear relationship
among the distances calculated with almost every method
(see scatter plots), each with a normal distribution (see
diagonal boxes), except for the Jensen–Shannon method.
Nevertheless, the transformation did not much change
the rank correlation among them (Spearman’s correlation
coefficient >0.66).

We next determined the impact of k-mer lengths on
genomic distance (transformed Jaccard) as illustrated in the
histogram plot of Figure 2C for the identified empirically
optimal k-mer length of 11 with k-mer length of 5 and
17 (see Supplementary Figure S2 for other k-mer lengths
and a tree shows good discrimination among different
virus families/genus using the empirically optimal k-mer

length of 11). At k-mer length of 5, which is too short,
most of the genomic distances were close to 0; therefore,
discrimination among the genomes was limited. On the
other hand, at a k-mer length is 17, which is too long,
most of the genomic distances were close to 1; therefore,
discrimination among the genomes was saturated. At the
empirically optimal k-mer length of 11, the distribution of
genomic distances was normally distributed near in the middle
of the distance scale. This characteristic could be used to infer
biologically meaningful phylogenetic relationships that need
further investigations.

De novo Assembly of Bacterial Genomes
From ONT Sequencing for Species
Identification
ONT provides long-read sequencing (>10 kb), which
overcomes the issue of assembling disambiguated reads
from short-read sequencing data. This allows users to
obtain contiguous chromosomal and plasmid sequences
(Jenjaroenpun et al., 2018; De Maio et al., 2019).
Unfortunately, because of the higher sequencing error
rate of ONT over short-read sequencing, approximately
1% of errors remain in the assembled sequence even after
self-consensus correction (Wick et al., 2019). Therefore,
it is necessary to polish with short reads to obtain high-
quality genome sequences (De Maio et al., 2019). Here,
we evaluated whether a genome sequence assembled using
only ONT long reads could be used to identify bacterial
species with KITSUNE.

We performed whole-genome sequencing and de novo
assembly for two bacterial species, S. suis HU_SS30 and
L. plantarum BCC9546, using only ONT long-read sequencing.
We generated sequencing depths of ∼53 × (146 Mb) for
S. suis and ∼45 × (177 Mb) for L. plantarum. The assembled
genomes are illustrated in Figures 3A,B. For S. suis, the de
novo assembly yielded three circular contigs of a chromosome of
approximately 2 Mb and two plasmids of approximately 73 and
14 kb. For L. plantarum, the de novo assembly yielded six circular
contigs of a chromosome of approximately 3.2 Mb and five
plasmids ranging in size from 4.5 to 84 kb. Only the assembled
chromosome sequences were used for species identification by
querying the sequences against our dataset of 8,861 complete
bacterial genomes.

We used KITSUNE to calculate the genomic distances at our
identified empirically optimal k-mer length of 17 (Figure 1)
using the Jensen–Shannon method and the Jaccard method
with transformation (Fan et al., 2015), which previously showed
a non-linear relationship between them (Figure 2B), and
compared them as illustrated in Figures 3C,D for S. suis and
L. plantarum, respectively. By considering the nearest-neighbor
genomes within the complete bacterial genome dataset, we
could identify S. suis based on the clear cluster of genomic
distances within the species (<0.06 for transformed Jaccard and
<0.66 for Jensen–Shannon). For L. plantarum, we identified
the unclassified Lactobacillus sp. D1501 as the closest species,
as the complete bacterial genome dataset used here lacked
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FIGURE 2 | Genomic distance comparison. (A) Bar plots of computational time and memory required for genomic distance calculation by individual methods.
(B) Correlogram plot comparing transformed genomic distances calculated with different methods based on 100 viral genomes. Lower left triangle: scatter plots of
genomic distances derived from of pairs of genomes calculated with different methods with correlation ellipses; upper right triangle: Spearman’s rank correlation
coefficients for different methods; diagonal boxes: distribution of genomic distances. (C) Histograms with rug plots show the distributions of genomic distances
(transformed Jaccard) based on the identified empirically optimal k-mer length (k11, green), k-mer length of 5 (k5, red), and k-mer length of 17 (k17, blue). See
Supplementary Figure S2 for the distribution of genomic distances derived from all k-mer-length from 5 to 17.
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FIGURE 3 | Bacterial species identification based on genome assembly via long-read sequencing. (A) Illustration of assembled chromosome and plasmids of S. suis
HU_SS30 and (B) L. plantarum BCC9546. Scatter plots of genomic distances derived from of genomes pairs (Jensen–Shannon vs. transformed Jaccard methods)
for S. suis (C) and L. plantarum (D) queried against the 8,861 complete bacterial genomes.

L. plantarum, indicating the importance of a database for
species identification.

Evaluation of Different K-mer Lengths for
Fungal Species Identification
Unlike with the viral or bacterial genome datasets, we did not
obtain a unique empirically optimal k-mer length from the
fungal genome dataset (Figure 1). Therefore, we explored the
impact of different k-mer lengths on identifying fungal species,
using S. cerevisiae strain CEN.PK113-7D as an example. We
used the transformed Jaccard index (see Eq. 5) to calculate
the genomic distance for S. cerevisiae using k-mer lengths of
between 27–45 (the range of empirically optimal k-mer lengths
defined in Figure 1E) against the genomes in the dataset of
729 fungal genomes (Figure 4A). With this approach, we were
able to identify the species S. cerevisiae at any k-mer length
based on the shortest distance. We observed that the genomic
distance, calculated at k-mer lengths ≥41, between S. cerevisiae

strain CEN.PK113-7D and strain S288C was closer to the other
distances derived S. cerevisiae CEN.PK113-7D and other fungi
genomes in the reference dataset when compared with at k-mer
lengths <37 (diagonal plots of Figure 4A). This indicated that the
discrimination power decreased at k-mer lengths ≥41.

Using KITSUNE to Identify Empirically
Optimal K-mer Length for Closely
Related Bacterial Species
The three-step approach to identify empirically optimal k-mer
length was first designed for inter species comparison. We
evaluated whether we could use KITSUNE to identify empirically
optimal k-mer length for the closely related species of E. coli-
Shigella, which is a classic problem in microbiology for species
differentiation. We calculated CRE, ACF, and OCF for the 30
genomes in the E. coli-Shigella dataset as illustrated in Figure 4B.
The minimum k-mer length of 14 was identified based on CRE.
The ACF, which is used to evaluate the level of common features
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FIGURE 4 | Fungal species identification and k-mer length identification of the E. coli-Shigella dataset. (A) Correlogram plot for identifying the fungal species
S. cerevisiae CEN.PK 113-7D by querying against the dataset of 729 fungal genomes at k-mer lengths of 27–45 using the transformed Jaccard genomic distance.
Lower left triangle: scatter plots of the genomic distance for different k-mer lengths; solid red circle is the shortest genomic distance between S. cerevisiae CEN.PK
113-7D and the species found in the fungal genome dataset (S. cerevisiae S288C). Upper right triangle: Spearman’s rank correlation coefficients among different
k-mer lengths; diagonal boxes show the distribution of genomic distances. The diagonal boxes show the distribution of the genomics distances; the red arrows
represent the genomic distance between S. cerevisiae strain CEN.PK 113-7D and S288C. (B) The plots of CRE, ACF, and OFC for the 30 strains of E. coli–Shigella
dataset used to identify empirically optimal k-mer length. (C) Tree constructed from genomic distances based on the d2Star method using Afann at the identified
empirically optimal k-mer length of 14. Phylogroups are indicated by colored boxes on the right side of the tree: black, Shigella spp.; blue, A; purple, B1; red, B2;
green, D; and yellow, E.

among the considered genomes, decreased slowly as k-mer length
increased because of the high similarity of the genome sequences.
Therefore, the maximum k-mer length could not be identified
with ACF. However, the OCF indicated that a k-mer length of
14 was the empirically optimal k-mer length because it gave
the highest diversity index (H). We then calculated the genomic
distances based on d2Star method using Afann software and
used them to constructed a tree as illustrated in Figure 4C.
We observed a clear separation among groups of E. coli and
Shigella spp. Moreover, different phylo-types of E. coli were well
discriminated at the identified empirically optimal k-mer length.

Virus Species-Specific Sequence
Identification Using ACF
Taxon-specific sequences have been used for rapid species
classification, taxonomic rank identification, functional

inference, and taxon abundance estimation for genome and
metagenome samples (Truong et al., 2015; Wood et al., 2019).
With this in mind, we demonstrated the capability of KITSUNE
to identify the shortest k-mer length that is unique for individual
viral species based on the genome sequence by applying the
ACF, which can be used to identify common features of any
two genomes. We selected RNA/DNA viruses associated with
infectious disease epidemics/pandemics as described in the
Methods section. Using the ACF for k-mer lengths of 7–51,
the individual viral genomes were queried against the reference
viral genome dataset (8,967 genomes) to evaluate whether the
genomes had common sequences.

The frequency of genomes with sequences in common with
the seven selected viruses was recorded for each k-mer length
and plotted for comparison (Figure 5). Based on this graph, the
shortest k-mer length that was unique for the selected viruses was
identified; these lengths were 23 for IAV, 27 for HIV, 33 for KHSV,
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FIGURE 5 | Virus specific sequence identification. Line plot of the number of genomes within the dataset of 8,967 viral reference genomes that have sequences in
common with the seven selected viruses across k-mer lengths of 57–51. Solid dots represent the shortest unique k-mer of individual viruses. CHIKV, Chikungunya
virus; DENV, Dengue virus; KSHV, Kaposi’s sarcoma-associated human herpes virus; HIV, human immunodeficiency virus; IAV, influenza A virus; SARS-CoV-2,
severe acute respiratory syndrome coronavirus 2; and ZIKV, Zika virus.

and 35 for DENV, CHIKV, and 39 for SARS-CoV-2, ZIKV. We
assessed the specificity of these shortest unique k-mers with a
BLAST search against the NCBI nr/nt database, which includes
sequences from various organisms. The BLAST results based on
the top 50 hits of randomly selected sequences for the viruses
of interest showed very good specificity for the shortest unique
k-mers for species identification (see Supplementary Material).

DISCUSSION

Although k-mer length is critical, few studies have endeavored
to determine empirically optimal k-mer lengths for making
alignment-free genomic comparisons. KITSUNE provides a
systematic way to investigate empirically optimal k-mer lengths,
and it can be used for many applications. Here, we applied
KITSUNE to identify the empirically optimal k-mer length
for large-scale datasets of viral, bacterial, and fungal genomes
through random sampling. The subsample size, which is an
important parameter, needs to be large enough to represent
the population of considered genomes. This approach gave
consistent results for empirically optimal k-mer length for the
viral and bacterial datasets, but not for the fungal dataset,
which contained larger and more diverse genomes, indicating
an insufficient subsample size. The k-mer–based information
content within a genome is highly dependent on genome size
(Zhang et al., 2017); therefore, long k-mers are necessary to
identify the empirically optimal k-mer length. Long k-mers
length produces a large, highly complex search space, which
increases exponentially by a factor of 4k for nucleotide sequence.

We found that the genomic distance calculation was quite
consistent across methods in terms of ranking (Figure 2B)
and could be used for species identification (Figures 3C,D,
4A). KITSUNE requires more computational time to calculate
genomic distances than the Mash method (Ondov et al., 2016)
because KITSUNE uses uncompressed k-mer frequency data.
However, the MinHash/Sketching algorithm (Broder, 1977;
Indyk and Motwani, 1998) uses lossy compression to represent
k-mers, which allows only the Jaccard index to be used to
determine genomic distance. Moreover, sequence information
cannot be retrieved after it is compressed by MinHash, so it is not
possible to identify actual nucleotide sequences within a k-mer
frequency profile. Such actual nucleotide sequences are very
useful for identifying genetic sequence markers, as demonstrated
in Figure 5 for viruses using KITSUNE. These are the trade-offs
between computational time and the resolution of sequence data.

The specific characteristic of genomic distance profile derived
from individual method was observed especially by Jensen–
Shannon, d2Star and Cosine (Figure 2B). This raises an
important research question about how to calibrate genomic
distances derived from alignment-free methods with standard
phylogenetic analysis, which has a robust statistical model for
in-depth evolutionary analysis, and use the genomic distances
derived from alignment-free analysis to study evolution.
Nevertheless, the alignment-free genomic distance yielded rapid
and accurate species identification.

Researchers can use KITSUNE to systematically identify
the empirically optimal k-mer length for genomes of interest
based on the three-step approach. Calculating ACF, which must
be done for all possible pairs of genomes, and OFC, which
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is an all-genomes comparison, is computationally intensive.
A subsampling approach reduces this computational load and
gives a good approximation of empirically optimal k-mer length.
Even though KITSUNE was developed for genomes of different
species, it can be used to analyze closely related species by
ignoring the ACF. KITSUNE uses the assembled genomes, not
sequencing reads, to identify the empirically optimal k-mer
length. Nevertheless, the identified empirically optimal k-mer
length in Figure 1 for the three kingdoms and taxa-specific k-mer
as demonstrated in Figure 5. KITSUNE can be used to calculate
genomic distances that can be used for many applications.
However, we implemented the genomic distance methods based
on available distance functions in the Python environment.
Genomic distance is important for comparative genomics using
an alignment-free approach; therefore, we recommended the
users explore advanced genomic distance calculations from the
published literature.

CONCLUSION

In summary, we present KITSUNE, an open source software
that can be used to identify the empirically optimal k-mer
length for phylogenomic analysis of a given set of genomes and
for estimating genomic distances and identifying taxon-specific
sequences. Thus, KITSUNE is an alternative alignment-free tool
for comparative genomics.
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