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Abstract

Background and Objectives. Risk-tolerance measures from patient-preference studies typically focus on individual
adverse events. We recently introduced an approach that extends maximum acceptable risk (MAR) calculations to
simultaneous maximum acceptable risk thresholds (SMART) for multiple treatment-related risks. We extend these
methods to include the computation and display of confidence intervals and apply the approach to 3 published
discrete-choice experiments to evaluate its utility to inform regulatory decisions. Methods. We generate MAR esti-
mates and SMART curves and compare them with trial-based benefit-risk profiles of select treatments for depres-
sion, psoriasis, and thyroid cancer. Results. In the depression study, SMART curves with 70% to 95% confidence
intervals portray which combinations of 2 adverse events would be considered acceptable. In the psoriasis example,
the asymmetric confidence intervals for the SMART curve indicate that relying on independent MARs versus
SMART curves when there are nonlinear preferences can lead to decisions that could expose patients to greater risks
than they would accept. The thyroid cancer application shows an example in which the clinical incidence of each of 3
adverse events is lower than the single-event MARs for the expected treatment benefit, yet the collective risk profile
surpasses acceptable levels when considered jointly. Limitations. Nonrandom sample of studies. Conclusions. When
evaluating conventional MARs in which the observed incidences are near the estimated MARs or where preferences
demonstrate diminishing marginal disutility of risk, conventional MAR estimates will overstate risk acceptance,
which could lead to misinformed decisions, potentially placing patients at greater risk of adverse events than they
would accept. Implications. The SMART method, herein extended to include confidence intervals, provides a repro-
ducible, transparent evidence-based approach to enable decision makers to use data from discrete-choice experiments
to account for multiple adverse events.

Highlights

� Estimates of maximum acceptable risk (MAR) for a defined treatment benefit can be useful to inform
regulatory decisions; however, the conventional metric considers one adverse event at a time.

� This article applies a new approach known as SMART (simultaneous maximum acceptable risk thresholds)
that accounts for multiple adverse events to 3 published discrete-choice experiments.

� Findings reveal that conventional MARs could lead decision makers to accept a treatment based on
individual risks that would not be acceptable if multiple risks are considered simultaneously.
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Introduction

Assessing whether treatment benefits outweigh risks of
potential adverse events is central to regulatory and clini-
cal decisions in health care. When considering whether to
approve new treatments, regulators are tasked with iden-
tifying treatments that are both safe and effective.1 They
must judge whether multiple treatment-related risks are
acceptable given a treatment’s benefit. Similarly, physi-
cians and patients engage in treatment decisions that seek
to provide therapeutic benefits while minimizing risks,
and patients make ongoing choices about continuing
treatments based on their daily experience with multiple
symptoms and side effects. In all these contexts, treat-
ments are accepted or rejected as a bundle of benefits
and risks.

Discrete-choice experiments (DCEs) and related
methods are often used to quantify patients’ and other
stakeholders’ health care preferences and particularly
their willingness to accept risks, because these methods
are uniquely capable of quantifying compensatory trade-
offs that are inherent in multifaceted decisions.2,3 This
versatility can be exploited to estimate relative preference
weights for features of medical interventions based on
stated choices that mirror real-world decisions. In DCE

surveys, patients are often asked to evaluate tradeoffs
among features of medical interventions, and these fea-
tures often include 2 or more adverse event risks
expressed as probabilities of negative outcomes. In the
conventional approach, researchers quantify these trade-
offs by calculating the maximum acceptable risk (MAR)
for each adverse event by equating the utility of the treat-
ment benefit and the expected disutility of bearing the
adverse event risk.4

Fairchild et al.5 argued that the standard method for
calculating risk acceptance does not make full use of
robust experimental data from stated-preference surveys.
The conventional approach estimates the maximum
increase of a single adverse event risk that would be
acceptable given a specified level of benefit, assuming
that all other risks are unchanged.6 An MAR estimate is
produced for each individual adverse event risk included
in the study. These individual MAR estimates usually are
the only information available to compare the incremen-
tal incidence of the adverse outcome as observed in the
clinical data. Any consideration of multiple simultaneous
risks must be done in an ad hoc manner and with limited
information on the interplay of the multiple risks and the
correlation of MAR estimates. This could be particularly
impactful in the regulatory context, where even small dif-
ferences in MARs could affect the preference signals con-
sidered by agencies for approval decisions.

However, nearly all treatments are associated with
multiple potential adverse events. Expanding the concept
of individual MARs to account for multiple simultaneous
risks could provide product developers and regulatory
decision makers a transparent framework to consider
more complex tradeoffs. Such a framework could affect
both strategic product development questions pertaining
to what tradeoffs are acceptable for target product pro-
files as well as regulatory questions pertaining to what
profiles of risks and benefits in submitted treatments are
acceptable.

Fairchild et al.5 recently proposed a method for calcu-
lating a simultaneous maximum acceptable risk threshold
(SMART) that makes better use of the multidimensional-
ity of discrete-choice data by estimating the various com-
binations of probabilistic risks of adverse events that
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would be acceptable given a specified benefit. In the pres-

ent study, we apply this method to generate continuums

of MAR vectors or SMART curves using data from pub-

lished DCE preference studies. We also extend the

approach to include confidence intervals along SMART

curves to represent joint levels of uncertainty associated

with the acceptance of 2 risks. We compare the resulting

estimates against 1) the originally published, individual

MARs and 2) the relevant clinical evidence on observed

benefits and risks of treatment. The goal is to demon-

strate situations in which MAR and SMART methods

might result in qualitatively different interpretations of

risk acceptance.
In the next section, we briefly outline the SMART cal-

culation and then consider 3 published preference stud-

ies. For each study, we review the clinical context and the

structure of the discrete-choice study, including an assess-

ment of any specific risks and benefits that are observed

clinically and included in the DCE. We then use prefer-

ence weights to replicate the reported mean MAR esti-

mates for each adverse event risk individually and to

calculate the SMART, comparing both estimates against

benefits and risks reported from clinical trials. We con-

clude with a discussion of the interpretation of these find-

ings and their relevance for decision makers in regulatory

and clinical contexts.

Methods

We identified 3 studies in the literature to demonstrate
how the SMART approach can be applied. We selected
these 3 studies because each demonstrates a unique
aspect of the SMART approach as applied in clinical
decision making. Also, in each case, clinical data on the
incidence of relevant benefits and risks are available in
the published literature and analogous to the risk and
benefit attributes in the preference study. In general, it is
possible to calculate the mean SMART threshold using
published log-odds preference weights, which are typi-
cally reported in a table or figure in the main body of an
article or in the supplemental materials. The confidence
intervals can also be calculated based on the variance-
covariance matrix associated with these preference
weights. Although the authors of this study were
involved in designing and publishing the preference
studies used as examples here, the core insights gleaned
by applying the SMART method are based on published
data and do not require proprietary, respondent-level
data.

For each study, we extract the raw (i.e., log odds) pre-
ference weights. We then used these preference weights
to replicate the reported MAR estimates for individual
adverse events. Following this confirmatory replication
exercise, we identify treatments in the relevant therapeu-
tic area that can be characterized by the attributes and
levels included in the preference study. We identify the
relevant levels of each attribute that apply to the candi-
date treatment. We use these clinical data, combined
with the published preference weights, to quantify survey
respondents’ perceived valuation of a treatment profile
using relevant attributes as the ‘‘utility of benefit.’’

We then follow the procedures described above and in
Fairchild et al.5 to identify all possible combinations of
relevant adverse event risks that would exactly offset the
expected utility of benefit of treatment. These combina-
tions define the continuous threshold of acceptable com-
binations of risks (i.e., the SMART curve) corresponding
to the main DCE results.

We calculate confidence regions around the SMART
curves to account for the uncertainty of the DCE prefer-
ence weights using the mean preference weights and the
associated variance-covariance matrix. The confidence
regions are calculated through a generalization of the
Krinsky and Robb method outlined in Cooper.7 This
method is similar to bootstrapping in that repeated draws
are made from specified distributions. We parametrize a
multivariate normal distribution using each study’s
reported preference weight means and the associated
variance-covariance matrix, from which we draw 1,000
sets of preference weights to generate 1,000 SMART
curves.

For each draw of preference weights, we estimate the
full SMART curve representing all of the combinations
of probabilistic risks that would be acceptable given the
level of benefit, as described in Fairchild et al.5

Specifically, in cases with exactly 2 adverse event risks, 1
and 2, we calculate the probability of adverse event 2
that would exactly offset the expected utility of treatment
benefits, evaluated at each potential level of adverse
event 1. We can generalize this to n adverse events, for
which we identify all combinations of probabilities for
the n – 1 adverse events, and calculate the probability of
adverse event n that would exactly offset the expected
utility of treatment benefits, at each of the combinations
of the other n – 1 adverse events.

The result of this exercise is 1,000 simulated SMART
curves, each defined by a set of jointly acceptable risk-
risk combinations. For each level of adverse event 1, we
identify the 2.5% and 97.5% percentiles of adverse event
2 to define the 95% confidence region. Larger or smaller
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confidence regions can use corresponding percentiles.
Note that the mean SMART curve was estimated based
on the mean utility estimates derived from the main
model, not the mean of the simulations. Thus, the confi-
dence intervals represent the uncertainty surrounding the
SMART estimate derived from uncertainty in the under-
lying preferences estimates.

Results

Study 1: Treatment-Resistant Major
Depressive Disorder

Fairchild et al.8 report the results of a patient preference
study eliciting benefit-risk tradeoff preferences among
adults with treatment-resistant major depressive disor-
der. Participants were recruited from both an online
sample of respondents who self-report to the condition
(n = 297) and among English-speaking participants in 2
clinical trials of a novel ketamine-based therapy, esketa-
mine (n = 159). The published results include the MAR
of either cognitive impairment or ulcerative cystitis,
along with a series of SMART estimates for specific ben-
efit levels, and it is the first publication to present both
types of MAR analysis. The results of this study were
also included in the regulatory submission for esketa-
mine.9 While esketamine was not observed to result in
either cognitive impairment or ulcerative cystitis side

effects, this preference study was conducted due to these
side effects occurring in some individuals who abused
ketamine.

We expand on the originally published SMART
analysis by comparing the published risk acceptance
results against an approximation of esketamine’s clinical
profile. Kim et al.10 document a 4.1-point improvement
in the Montgomery-Åsberg Depression Rating Scale
(MADRS) mood score for 56 mg of esketamine com-
bined with a newly initiated antidepressant relative to
the control group, which received placebo plus a newly
initiated antidepressant. By interpolating that treatment
benefit using the preference weights for MADRS score
improvement, we compute the utility benefit for both the
clinical trial (0.639) and the online panel sample (0.319)
participating in the initial DCE survey.5 We then com-
pute the SMART and corresponding confidence regions
to represent measurement uncertainty using the general-
ized Krinsky-Robb method outlined above (Figure 1a
and b).

In both figures, the point estimate of the single-event
MARs for each potential adverse event is found at the x
or y intercept, where the other adverse event risk is equal
to zero. The preference weights for each adverse event
were modeled linearly5; thus, the SMART appears as a
linear line connecting the 2 independent MAR point esti-
mates. If the point representing the probabilities for both
adverse events on the x-y plane falls above the SMART

Figure 1 Simultaneous maximum acceptable risk thresholds (SMART) for esketamine-induced Montgomery-Åsberg Depression
Rating Scale improvement of 4.1 in the (a) clinical trial sample and (b) online panel sample of 2 hypothetical risks based on
reported events with ketamine abuse. CI, confidence interval; MAR, maximum acceptable risk.

4 MDM Policy & Practice 7(2)



curve, one can conclude that the benefits of a treatment
do not outweigh the combined disutility associated with
both risks. The zone representing situations in which
decision making may differ when considering individual
MARs versus considering SMARTs is the region above

the SMART line but within the dashed lines that repre-
sent point estimates of the single-risk MARs. We refer to
this area as the acceptance-divergent region. Without
SMART, a decision maker assessing information on
adverse events has to adjust the individual MAR infor-
mation to determine their joint acceptability, generally a
process done by intuition without mathematical support.
This could lead to an erroneous conclusion that treat-
ment benefits outweighed its risks if the actual probabil-
ity of cystitis and memory loss associated with treatment
fell in the acceptance-divergent region. Such an error
could occur if the assessment considers the MAR esti-
mates for each adverse event individually or if the adjust-
ment used to account for multiple types of adverse
events is not consistent with respondents’ preferences. In
the case of esketamine, neither adverse event was
observed in the clinical trials; however, other treatments
for treatment-resistant depression could potentially have
such outcomes.

Study 2: Biologics for Psoriasis

In Fairchild et al.,11 the researchers quantified benefit-
risk preferences among 927 participants with psoriasis
pertaining to the alleviation of varying degrees of plaque
psoriasis on the face, body, and hands when different
treatment regimens result in different risks for severe
tuberculosis infection and mortality. An applicable treat-
ment of interest to this study is ixekizumab. In rando-
mized clinical trials, ixekizumab was documented to
provide near-total alleviation of plaque psoriasis on all
body parts among patients with a median area coverage
of 27%, with annual risks of both severe infection and
mortality at 1.4% and 0.1%, respectively.12

This study included multiple risk levels of the adverse
event attributes and modeled risk preferences as a piece-
wise linear function. In other words, the model allows for
the possibility that the preference weights could fluctuate
nonlinearly; that is, the preference weight for 10% risk
may be more or less than 10 times the preference weight
for 1% risk. The researchers observed such nonlinear
preferences in their model for psoriasis reduction in the
patient’s hands (Figure 2). These preference weights indi-
cate a decreasing marginal disutility of mortality risk and
a fairly linear functional form for tuberculosis risk. We
built the SMART curve based on the utility gain associ-
ated with total alleviation of moderate plaque psoriasis
that has an initial 25% coverage on the patient’s hands
(Figure 3).

As above, the point estimate single-event MARs are
located at the intercepts where the risk of the other

Figure 2 Preference weights for treatment-related risk levels of
tuberculosis and mortality for plaque psoriasis on the hands
from Fairchild et al. (2017).11 Lines are included to display
nonlinearity of preference weights.

Figure 3 Simultaneous maximum acceptable risk threshold
(SMART) for a reduction from 25% to 0% area of hands with
moderate plaque psoriasis. The red dot indicates the
probabilities for the adverse events of mortality and
tuberculosis in Gordon et al.12 extrapolated across 10 y.
Tuberculosis served as a proxy for severe infection.
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adverse event is zero and the mean SMART curve is
bounded by different levels of confidence regions. The
key difference between Figures 1a, b and 3 is that the
mean SMART curve is slightly nonlinear and its confi-
dence intervals are asymmetric. As expected given the
simulated results in Fairchild et al.,5 jointly modeling
nonlinear preference weights can affect the area of the
acceptance-divergent region bounded by the SMART
curve and the single-event MARs. When the confidence
regions bow toward the axes, as is clearly the case for the
90% and 95% CI contours, the acceptance-divergent
region is larger than with a linear model. This occurs
because the preference study revealed less incremental
risk tolerance at lower levels of mortality risks.

Furthermore, we plot the corresponding risks reported
in clinical results of ixekizumab, using tuberculosis as a
proxy for severe infection (red marker in Figure 3). To
equate the annual risks reported in the clinical trial to the
10-y risks from the DCE, we assume uniform hazard of
the annual clinical risk, yielding a 10-y risk of mortality
of 0.99% and 10-y risk of serious infection (which the
DCE proxies with tuberculosis) of 13.15%. When we
extrapolate the reported clinical risks in this way, the risk
profile of ixekizumab appears much closer to the point-
estimate SMART curve than each MAR threshold indi-
vidually, indicating that the benefit-risk balance is just on
the borderline of acceptable based on these criteria.
However, the lower limits of the confidence regions for
the SMART curve indicate a much lower risk acceptance
for both adverse events. With a 10-y mortality risk of
1%, the conservative lower limits of the 90% and 95%
SMART confidence intervals indicate that acceptance of
10-y risk of serious infection falls from about 13%
(SMART curve) to about 10% and 8%, respectively,
assuming no change in the risk of mortality.

Study 3: Radioactive Iodine for Refractory
Differentiated Thyroid Cancer

The SMART approach can be applied when there are

more than 2 adverse events of interest. In a preference

study by Mohamed et al.,13 the authors present the
results of a DCE survey among 134 patients with a self-

reported diagnosis of differentiated thyroid cancer who

had received at least 1 round of treatment with radioac-

tive iodine. The study focused on key treatment features

that differentiate 2 treatments indicated for this cancer,
sorafenib and lenvatinib, which are approved by the

United States Food and Drug Administration (FDA) for

radioactive iodine refractory differentiated thyroid can-

cer. The differentiating features included progression-free
survival (PFS) and 3 probabilistic adverse-event attri-

butes: hand-foot skin reaction, hypertension, and protei-

nuria. To be able to calculate confidence intervals, we

obtained the raw preference weights and corresponding

variance-covariance matrix from the study’s correspond-
ing author. The original preference study presented indi-

vidual MAR estimates associated with switching from a

treatment with a median PFS of about 10 mo (similar to

sorafenib) to a treatment with a median PFS of 16 or
18 mo (similar to lenvatinib), which we successfully repli-

cated prior to proceeding with our SMART analysis.
Table 1 presents a summary of the clinical benefits

and adverse-event risks of the 2 approved treatments as
they relate to the attributes included in this preference
study, based on a comparison of the clinical trials con-
ducted for each drug in this indication.14 Using the origi-
nal specification with linear and quadratic terms to
model treatment attributes, we computed the approxi-
mate preference values associated with the differences in
PFS between placebo and treatment groups. We then use

Table 1 Progression-Free Survival and Adverse Events Incidence of Study Treatment versus Placebo in 2 Clinical Trials for
Iodine Refractory Thyroid Cancer from Fleeman et al. (2019)14

SELECT Trial DECISION Trial

Placebo Lenvatinib Placebo Sorafenib

Progression-free survival (months, median)a 3.6 18.3 5.8 10.8
Incidence of severe hand-foot skin reaction (grade 3+ ), %b 0.0 3.4 0.0 20.3
Incidence of severe proteinuria (grade 3+ ), %b 0.0 10.0 0.0 0.0
Incidence of severe hypertension (grade 3+ ), %b 3.8 42.9 2.4 9.7

aData extracted from table 2 in Fleeman et al. (2019).14

bData extracted from table 5 in Fleeman et al. (2019)14 reproduced according to terms of the Creative Commons Attribution 4.0 International

License: http://creativecommons.org/licenses/by/4.0/.
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these values to compute traditional MARs and SMART
curves associated with medicine-specific improvements in
PFS. Figure 4a depicts SMART curves for risks of hand-
foot skin reaction and hypertension corresponding to
PFS gains of 5 mo for sorafenib versus placebo. Figure
4b depicts SMART curves for risks of hand-foot syn-
drome and hypertension corresponding to PFS gains of
14.7 mo for lenvatinib versus placebo. The figures show
3 curves, corresponding to risk levels of 0%, 5%, and
10% for severe proteinuria. Because confidence intervals
for each of the lines obscure the tradeoffs across the 3
risks displayed in the figure, confidence regions are not
depicted.

Single-risk MARs for hypertension and hand-foot
syndrome correspond to the point on the figure where
the curves intersect with the x and y axes when the risk
of severe proteinuria is 0%. For sorafenib, the single-
event MARs are 16.4% for hypertension, 29.6% for
hand-foot skin reaction, and 14.6% for severe protei-
nuria. Similarly for lenvatinib, the single-event MARs
are 60.8% for hypertension, 79.5% for hand-foot skin
reaction, and 39.0% for severe proteinuria The different
locations of the corresponding curves in Figure 4a and b
suggest that there will be a broad range of adverse event
probabilities that are acceptable for lenvatinib that are
not acceptable for sorafenib, because lenvatinib offers
substantially higher treatment benefit.

Figure 5a and b show the SMART curve for risk of
hypertension and hand-foot skin reaction that is associ-
ated with the observed clinical benefit of each treatment,
holding this risk of severe proteinuria at the level
observed in placebo-controlled clinical trials of sorafenib
and lenvatinib, respectively.14 Stars in each figure mark
the combined risk profile associated with each treatment.
For both treatments, the 3 individual MAR estimates are
each greater than the observed incremental risks for each
of the adverse events. However, when all 3 risks are con-
sidered jointly, the combined risk profiles lie to the north-
east of the SMART threshold, indicating that the
combination of the 3 adverse-event risks exceeds patients’
average willingness to accept the risks presented in the
study. In this case, the individual and joint MAR
approaches yield qualitatively different implications for
decision makers, who might conclude that the medicine
is acceptable based on the individual MAR estimates but
unacceptable based on the more comprehensive SMART
curves.

Discussion

Regulatory benefit-risk assessments where there are
multiple, distinct adverse events to consider represent
complex, multifaceted challenges. While it is intuitive
that increasing the risk of one adverse event lessens the

Figure 4 Simultaneous maximum acceptable risk thresholds (SMART) curves for 3 probabilistic adverse-events for (a) 5
additional months of progression-free survival and (b) 14.7 additional months of progression-free survival. In both figures, 3
SMART curves are shown for hypertension and hand-foot skin reaction for 3 different fixed probabilities of severe proteinuria.
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acceptability of other adverse events in the benefit-risk
balance, conventional reporting approaches rely on deci-
sion makers to mentally make these adjustments. In this
article, we show that the SMART (i.e., simultaneous
MAR threshold) approach provides a reproducible and
transparent representation of benefit-risk assessments
with multiple risks using empirical stated-preference data
from discrete choice studies. We also introduce methods
to generate confidence intervals along SMART curves.
With varying confidence limits, results can be displayed
as confidence contours. These contours convey impor-
tant information to decision makers about the degree of
certainty that a treatment’s benefits outweigh risks.

The finding that SMART analysis and conventional
MAR analysis can yield qualitatively different conclu-
sions regarding the acceptability of treatments highlights
the importance of applying the SMART approach in
cases in which patient preference data are used to inform
decision making. In our first application to the
treatment-resistant depression study, we graphically
demonstrated the set of hypothetical risk profiles for
which the individual MAR point estimates would be
deemed acceptable but the SMART analysis would not,
which we called the acceptance-divergent region. In this
case, the adverse events chosen for the DCE represented
hypothetical adverse events that were not detected in

esketamine clinical trials. Despite the adverse events not
playing a major role in the regulatory decision, findings
from the patient preference study were submitted to the
FDA and were found by members of the advisory com-
mittee to be informative.15,16 In our second application
examining preferences for biologic agents used to treat
psoriasis, asymmetric SMART confidence intervals indi-
cate less risk tolerance when considering multiple adverse
events, thereby demonstrating that mental adjustments
such as halving the individual MARs (a heuristic that
the authors have found reasonable when there are 2 risks
with linear SMARTs) to account for 2 adverse-event
risks may be unreliable when the SMARTs are non-
linear. In our third application to treatments for refrac-
tory thyroid cancer, we portray 2 treatments, both of
which satisfy individual maximum acceptable risk cri-
teria for adverse events but do not satisfy them when
considering the joint disutility of these risks in the
SMART framework. These findings may have important
implications for how decision makers apply clinical data
to findings from stated-preference benefit-risk studies.

The degree to which differences between the conven-
tional single adverse-event MAR and the SMART
approaches matter depends on the modeling strategy
and on marginal preferences for avoiding risk. Cases
with decreasing marginal disutility across risk levels, as

Figure 5 Risk profiles for: (a) risk profile for sorafenib versus placebo: progression-free survival (PFS) gain = 5 mo with risk of
severe proteinuria of 0% and (b) risk profile for lenvatinib versus placebo: PFS gain = 14.7 mo with risk of severe proteinuria
of 10%.
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exemplified in the psoriasis example, are identified as
most problematic.5 Previous studies, including those
examining rank-dependent expected utility and probabil-
ity weighting functions,17 have documented that people
generally overweight small probabilities and underweight
larger probabilities, consistent with observations of
diminishing marginal disutility for increasing probability
or frequency of adverse events, suggesting that the
acceptance-divergent region may often be an important
consideration.18,19 Cases with nonlinear marginal pat-
terns are hard to predict and therefore important to eval-
uate. Finally, cases in which traditional MARs are
orders of magnitude higher than the observed incidence
of adverse events are not likely to result in different regu-
latory conclusions.

In this article, we have expanded the presentation of
SMART curves to include confidence intervals between
2 or 3 adverse-event risk levels up to the point-estimate
MAR for each individual risk. It is important to note
that these confidence regions represent measurement
uncertainty associated with the SMART continuum
rather than preference heterogeneity across patients.
Thus, it is not appropriate to interpret the 70% confi-
dence region as though 85% (i.e., 1 2 (0.5 3 [1 2 0.7]))
of patients would find acceptable all risk profiles to the
southeast of this region. However, since simulations are
used to generate confidence regions, reporting findings in a
probabilistic manner could be helpful. For instance, if a
treatment’s actual risk profile ranked at the 75th percentile
of simulated SMART values, one could loosely infer a
25% probability that its risk profile is acceptable. In the
ixekizumab example, its adverse-event profile corresponded
to the 49th percentile of increasing SMART values, thus a
51% probability that the joint risk profile with ixekizumab
is considered acceptable given its specified benefit.

Although we showed that adverse-event risks associ-
ated with sorafenib and lenvatinib may outweigh their
expected benefits in terms of gains in PFS, these drugs
are routinely used in patients with radioactive iodine
refractory differentiated thyroid cancer. This does not
necessarily indicate that patient-level benefit-risk trade-
offs with these treatments are unacceptable. Several fac-
tors should be considered to determine acceptability.
First, the preference results represent average preferences
and, therefore, average risk acceptance. It is possible that
these average risk acceptance results mask preference het-
erogeneity across the sample; individual patients or
groups of patients who opt for these treatments may have
greater than average risk tolerance. They may also have
diagnostic or demographic characteristics that modify
their personal chances of benefit or adverse events. These

patients may have discussed treatment options with their
providers and decided to accept the benefit-risk profile
upon initiating therapy. Second, the data presented in
Fleeman et al.14 also notes that both lenvatinib and sora-
fenib are poorly tolerated, with approximately 14% of
trial participants receiving lenvatinib and 19% of trial
participants receiving sorafenib discontinuing therapy
and nearly two-thirds with dose reductions (68% with
lenvatinib; 64% with sorafenib) (Schlumenberger et al.)20

and (Brose et al.)21. This suggests that patients who are
aware of the risks might accept experiencing adverse
events but anticipate changing their dose or discontinu-
ing therapy if they experience toxicities. Furthermore,
patients with differing access to clinical consultation may
have a different understanding of the risks and benefits
of treatment compared with those participating in the
survey, which featured choices between medicines defined
by only a subset of potentially relevant features. Finally,
it is also possible that patients in real clinical situations
placed more weight on potentially extending their lives
than similar patients who participated in the survey.

In addition to the evident usefulness of the SMART
approach to support regulatory decision making, it may
also be useful to medical product developers throughout
a product’s life cycle. In the earlier phases of develop-
ment, the approach can be used to generate a continuum
of target product profiles in which varying levels of
acceptable benefit-risk combinations are taken into
account. The SMART approach can be used to monitor
the benefit-risk profile for a given product as its body of
evidence grows during development and postapproval.
SMART curves may also be able to identify cases in
which more precision about the incidence of an adverse
event is needed to increase the likelihood that the product
is considered acceptable from a benefit-risk perspective.

To facilitate the adoption of this new approach for use
in benefit-risk decision making, we recommend that
authors of DCEs evaluating benefit-risk tradeoffs include
the variance-covariance matrix and raw (log-odds) prefer-
ence weights among a manuscript’s supplemental materi-
als. Development of an online interactive tool or sharable
programming code could also assist less technical research-
ers to generate SMART curves and confidence contours.

Conclusions

We have identified certain cases in which the generation of
SMART curves would lead to qualitatively different regu-
latory conclusions, potentially affecting the interpretation
of risk-tolerance estimates in regulatory applications.
Therefore, we recommend that any time stated-preference
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data are considered for regulatory decision making, the
SMART approach should be used to yield a more com-
prehensive representation of benefit-risk tradeoffs than the
conventional MAR approach.

Authors’ Note

Data supporting the findings presented herein are available from
the corresponding author upon reasonable request. Table 1 repro-
duces data reported in table 5 in Fleeman et al. 201914 according
to terms of the Creative Commons Attribution 4.0 International
License: http://creativecommons.org/licenses/by/4.0/.
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