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Fallopian tube single cell analysis
reveals myeloid cell alterations
in high-grade serous ovarian cancer

Joshua Brand,1 Marcela Haro,2,3 Xianzhi Lin,2,3,4 B.J. Rimel,2,3 Stephanie M. McGregor,5,6 Kate Lawrenson,2,3

and Huy Q. Dinh1,6,7,8,*
SUMMARY

Most high-grade serous ovarian cancers (HGSCs) likely initiate from fallopian tube (FT) epithelia. While
epithelial subtypes have been characterized using single-cell RNA-sequencing (scRNA-Seq), heterogene-
ity of other compartments and their involvement in tumor progression are poorly defined. Integrated
analysis of human FT scRNA-Seq and HGSC-related tissues, including tumors, revealed greater immune
and stromal transcriptional diversity than previously reported. We identified abundant monocytes in
FTs across two independent cohorts. The ratio of macrophages to monocytes is similar between benign
FTs, ovaries, and adjacent normal tissues but significantly greater in tumors. FT-defined monocyte and
macrophage signatures, cell-cell communication, and gene set enrichment analyses identified monocyte-
and macrophage-specific interactions and functional pathways in paired tumors and adjacent normal
tissues. Further reanalysis of HGSC scRNA-Seq identified monocyte and macrophage subsets associated
with neoadjuvant chemotherapy. Taken together, our work provides data that an altered FT myeloid cell
composition could inform the discovery of early detection markers for HGSC.

INTRODUCTION

A lack of early detectionmarkers for high-grade serous ovarian cancers (HGSCs) has contributed to patients’ poor clinical outcomes and stag-

nant survival rates over several decades.1 Earlier data has provided pathological evidence of p53 signatures in lesions within the fallopian

tubes (FT) of women with BRCA1/2 mutations who were at risk of HGSCs.2–6 Emerging molecular data show that the majority of HGSCs likely

arise from secretory cells at the fimbriated end of the fallopian tube (FT), including whole exome sequencing and copy number analysis7–11

and single-cell RNA-Seq.12,13 Altogether, it is important to characterize the FT tissuemicroenvironment to gain insight into the earliest stages

of HGSC development. While significant efforts have been made to characterize the tumor microenvironment (TME) of HGSCs14–19 and

benign FT epithelia12,13 using single-cell transcriptomics (scRNA-Seq), there remains a critical need to connect the single-cell landscape of

stromal and immune subsets of human FT to HGSC.

Limited data have been reported on the extended heterogeneity of human FT immune cell subsets and their cell-cell interactions, which

may influence HGSC development and patient outcomes. Previous studies used protein-panel-based technologies such as immunohisto-

chemistry (IHC)20 and flow cytometry21–23 to profile human FT immune subsets with limited markers for phenotyping beyond those for cell

type identification, such asmacrophages, dendritic cells (DCs), and T cells/natural killer cells (T/NK cells). The heterogeneity of T/NK,myeloid,

and stromal cells and their cell-cell interactions in FT remain incomplete in published scRNA-Seq analyses.24 We therefore analyzed immune

and stromal cell heterogeneity from scRNA-Seq of benign human FTs24 and HGSC tumors and adjacent normal samples from >80 in-

house and publicly available sources,14–16,18,24–26 identifying 7 fibroblast/stromal, 6 T/NK, and 7 myeloid cell subsets with distinct gene,

pathway, and regulatory network signatures. Further examination of single-cell derived transcriptomic signatures reveals associations with

molecular subtypes in bulk transcriptome data from The Cancer Genome Atlas (TCGA). Lastly, we show a significant macrophage-to-mono-

cyte ratio shift in tumors compared to benign FT and transcriptional changes in FTs from women with BRCA1/2 mutations and patients with

HGSC treated with chemotherapy. These results provide a better understanding of human FT heterogeneity and its implications for HGSC

outcomes.
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RESULTS

Single-cell RNA-sequencing analysis of non-epithelial cell compartment in human fallopian tubes

To characterize the cellular and molecular characteristics of the human FT tissue microenvironment, we reanalyzed the non-epithelial

cell compartment from our previously published scRNA-Seq,13 which included 45,654 non-epithelial cells. Here, we focus on immune

and stromal heterogeneity and compare our subsets to a recently published, independent scRNA-Seq study.24 In addition, we gener-

ated in-house and utilized additional publicly available scRNA-Seq data from adjacent non-malignant tissues and tumors from patients

with HGSCs (total: n = 88 samples across 58 donors, Figure 1A; Table S1). We further clustered 9,759 stromal cells, 32,598 T/NK cells,

and 1,850 myeloid cells from 12 FT samples13 (Figures 1B, S1A, and S1B) and identified 7 myeloid, 4 T cell, 2 NK cell, 4 fibroblast, 2

pericyte, and 1 smooth muscle cell subsets (STAR Methods). In addition, using label transfer,27 we were able to identify all annotated

cell subsets in an independent scRNA-Seq dataset from 4 benign FT donors24 (Figures S1C and S1D). When comparing benign FT and

ovarian epithelia to HGSC tumors, we quantify a higher Spearman correlation coefficient between HGSC tumor cells and FT epithelial

cells (rho = 0.67), especially secretory cells (rho = 0.71) compared to the ovarian epithelial cells (rho = 0.56) (Figure S1E), consistent with

previous scRNA-Seq.12,13Our analysis identifies greater myeloid diversity measured by an entropy-based scoring method, Rogue28

compared to T/NK cell clusters, despite being just 5% as frequent as T/NK cells in our scRNA-Seq (Figure S1F) samples. Additionally,

we calculated the number of unique statistically differentially expressed (DE) genes (Figure S1G), showing that myeloid cells consistently

had more DE genes per cluster and justifying the decision to maintain more myeloid clusters than T/NK cells. In our stromal subsets, we

identify 3 fibroblast subsets and a small cluster with a myeloid-like gene signature, with potential antigen-presenting functions as

recently identified in multiple tissue types.29,30 Due to the limited number of captured cells in the scRNA-Seq, we did not further cluster

other cell types, such as B and endothelial cells.
Myeloid cell heterogeneity and plasticity in human fallopian tubes

Myeloid cell diversity in high-grade serous ovarian cancers was recently described with multifaceted, functional gene signatures in

distinct tumor microenvironments (TME).19 We reasoned that an in-depth transcriptional characterization of FT myeloid cells would

help us identify a link between the myeloid microenvironment of HGSC and FTs, the tissue of origin for most HGSC tumors. Our

clustering analysis (STAR Methods) defined 4 classical (CD14+, CD16�) monocyte (Mono) subsets (Mono_CCL4hi, Mono_CCL4lo,

Mono_HSP, and Mono_VCAN/CFD), 1 nonclassical CD16+ (encoded by FCGR3A) monocyte subset (Mono_CD16), 1 DC

(DC_CLEC10A), and 1 macrophage (Mac) subset (Mac_C1Q) (Figure 2A) that were shared across 9 FT samples (3 samples were

not included due to low cell counts) (Figure S1B). Downstream analysis including differential gene expression, gene set enrichment

analysis using JASMINE,31 and gene regulatory network analysis from SCENIC32 (STAR Methods) defined distinct gene signatures

(Figures 2B–2D) in the 7 myeloid subsets and supported our cell type annotations. We used representative markers to annotate

myeloid subsets, including 4 classical monocyte subsets with variable expression levels of CCL4, a chemoattractant of T and

myeloid cells that was found to correlate with CD8+ and FOXP3+ T cell infiltration in HGSCs.33 Other markers include the proteo-

glycan versican (VCAN) and heat shock proteins (HSPs), which describes stress-responsive monocytes.34 Macrophages, which ex-

pressed complement complex genes C1QA/B as well as TREM2 were transcriptionally distinct from monocytes by their lack of

FCN1 and S100A8/9 expression as well as chemoattractant and inflammatory molecules such as IL1A, CXCL2/3/8, and CCL20.

JASMINE pathway analysis using Gene Ontology Biological Process (GO: BP) revealed gene sets enriched for classical monocytes

(inflammatory response, leukocyte chemotaxis), HSP+ monocytes (protein folding), non-classical CD16+ monocytes (interferon-induc-

ible pathways), antigen-presenting pathways in macrophages and DCs and lipid metabolism pathways unique to macrophages

(Figure 2C). Gene regulatory network analysis performed with SCENIC32,35 (STAR Methods) showed BHLHE41 and MAF regulons

enriched within macrophages; both negative regulators of macrophage proliferation and activation.36,37 EHF and ETV3 regulons

were also active, likely reflecting dendritic cell differentiation programs,38,39 and IRF4, a DC-lineage transcription factor that pro-

motes TH2 polarization40 (Figure 2D).

To test how potential monocytic developmental trajectories in human FT correlates with our defined regulatory networks, we paired

SCENIC results with diffusion maps41 and Monocle’s graph-based pseudotime.42 Diffusion map analysis suggested two distinct diffusion

components, one associated with MHC-II antigen presenting genes and the second with inflammatory cytokine expression (Figures 2E

and S2A). Monocle supported the inferred pseudotime trajectory from classical CD14+ monocytes to more matured monocytic cell types

(dendritic cells, macrophages) or distinct monocyte states (HSP/VCAN monocytes and non-classical CD16+ monocytes) supported by the

enrichment score of SCENIC regulons. The top correlated geneswith each diffusion component indicated howmonocytic cellsmight function

differently during their maturation. We ranked the top 10 correlating genes with each diffusion component (Figure S2A) to indicate how

monocytic cells might function distinctly during their maturation. For instance, enrichment scores derived from the average expression in sin-

gle-cell clusters suggested cytokine/interleukin geneswere enrichedwithmonocytes while HLAgene sets were enrichedwithinmacrophages

and DCs.

Next, we used FT-defined myeloid cell signatures to evaluate their enrichment in 394 HGSC samples from TCGA43 and found that signa-

tures of more mature monocytic subsets such as VCAN+ monocytes and macrophages were most enriched for immunoreactive and mesen-

chymal HGSC subtypes (Figure S2B, STAR Methods). Together, our analysis revealed extensive heterogeneity of myeloid cells in human FTs

and suggested a phenotypic change in myeloid cells that may be relevant in HGSCs.
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Figure 1. Integrated scRNA-Seq analysis of human fallopian tubes to identify immune features of HGSC progression

(A) Bioinformatics analysis of 88 scRNA-Seq samples, including in-house and publicly available data, identifies heterogeneity and interactions of immune and

stromal cells in FTs and their alterations across adjacent normal tumors, benign ovaries, and HGSCs. (Created with Biorender.com).

(B) Transcriptional heterogeneity of stromal, T/NK, and myeloid cell subsets from 12 FT samples13 served as a reference for further analysis across relevant tissue

and sample types. Mono: monocytes, SMC: smooth muscle cells, NK: natural killer cells, DC: dendritic cells.
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Figure 2. Myeloid cell heterogeneity in human FTs shows a higher diversity of monocytes than macrophages and dendritic cells

(A) UMAP and clustering of integrated myeloid cells identify 4 classical monocyte subsets (CD14, FCGR3A-), 1 subset of non-classical monocytes (CD14,

FCGR3A+), a subset of type 2 dendritic cells (CD1C, CLEC10A), and macrophages (APOE, TREM2).

(B) Representative gene signatures of myeloid subsets presented by DotPlot; values show z-scaled RNA expression across clusters. Extended differential

expression analysis in Table S2.

(C) Gene set enrichment analysis of top-scoring Biological Processes Gene Ontology (GO: BP) for myeloid subsets. Values shown are z-scores of Jasmine’s odds

ratio test across clusters.

(D) Gene regulatory network analysis using SCENIC shows regulon scores enriched for each myeloid subset. Values plotted are derived from linear models using

one cluster vs. the remaining and extracting the t-values for each model (STAR Methods).

(E) Diffusion map of myeloid cells calculated using the top 2000 variable features. Monocle3 pseudotime, gene set scores, and SCENIC AUC scores (STAR

Methods) were overlaid on the 1st two diffusion components.
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Macrophage-to-monocyte ratio is distinct in the fallopian tube, adjacent normal tissues, and high-grade serous ovarian

tumors

Previousflowcytometry andscRNA-Seqanalysesdidnot annotatemonocyte subset inFTs22,24; however, their signatureswere identified inHGSC

scRNA-Seq19 that correlatedwithT/NKcell phenotypes. Sincemonocyte signatures (S100A8/9,FCN1,VCAN) fromcirculatingblood44 andHGSC

tumor19 are consistent with our FT-defined monocytes, we asked if we could identify monocytes in independent samples of healthy FT scRNA-

Seq24 (Figures S3A and S3B). Our clustering analysis recovers abundant monocytes with similar marker genes as identified in our FT samples

(S100A8/9, FCN1, TREM2, CD1C) and consistently differentiated macrophages, monocytes, and DCs from each other. Using label transfer,27

we show that monocyte subsets are retained in other previously published data24 (Figures S3C and S3D). We observed that S100A9 and FCN1

consistently separate monocytes from dendritic cells and TREM2+ C1QA/Bmacrophages. The comparatively low abundance of macrophages

relative tomonocytes inbenignFT scRNA-Seqdatasets ledus toevaluate their proportions in adjacentnormal tissues compared toHGSC tumors

from the same patients. We reanalyzed two independent scRNA-Seq datasets, one with paired adjacent normal and tumor from14 and another

with 5 benign ovarian tissues and 7 HGSCs from Xu et al.18 to comparemyeloid cell composition across disease conditions and tissue types. The

addition of these datasets brought our sample size to 26 total HGSC samples, which were compared benign FT (n= 22), benign ovary (n = 5), and

adjacent normal samples (n= 3), and low-grade ovarian cancer samples (n= 4).We found a significantly elevatedmacrophage-to-monocyte ratio

in HGSC tumors compared to benign FT tissues (3.40-fold increase, FDR adjusted p value = 3.6x10�6) (Figures 3A and 3B), while the difference

betweenadjacent, non-malignant tissue, orbenignovary compared tohealthyFT tissueare lesspronounced (1.90, and1.94-fold increase, respec-

tively) and were not found to be statistically significant (FDR adjusted p values = 0.19, 0.50). The macrophage-to-monocyte ratio was not signif-

icantly different between adjacent normal tissues compared to that in low-grade ovarian cancer in our newly generated scRNA-Seq (Figure 3B).

Taking advantage of the recent availability of published scRNA-Seq datasets, we reanalyzed additional HGSC tumor scRNA-Seq15,16,18 and, on

average, found a higher macrophage-to-monocyte ratio in HGSC TME from different datasets (total n = 26 HGSC samples).

To identify the potential difference inmyeloid cells’ functions in adjacent normal and benign tissue, we used scRNA-Seqof adjacent normal

(n = 3) and HGSCs (n = 7).14 JASMINE GO: BP pathway analysis showed marked differences in monocytes in adjacent tissues compared to

tumors, including the enrichment of anti-angiogenic pathways in adjacentmonocytes compared to tumors (negative regulation of endothelial

cell chemotaxis FDR adjusted p value = 1.58 x10�25 and positive regulation of endothelial cell apoptotic process FDR adjusted p value =

4.10x10�21) (Figure 3C). In contrast, tumor-associated monocytes were significantly enriched in metabolic-related pathways (High-density li-

poprotein particle remodeling FDR adjusted p value = 4.20 x10�14 andNADmetabolic process FDR adjusted p value = 1.33 x10�9) compared

to adjacent normalmonocytes, and similar to tumor-associatedmacrophages (TAMs).We also observed shiftedmetabolic pathways in TAMs,

supporting their change in energy demands compared to adjacent tissue. Notably, we see a reduced reliance on oxygen for metabolism

demonstrated with a significantly lower JASMINE score for the ‘‘oxygen transport’’ pathway (FDR adjusted p value = 5.11 x10�265) and ‘‘acetyl

coenzyme-A biosynthesis’’ pathway (FDR adjusted p value = 9.03x10�211), which is an essential precursor for oxidative phosphorylation.

Fallopian tube-defined cell-cell interactions of monocytes andmacrophages are correlated in adjacent normal andmatched

high-grade serous ovarian cancer tumors

Since the phenotypes of monocytes andmacrophages are associated with different types of HGSC TMEs,19 we asked if the cell-cell interactions

ofmonocytes andmacrophages with other cell types in FTs are altered in tumor compared to benign tissue (FT and adjacent normal) (Figure 3B).

To test this, we further identified 6 T/NK cell subsets, including 3 CD8+ cell subsets, 2 NK cell subsets, and 1 CD4 subset with distinct gene sig-

natures (Figures S4A and S4B). Among those, scRNA-Seq-derived signature scores identified T/NK subsets were highest in immunoreactive sub-

types in most subsets, but particularly in NK cells. (Figure S4C). Further sub-clustering did not obtain more subsets with sufficient DE genes for

T cell subset annotation with conventional phenotypic markers, including T memory and helper subtypes (Figure S4D).

To evaluate the cell-cell interaction (CCI) signals from scRNA-Seq, we used Cellchat45 ligand-receptor database and quantified the sig-

nificant interactions across major subtypes in our defined human FT atlas (Figure 4A). CellChat’s permutation test identified 121 significant

ligand-receptor pairs with monocytes/macrophages as a sender cell type, in which 83 (68.6%) were shared betweenmacrophages andmono-

cytes, while 22 (18.2%) and 16 (13.2%) specifically identified from either macrophages or monocytes, respectively (Figures 4B and 4C). The

dominant signaling pathways of macrophage CCIs were CLEC2B and TNF signaling, which engages the KLRB1 and TNFR receptors, known

for self-recognition and negative regulation of T/NK cell activation46,47 and inflammation, respectively. Other macrophage CCIs, including

PDGFB-PDGFRA/B between macrophages and stromal cells, were reported in HGSC tumors with reactive stroma and poor prognosis.48
iScience 27, 108990, March 15, 2024 5
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Figure 3. Analysis of macrophage-to-monocyte ratio across tissue types and conditions

(A) UMAP and clustering of myeloid cells from14 data14 shows the enrichment of macrophages relative to monocytes. (n = 3 samples per group, 2 patients).

(B) The log2 macrophage-to-monocyte ratio across benign FT, benign ovary, adjacent normal tumor, low-grade, and HGSC tumor (FDR-adjusted p value, two-

sided pairwise Wilcox test). The n values correspond to individual samples, in which multiple could be derived from an individual patient (Table S1).

(C) Jasmine scores (GO:BP) were calculated formacrophages andmonocytes across adjacent normals and tumors fromQian et al.14 (n = 3 samples, each). scRNA-

Seq (panel A). Significant pathways (two-sided t-test, FDR-adjusted p value <0.01) were ranked by fold change between microenvironments and the Jasmine

scores plotted.
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On the other hand, monocyte CCIs included epiregulin (EREG), which has potential interactions with stromal cells through EGFR, or ciliated

epithelial cells through HER family receptors ERBB2 and ERBB4, reported in low-grade serous ovarian cancers.49 Another relevant monocyte

interaction, THBS1-CD47, showed a reduction in angiogenesis and increased tumor rejection in a xenotransplant model, suggesting its pro--

tumoral effects.50 Next, we performed the same CCI analysis using macrophages and monocytes as receiving populations (Figures S5A and

S5B), which highlighted the increased diversity in macrophage receptor use such as with LRP1,AXL,CSF1R,HAVCR2,C3AR1when compared

to monocytes.
6 iScience 27, 108990, March 15, 2024
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Figure 4. Cell-cell interaction analysis of monocytes and macrophages in FTs with other cell types

(A) Frequency of significant CCIs in human FTs (12 samples30) identified by CellChat’s permutation test45 (STAR Methods). SMC: smooth muscle cell, DC:

dendritic cell, CD8: CD8+ T cell, CD4: CD4+T cell.

(B) Comparison of monocyte- and macrophage-specific sending CCIs in human FTs.

(C) Circos plot of monocyte- and macrophage-specific CCIs. Arrow width represents Cellchat’s scaled interaction scores.

(D) CCI coexpression scores of monocyte- and macrophage-specific CCIs in tumor and benign ovary.18 Each point represents a CCI score (STAR Methods).

Interactions are represented as sender cell type -> receiver cell type, ligand -> receptor. Mac: macrophage, dc: dendritic cell, mono: monocyte, NK: natural

killer cell.

(E) CCI coexpression scores of monocyte- and macrophage-specific CCIs in tumor and adjacent normal samples.14 Interactions are represented as sender cell

type -> receiver cell type, ligand -> receptor.
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Since we observed the difference in the macrophage-to-monocyte ratio in samples compared to tumors, we asked if the FT-defined CCIs

expressed differently in adjacent normal and tumors. To do so, we compared co-expression CCI scores (STAR Methods) of the FT-defined

monocyte- andmacrophage-specific and sharedCCIs in adjacent normal and tumor samples from two independent scRNA-Seq datasets.14,18

The co-expression of our CCI scores positively correlatedwith CellChat’s communication probabilities (Figure S5C), which allowed us to iden-

tify cross-tissue CCIs between benign, adjacent normal, and tumor tissues. We observed that interactions with monocytes as senders were

enriched in the benign ovary,18 with 11 monocyte-specific positive scored interactions in the benign ovary and 2 in tumors, whereas most in-

teractions with macrophages as senders were similar between normal and tumor (Figure 4D). In a second dataset we observed a high
iScience 27, 108990, March 15, 2024 7
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correlation between these interactions, but not in a cell type-specific manner14 (Figure 4E). The receiving signals were also consistently corre-

lated between these datasets (Figures S5D and S5E), indicating that tumor microenvironment and cell-cell interactions may be intrinsic to

their cell identities based on their high correlation across different tissues.
Monocyte and macrophage diversity in patients with germline BRCA1 mutations and patients with high-grade serous

ovarian cancer treated with chemotherapy

We identified the macrophage-to-monocyte ratio changes as potentially linked with disease progression. Next, we wanted to evaluate this

ratio using FT scRNA-Seq from patients with BRCA1 germline mutations,25 who are high risk of developing HGSCs. We used marker

genes consistent with our 12 sample FT reference to identify myeloid cell types (Figures S6A and S6B) using representative genes (LYZ for

pan-myeloid cells, FCN1 for monocytes, and C1QB for macrophages, consistent with our FT data). We observed an increase in macro-

phage-to-monocyte ratio in FT of BRCA1 germline mutation (p value = 0.7, two-sided Wilcox test, N = 3 vs. 3). (Figure 5A). Differential

gene expression showed an increased in the chemokines CCL3 and CXCL2/8, first identified from our FT monocyte subsets, in macrophages

andmonocytes of BRCA1 FT samples, and decreased the expression of heat shock protein (HSP) genes in BRCA samples (Figure 5B). The data

indicated a potential of change in macrophage-to-monocyte ratio in FT of HGSC high-risk patients compared to healthy FT but remains

limited due to the small sample size.

We were also curious how the macrophage-to-monocyte ratio may change in patients with HGSC upon treatment. We reanalyzed a

publicly available treatment-naı̈ve scRNA-Seq dataset from 11 patients taken before and after neoadjuvant chemotherapy treatment26

(Figure S6C). Our myeloid cell clustering identified 2 populations of monocytes, 5 populations of macrophages, and 2 dendritic cell

subsets (Figures 5C and 5D) with distinct gene signatures resembling those defined in our FT analysis (CCL3/4, CXCL3, HSPA1A,

FCN1, CCL20, C1QA). Overall, chemotherapy’s effect on the macrophage-to-monocyte ratio is uncertain. There is no significance

when using all samples, including those with poor cell recovery, which are likely more variable (p value = 0.456). However, after

removing donors with fewer than 50 total myeloid cells combined (N = 2), we see a 1.45-fold increase in the log2 ratio (p value =

0.0485). More samples are needed to determine the reproducibility of this effect. Additionally, we observed three subsets that signif-

icantly increased in proportion after treatment, including macrophages expressing APOE, APOC1, and complement components

(C1Qs) (cluster 1, FDR adjusted p value = 0.045), HSP+ stress-related macrophages (cluster 6, FDR adjusted p value = 0.041), and clas-

sical monocytes (cluster 8, FDR adjusted p value = 0.011), that were most similar to the early FT-defined monocyte subsets (Figure 5E).

Several subsets of monocyte and macrophage subpopulations are changed in HGSC as expected (Figure S6D), despite the uncertain

impact on the ratio of macrophage-to-monocytes. We also note the increased complexity of myeloid cell diversity in the TME, especially

within macrophages relative to benign tissue.
Stromal-immune cell interactions in human fallopian tubes

Since stromal cell-cell interactions were predicted to be the most frequent sending cell types inferred in FT scRNA-Seq, (Figure 4A), we

asked to what extent their interactions with immune cells differ between normal FTs and HGSC tumors. To do so, we sub-clustered the

stromal cell compartment (one sample was removed due to low cell count, STAR Methods), which identified three fibroblast subsets, two

pericyte populations, and one smooth muscle cell (SMC) subset (Figure 6A) with distinct gene expression signatures, including comple-

ment genes (C7, C3, CFD) and cytokine/chemokine expression (CXCL8, IL6) (Figure 6B). We named the subsets with representative

markers except for SMCs, which was comprised of one subset. F_RASD1 fibroblasts were suspected to be less differentiated/activated

with high regulon activity of stemness markers SOX4 and TWIST2 from SCENIC (Figure S7A).51 Smooth muscle and pericyte

populations could be characterized by the differential expression of cell adhesion molecules (MCAM), RGS5 (pericyte markers), MYH11,

and ZCCHC12 as smooth muscle cell markers (Figure S7B). Among those subsets, we found that F_C7 fibroblasts, marked by high expres-

sion of complement C7 and SMC signature scores, were enriched in the TCGA HGSC mesenchymal subtype, known to have the worst

survival outcomes (Figure 6C). Next, we used cancer-associated fibroblast (CAF) signatures from HGSC scRNA-Seq17,19 to evaluate FT stro-

mal subsets. We find complement expression (CFD) and other genes (DPT, MGP, and CXCL12) similar to inflammatory fibroblasts

described in HGSCs19 were enriched in our F_C7 subset relative to other stromal cells. (Figure S7C). CCI analysis using CellChat identified

interactions between stromal subsets and immune receiver cells, particularly through CD44, CD47 and integrins (Figure S7D). Most CCIs

from fibroblast to immune cells were shared between our three fibroblast subsets (80%), though F_C7 fibroblasts have 22 CCIs not shared

with other fibroblast subsets (12% of all stromal to immune interactions) (Figure 6D). Notably, fibroblast to myeloid signaling, including C3

to C3AR1, associated with immunosuppression and cancer cell proliferation,52 and C3 to ITGAX and ITGB2, were among these (Fig-

ure S7D). FN1 interactions, which were defined from our C7 expressing fibroblasts show interactions with diverse immune cell subsets

and were predicted to have higher ligand-receptor co-expression in tumor relative to benign tissue from 2 independent cohorts

(Figures 5E and 5F). Altogether, we reported a diversity of stromal cell subsets in human FTs, with distinct gene expression profiles

and subsets that may contribute to distinct interactions enriched in HGSCs.
DISCUSSION

This study characterizes the diversity of non-epithelial compartments in benign FTs, especially immune cells and cell-cell interactions which

was not fully described from recent scRNA-Seq. The defined single-cell transcriptional landscape of FT immune cells showed a greater extent
8 iScience 27, 108990, March 15, 2024
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Figure 5. Macrophage andmonocyte heterogeneity analysis show the altered gene expression in high-risk patients with germline BRCAmutations and

response to chemotherapy

(A) The log2 macrophage-to-monocyte ratio in benign FT compared with FT in germline BRCA1 carriers (Yu et al. 202225) (N = 3 patients, each).

(B) Examples of monocytic genes defined in human FTs are differentially expressed in FTs of BRCA1 carriers. Values shown are normalized RNA expression.

(C) UMAP and clustering reanalysis of myeloid cell subsets from 11 donors pre- and post-neoadjuvant chemotherapy.26

(D) Differential expression analysis, calculated from MAST’s generalized linear model of myeloid subsets shows z-scaled expression across clusters.

(E) Evaluation of macrophage-to-monocyte ratios and abundance of myeloid subsets from paired pre-and post-chemotherapy treated samples. Clusters 1 and 6

(macrophages) and cluster 8 (monocytes) were significantly enriched post-treatment (two-sided paired t-test, FDR-adjusted p values <0.05). All comparisons are

shown in Figure S5D.
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of heterogeneity compared to the previous characterization using flow cytometry22 and importantly highlights the alteredmyeloid landscape

across HGSC and adjacent normal tissue. An independent, human scRNA-Seq dataset24 shows the cell types identified here were reproduc-

ible. Specifically, we identified 5 fibroblast and smoothmuscle cell subsets and 2 pericyte subsets, including a rare subset expressing antigen-

presenting markers recently found in several tissues and cancer types. A fibroblast subset expressing C7 was transcriptionally similar to an

inflammatory CAF signature found in scRNA-Seq of HGSCs19 and was most enriched in mesenchymal subtypes of TCGA compared to

our other stromal subsets. CCI analysis predicted stromal cells as having the most frequent interactions in human FT with unique ligand-re-

ceptor interactions defined in C7 fibroblasts. These interactions included fibronectin (FN1) which correlates with reactive stroma and

recurrence after chemotherapy treatment.53 The FN1 interactions (FN1-CD44) from fibroblasts to immune cells were also increased in tumors

relative to non-malignant tissues.
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Figure 6. Stromal heterogeneity analysis of human FTs shows the enrichment of complement-expressing fibroblasts and smooth muscle cells in the

mesenchymal HGSC subtype

(A) UMAP projection of 4 fibroblast subsets, 1 smooth muscle cell subset, and 2 pericyte subsets from Dinh et al. 202113 (n = 11 FT samples, Table S1).

(B) Top 10DE genes of stromal subsets presented byDotPlot; expression values are z-scaled across clusters. Extended differential expression analysis in Table S2.

(C) Stromal subset signature enrichment analysis on patients with TCGA-OV (N = 394). Pairwise FDR-adjusted p values are shown in Table S3.

(D) Upset plot shows overlapping ligand-receptor interaction numbers from fibroblast subsets to immune cells derived from Cellchat’s permutation test.

(E) Stromal CCI co-expression analysis in HGSCs vs. benign ovary.18 Interactions are represented as sender cell type -> receiver cell type, ligand -> receptor.

Fibro: fibroblast, DC: dendritic cell, Mac: macrophage, CD4: CD4+ T cells, CD8: CD8+T cells.

(F) Stromal CCI co-expression analysis in HGSCs vs. tumor adjacent.14 Interactions are represented as sender cell type -> receiver cell type, ligand -> receptor.
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We identified highmonocyte diversity in FT with similar gene expression profiles to those observed in circulation (S100A8/9, FCN1, VCAN,

and CD14).44,54 Five monocyte subsets were identified along with DCs and macrophages with distinct transcriptional signatures of chemo-

kines, antigen-presentation, transcription factor usage (SCENIC), and pseudotime trajectories. We comprehensively analyzedmonocyte het-

erogeneity at a greater extent than previously in human FT tissues, highlighting the importance of single-cell profiling technology. Compared

to benign tissue, we observed a significant increase in the macrophage-to-monocyte ratio in HGSC tumors. Furthermore, monocytes and
10 iScience 27, 108990, March 15, 2024
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macrophages have specific ligand-receptor interactions with other cell types, along with many shared interactions defined by scRNA-Seq.

Monocytes with EREG expression were predicted to interact with epithelial expressing ERBB2/4, a growth factor that might play a role in tu-

mor progression, and macrophages expressing PDGF, associated with aggressive HGSC stroma,48 which may interact with fibroblasts could

indicate a role in cancer-associated fibroblast formation in the tumor microenvironment. Interestingly, monocyte-specific interactions are

found more frequently in benign tissues, while sone macrophage-specific were higher in HGSC tumors in recent scRNA-Seq data of 12 pa-

tients.18 However, most ligand-receptor pairs defined in monocyte and macrophage interactions were positively correlated in benign and

tumor tissues and another scRNA-Seq dataset of 2 patients with matched tissues.14 Further work is needed to evaluate the mechanisms of

monocytic maturation and recruitment in HGSC progression. We suspect that early changes in tumor development may differentiate mono-

cytes in a tissue-specific manner. Others have shown that the co-culture of peripheral blood mononuclear cells (PBMC) derived monocytes

with ovarian cancer cell lines was sufficient for alternative macrophage development through TGF-alpha.55 We hypothesize that the macro-

phage-to-monocyte ratio could be an indicator of HGSC progression. This concept was recently applied within a melanoma and renal cell

carcinoma context,34 showing that the macrophage-to-monocyte ratio positively correlated with tumor Treg infiltration. Recently published

scRNA-Seqof HGSCs also showed a correlation between FCN1 expressingmonocytes and ‘‘immunological desert’’ phenotypes compared to

HGSCs with T cell infiltrated or excluded tumors.19

Lastly, we evaluated monocyte and macrophage heterogeneity in two publicly available datasets: scRNA-Seq of 3 women with germline

BRCA1 mutations with 3 age-matched samples25 and 11 patients with HGSC with pre and post-neoadjuvant samples.26 We observed the

trend of macrophage-to-monocyte ratio in BRCA1 samples, but the low sample size (N = 3 per condition) limited this analysis. However,

we found that BRCA1 samples had higher pro-inflammatory markers, including chemokine expression in their monocytes (CCL3/4,

CXCL2/8) and EREG signaling, also found in our CCI analysis. Similarly, only when excluding low abundant samples in the chemotherapy

response data,26 we observed a statistically significant change in the macrophage-to-monocyte ratio between pre- and post-treatment sam-

ples, with 2 macrophage and 1 classical CD14+ monocyte subsets that were increased after treatment. This data indicates the important but

less explored roles of monocytes and macrophages in HGSC progression and response to treatment.

With poor survival outcomes and a lack of early markers for detection, we consider the possibility of immune or stromal signatures as can-

didates for early disease progression. This work characterizes the phenotypic changes of non-epithelial cell types in human FT and their im-

pacts on HGSC development that promote further studies that lead to immune-based biomarkers of early cancer. We defined the extent of

monocyte diversity in FTs, previously overlooked in tissue, as they’re typically considered circulating cell types. Emerging data has supported

their correlation with tumor phenotypes and potential functions.34,54,56 The observed transcriptomic differences of monocytes and macro-

phages in adjacent and tumor tissue and the change in their proportion support their importance in HGSCdevelopment and potentially other

tumors. However, data from p53mouse models showed that HGSC can be recapitulated through ovarian and fallopian tube epithelia,57 indi-

catingmore work will be needed to unravel this potential complex of HGSC tumor cells of origin. In summary, our analysis of the non-epithelial

microenvironment of the FT has implications for understanding perturbed cell states during HGSC development that may be useful for iden-

tifying novel therapeutic targets or biomarkers.
Limitations of the study

Our work has several limitations. The current study will need to be further investigated using mechanistic models. Future work includes using

in vitro models to evaluate HGSC tumor development in different macrophage-to-monocyte ratio settings. However, in vivo experiments,

including injecting themixture of monocyte andmacrophages, are challenging givenmanymacrophages are derived frommonocytes. Another

futuredirection is tomodulate the cell-type-specific cell-cell interaction signaling; however, onewould need toovercome the challenge of target-

ing ligands and receptors, whichweregenerally lowly expressed atmRNA level, compared to the interactions found inbothmonocytes andmac-

rophages. The lackof clinical data, suchas survival, in-depthmutationprofiles, andpatient treatmentdetails frompublicly availableHGSCscRNA-

Seq data, limits the correlation analysis of immune and stromal cell diversity inferred from FT scRNA-Seq. The limitation of other datamodalities,

such as high-dimensional flow cytometry, prevents the current findings from further exploration and validation. Additionally, the ability to power

these analyses and independently validate the gene expression profiles of the diverse cell subsets was aided by publicly available data; however,

we note some of the limitations of this approach.We analyzed these datasets independently as we expect cell type diversity to be lost through a

computational dataset integration (CCA, harmony, or similar).We expect dataset-specific biases to be present and cannot verify how differences

in sample preparation may have influenced the recovery of cell type proportions. Additionally, multiple samples were derived from different re-

gions within a single patient but were treated as independent in our framework. In total, we had 58 unique patients and 88 total scRNA-Seq sam-

ples. The calculationof cell type ratioswill be inherently noisy relative toother cell types (stromal cells, T cells), asmyeloidcells were less abundant.

Finally, others have also shown a significant correlation of CD68+ cells in normal fallopian tube epithelia during the luteal phase,20 and lack the

clinical metadata of our samples to identify and account for this trend. Single-cell multimodal transcriptional and epigenomic profiles, such as

combined scRNA-Seq and scATAC-Seq have been recently generated for HGSC,58 which would further provide evidence of HGSC tissue-of-or-

igins at single-cell level. However, the single-cell multimodal for FTs has not been available yet and will be one of the future avenues to explore.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human ovarian cancer specimens Cedar-Sinai Medical Center - Women’s Cancer

Program, Division of Gynecologic Oncology

and Department of Pathology and Laboratory

Medicine

GEO: GSE233615

Chemicals, peptides, and recombinant proteins

1x Collagenase/Hyaluronidase STEMCELL Technologies 7912

Dnase I Sigma Aldrich SKU: 10104159001

Minimal Essential Medium (MEM) Corning 10-010-CV

Critical commercial assays

Chromium single cell 3’ (v3 Chemistry Dual

Index)

10x Genomics PN-1000092

Dead cell removal kit Miltenyi Biotec 130-090-101

Deposited data

Source code This study Zenodo: https://doi.org/10.5281/zenodo.

7958189

Human ovarian cancer scRNA-Seq This study GEO: GSE233615

Human benign fallopian tube scRNA-Seq Dinh et al.13 GEO: GSE151214

Human benign fallopian tube scRNA-Seq Ulrich et al.24 GEO: GSE178101

Human wildtype and BRCA1 benign fallopian

tube scRNA-Seq

Yu et al.25 Mendeley Data: https://data.mendeley.com/

datasets/66fz3h924x/1

Human high-grade serous ovarian cancer

scRNA-Seq

Qian et al.14 https://lambrechtslab.sites.vib.be/en/pan-

cancer-blueprint-tumour-microenvironment-0

Human high-grade serous ovarian cancer

scRNA-Seq

Olalaken et al.16 GEO: GSE147082

Human high-grade serous ovarian cancer

scRNA-Seq

Binnewies et al.15 GEO: GSE165404

Human high-grade serous ovarian cancer

scRNA-Seq

Zhang et al.26 GEO: GSE165897

Human benign ovary and high-grade serous

ovarian cancer scRNA-Seq

Xu et al.18 GEO: GSE184880

Software and algorithms

R programming language v4.0.3 R core https://www.r-project.org/

Python v3.7 Python Software Foundation https://www.python.org/downloads/

Cellranger v3.1.0 10x genomics 10x genomics; https://www.10xgenomics.

com/support/software/cell-ranger/

downloads/

R package Seurat v4.1.0 Stuart et al.27 https://satijalab.org/seurat/

R package DoubletFinder v2.0 McGinnis et al.59 https://github.com/chris-mcginnis-ucsf/

DoubletFinder

R package MAST v1.16.0 Finak et al.60 https://github.com/RGLab/MAST

R package Harmony v0.1.0 Korsunsky et al.61 https://github.com/immunogenomics/

harmony
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REAGENT or RESOURCE SOURCE IDENTIFIER

Python package pySCENIC v0.12.1 Van de Sande et al.35 https://github.com/aertslab/pySCENIC

R package SCTransform v0.3.3 Hafemesiter et al.62 https://github.com/satijalab/sctransform

R scripts Jasmine Noureen et al.31 https://github.com/NNoureen/JASMINE

R package ROGUE v1.0 Liu et al.28 https://github.com/PaulingLiu/ROGUE

R package Destiny v3.4.0 Angerer et al.41 https://github.com/theislab/destiny

R package Monocle 3 Cao et al.42 https://github.com/cole-trapnell-lab/

monocle3

R package CellChat v1.4.0 Jin et al.45 https://github.com/sqjin/CellChat
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RESOURCE AVAILABILITY

Lead contact

Additional information and requests for resources should be directed to Lead Contact, Huy Dinh. (huy.dinh@wisc.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Raw FASTQ files and h5 files (count matrices) of in-house scRNA-Seq data have been uploaded to NCBI GEO under the following

accession code: GEO: GSE233615.

� All source code and datasets generated in this study has been uploaded to a Zenodo repository. (Zenodo: https://doi.org/10.5281/

zenodo.7958189) and will be made publicly available upon publication.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient specimens

This project was performed with approval of the Institutional Review Board at Cedars-Sinai Medical Center (CSMC). All patients provided

informed consent. Fresh ovarian cancer samples were collected from women undergoing surgery at Cedars-Sinai Medical Center. Only fe-

males were included given that our own and publicly available samples were acquired from fallopian tube or ovarian tissue. The phenotypic

and clinical characteristics of the scRNA-seq cohorts are summarized in Table S1.

Low-grade serous cancers samples from donor 1 (samples corresponding to GEO: GSM7431434, GEO: GSM7431435, GEO:

GSM7431436, GEO: GSM7431437) were derived from a 33-year-old non-white, non-Hispanic woman. HGSC samples from donor 2 (sam-

ples corresponding to GEO: GSM7431438) were derived from a white, non-Hispanic woman of unknown age. HGSC samples from donor 3

(samples corresponding to GEO: GSM7431439) were derived from a 74-year-old white, non-Hispanic woman. HGSC samples from donor

4 (samples corresponding to GEO: GSM7431440) were derived from a 58-year-old white, non-Hispanic woman. HGSC samples from donor

5 (samples corresponding to GEO: GSM7431441, GEO: GSM7431442) were derived from an 85-year-old white, non-Hispanic woman.

METHOD DETAILS

Biological sample processing for scRNA-Seq

Fresh human primary tissues from high-grade (n = 4 patients, n = 5 samples ) or low-grade (n = 1 patients, n = 4 samples) serous ovarian tumor

patients (Table S1) were placed in sterile serum-free MEM at 4�C and transferred to a tissue culture laboratory. Tissues were minced

into �1–2 mm pieces before digesting with 1 3 Collagenase/Hyaluronidase (STEMCELL Technologies, Catalog #: 07912) and 100 mg/mL

DNase I (Sigma Aldrich, SKU: 10104159001) in 7 mL of serum-free MEM. The samples were incubated at 37�C with constant rotation for

90 min. The supernatants were collected and the cell suspensions were spun down at 300 g for 10 min at 4�C. To lyse red blood cells, the

cell pellets were resuspended in red blood cell lysis buffer (0.8% NH4Cl, 0.1% KHCO3, pH7.2) and incubated for 10 min at room temperature.

Cell suspensions were spun again at 300 g for 10 min at 4�C and the cell pellets were resuspended in PBS. If >5% dead cells were observed by

trypan blue staining, dead cell removal was performed using dead cell removal kit (Miltenyi Biotec, Catalog #: 130-090-101) according to the

manufacturer’s instructions. Remaining cells were directly used for single cell RNA sequencing (scRNA-Seq) or frozen in 90% fetal bovine

serum supplied with 10%dimethyl sulfoxide in aMr. Frosty freezing container placed at�80�C. Frozen cell vials were transferred to gas phase

of liquid nitrogen for long-term storage. Cells were thawed and transferred into a 15 mL conical tube with 7 mL of serum-free medium and

then spun down at 300 g for 10min at 4�C. The cell pellets were resuspended in 100 mL of PBS. Cells were counted using a hemocytometer and

the sample volume was adjusted to achieve a cell concentration within 100-2,000/mL.
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Single-cell capture and sequencing

Single cells were captured and barcoded using the 10XChromiumplatform (10XGenomics). scRNA-seq libraries were prepared following the

instructions from the Chromium Single Cell 3ʹ Reagent Kits User Guide (v3). Briefly, Gel Bead-In EMulsions (GEMs) were generated using sin-

gle-cell preparations. After GEM-RT and cleanup, the complementary DNAs (cDNAs) from barcoded single-cell RNAs were amplified before

quantification using Agilent Bioanalyzer High Sensitivity DNA chips. The single-cell 30 gene expression libraries were constructed and cDNA

corresponding to an insertion size of � 350-400 bp were selected. Libraries were quantified using Agilent Bioanalyzer High Sensitivity DNA

chips and pooled together to get similar numbers of reads from each single cell before sequencing on the NovaSeq S4 (Novogene).
QUANTIFICATION AND STATISTICAL ANALYSIS

ScRNA-seq pre-processing of HGSC samples

We downloaded single-cell RNA-seq data from publicly available sources through the NCBI GEO, Zenodo, or like resources (Table S1). De-

pending on the origin of the source (either gene count matrix or processed data in the Seurat objects), we reanalyzed publicly available data

using count matrices for consistent processing. We performed QC59 and filtered out the low-quality cells with >15% mitochondrial UMIs or

fewer than 800 transcripts. Then, we used the single-cell transform (SCTransform) method62 for expression normalization and regressed out

the percentmitochondrial reads and cell cycle scores. Principal components analysis (PCA) was performed from the ‘‘SCT’’ assay prior to inte-

gration analysis to remove unwanted technical variance using the Harmony method61 with default settings. The corrected PCA (Harmony

components) were used to generate UMAP embeddings and clusters.
Single-cell integration of benign FT samples

Non-epithelial compartments (stromal, myeloid, and T/NK cells) were subset from a previously published dataset13 to generate new Seurat

objects. Each cell subset was used further integrated analysis across different donors using default 2000 features Integration anchors were

calculated using ‘‘SCT’’ as normalization method. The k.filter parameter was manually set for myeloid cells and fibroblasts to maintain

more donors but kept to default in T/NK subsets where cells were most abundant. Three samples were excluded for myeloid cell analysis

and one sample for stromal cell analysis due to the low number of captured cells. The sample IDs and which were used for sub clustering

are presented in Table S1.

To validate the presence of our defined cell subsets, we used Label Transfer from Seurat to identify our annotated cluster in an indepen-

dent cohort of benign FT samples.24 The two datasets were normalized using SCT and the top 3000 most variable genes were used for PCA.

Predicted annotations using the FindTransferAnchors and TransferData functions. To quantify the similarity between two datasets, the

average expression for the top 3000 variable features were used for pairwise correlation analysis of our clusters with the predicted cluster

labels and plotted using the Pheatmap package. Similarly, this method was applied in a pairwise correlation analysis was calculated between

FT epithelial subsets from Dinh et al. and benign and HGSC samples from Xu et al. 2022.18
scRNA-seq clustering and subset annotation

We identified cell clusters using Seurat graph-based clustering methods at increasing resolutions from 0.1 to 1 to identify major cell types

(T/NK, stromal, B, myeloid cells) within a scRNA-Seq dataset. We used marker genes – LYZ, CD14, CD68, FCN1, CLEC10A, CD1C, C1QA/

B/C – to identify myeloid cells, as used in our and other’s previous work13,15,34 were subset and converted into a new Seurat object for further

clustering. We re-performed normalization and integration as described on the subset data to identify macrophages and monocytes. Mac-

rophages were characterized byC1QA/B/C, TREM2,APOE, andHLA-DRA high expression andmonocytes by FCN1, S100A8/9, and FCGR3A

for non-classical monocytes. We required a cluster with a minimum of 5% percent of cells from the total cell population. We use the Clustree

package63 to visualize and guide splitting or merging clusters with the following criteria: a minimum of 5 differentially expressed genes using

MAST,60 with a Bonferroni-corrected p-value < 0.01, log2FC > 0.25, and a percent expression difference greater than 25% from the new clus-

ter and its parent in previous clustering resolutions. If these criteria were not met at a clustering resolution, we would merge the cluster back

into its parent population and leave the remaining clusters unchanged.
Quantifying cellular heterogeneity

We used the Roguemethod28 to quantify the proportion of genes with significant entropy from all expressed genes in a scRNA-Seq sample.

We used the RNA counts for myeloid and T/NK cell subsets for entropy scoring and performed initial filtering to require a minimumof 10 cells

expressing a gene to be considered for the entropy scoring. Entropy for all donors per cell cluster were calculated using the SE_fun function.

Rogue scores represent the number of genes determined to have a significant entropy divided by the total number of genes expressed and

ranges from 0 to 1. Rogue values were not estimated for samples with fewer than 10 cells per cluster.

In addition, we used DE analysis (adjusted p-value < 0.01, gene expressed in >20% of cells) for all resolutions from 0.1 to 1 using

FindAllMarkers function in Seurat package. At that given clustering resolution, we sum the unique DE genes of the given subset (myeloid,

T/NK, or stromal cells) while excluding mitochondrial and ribosomal genes (MT-, RPS, RPL), divided by the number of unique clusters at

that clustering resolution.
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ScRNA-seq signature analysis in TCGA

Using the top 10DE genes per cluster from scRNA-Seq, we computed the average expression (Log normalized counts of transcript permillion

expression) in TCGA bulk RNA-Seq samples. Two-sided pairwise Wilcox tests were computed for each cluster across the 4 molecular sub-

types, using Benjamini-Hochberg FDR p-value correction for multiple comparisons.
JASMINE pathway analysis

Gene set enrichment analysis was performed using Jasmine’s odds ratio test.31 The input data took in the RNA count matrices and used

GO:BP genesets from the Gene Ontology database through MsigDB (https://www.gsea-msigdb.org/gsea/msigdb). This method was

robust against dropouts relative to other gene set scoring methods. We ranked genesets by significance using general linear models and

linear contrasts to identify gene sets that were most significant for a given cluster compared to the mean of other clusters. We selected

the top 5 pathways per cluster by highest t-value, then z-scaled Jasmine enrichment scores for heatmap visualization after filtering out

non-relevant pathways. Enrichment score comparisons were performed using t-test with FDR p-value correction using the Benjamini-

Hochberg method. We ranked the pathways by the absolute change by average Jasmine score.
Gene regulatory network analysis (SCENIC)

We applied SCENIC32 to infer gene regulatory networks in stromal, T/NK, andmyeloid cells in benign FT.We used the human hg38 reference

with 10kb upstream and downstream from the transcription start sites to search for DNA motifs. AUC scores, which scores the proportion of

significantly upregulated genes (or regulons) from a given set of genes using an area under the recovery curve. These scores were generated

for each cell and used to create linear models with linear factors with the Multcomp package (v1.4-16; Hothorn et al., 2008). for hypothesis

testing. Linear contrasts were constructed using cluster against the mean of the remaining clusters and selected those with the highest

t-values. We selected the top regulons for each cell cluster and extracted the T values, representing the cluster-specific enrichment for

each regulon that and plotted using ComplexHeatmap64 package in R. The AUC scores for selected regulon were z-scaled across cell clusters

and overlayed onto the Diffusion map.
Pseudotime/trajectory inference analysis

We used the diffusion map method in the Destiny R package,41 from log-normalized RNA counts from the top variable genes. Spearman’s

correlation test identified genes associated with the two diffusion map dimensions representing the potential cellular trajectories. We also

used Monocle342 to infer the pseudotime of single cells to independently support the gene expression patterns observed in diffusion

map analysis. Antigen presentation scores were calculated by taking the averaged log expression of all HLA genes, and CD74 expressed

in a minimum of 10% of cells from any given myeloid cell cluster. Similarly, cytokine scores were calculated using cytokine genes (CXCL-,

CCL-, IL-) expressed in 10% of any myeloid cluster. The scores were then overlaid in the inferred trajectories.
Cell-cell communication analysis

To identify potentially interacting cell types, we applied the CellChat method45 to predict ligand-receptor interactions with default param-

eters (FDR adjusted p-value < 0.05). We filtered out interactions with CD4 as receptors (with MHCII) on myeloid cell types. We used the pre-

dictedmacrophage- andmonocyte-specific interactions to quantify how ligand-receptor pairs may be co-expressed in different tissues using

a similar scoring scheme using the geometric mean from robust means (½ median + 1/4*(first + third quartiles)) of each ligand and receptor

expression for each cell cluster.
Macrophage-to-monocyte ratio across datasets

Themacrophage-to-monocyte ratio was calculated by the sumofmacrophage clusters divided bymonocytes per sample in each dataset.We

add 1 as a pseudo-count and log2-transform to prevent negative values. Significance was tested using a two-sided Wilcox rank test and

corrected using the Benjamini-Hochberg method. In datasets with paired pre- and post- treatment,26 we used a two-sided paired t.test.
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