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Abstract: Alterations to the cerebral microcirculation have been recognized to play a crucial role in
the development of neurodegenerative disorders. However, the exact role of the microvascular alter-
ations in the pathophysiological mechanisms often remains poorly understood. The early detection of
changes in microcirculation and cerebral blood flow (CBF) can be used to get a better understanding
of underlying disease mechanisms. This could be an important step towards the development of new
treatment approaches. Animal models allow for the study of the disease mechanism at several stages
of development, before the onset of clinical symptoms, and the verification with invasive imaging
techniques. Specifically, pre-clinical magnetic resonance imaging (MRI) is an important tool for the
development and validation of MRI sequences under clinically relevant conditions. This article re-
views MRI strategies providing indirect non-invasive measurements of microvascular changes in the
rodent brain that can be used for early detection and characterization of neurodegenerative disorders.
The perfusion MRI techniques: Dynamic Contrast Enhanced (DCE), Dynamic Susceptibility Contrast
Enhanced (DSC) and Arterial Spin Labeling (ASL), will be discussed, followed by less established
imaging strategies used to analyze the cerebral microcirculation: Intravoxel Incoherent Motion
(IVIM), Vascular Space Occupancy (VASO), Steady-State Susceptibility Contrast (SSC), Vessel size
imaging, SAGE-based DSC, Phase Contrast Flow (PC) Quantitative Susceptibility Mapping (QSM)
and quantitative Blood-Oxygenation-Level-Dependent (qBOLD). We will emphasize the advantages
and limitations of each strategy, in particular on applications for high-field MRI in the rodent’s brain.

Keywords: microvasculature; brain; MRI; rodent; neurodegenerative disorders; perfusion

1. Introduction

Microvascular health underlies the physiology of all organs. Capillaries have a key
role in the exchange of oxygen, carbon dioxide, nutrients and hormones to all cells around
the body. Microcirculatory impairments can result in altered microvascular perfusion and
tissue oxygenation which can lead to tissue damage and organ dysfunction. Due to the
brain’s high energy requirements and its inability to store energy, an adequate cerebral per-
fusion, maintaining oxygen and nutrients homeostasis, is extremely important for normal
functioning. Alterations to the cerebral microcirculation have been recognized to play a
crucial role in the development of several neurodegenerative disorders such as vascular
cognitive impairment [1–5], Alzheimer’s disease [6–10], Parkinson’s disease [11–13] and
Huntington’s disease [14–16]. However, the exact role of the microvascular alterations in
the pathophysiological mechanisms leading to neurodegenerative disorders often remains
poorly understood. In addition, microvascular dysfunction is thought to play a role in
neurological disorders such as stroke [17] and psychiatric disorders such as schizophre-
nia [18,19] and autism spectrum disorder [20].
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There is increasing evidence that endothelial dysfunction is one of the earliest events
in the initiation of neurodegenerative disorders [21–23]. Endothelial dysfunction can
lead to vascular inflammation, disruption of the vascular tone, impaired vasodilation
and vasoconstriction, breakdown of the Blood Brain Barrier (BBB), vessel rarefaction and
thrombosis [4,24–29]. This leads to reduced tissue perfusion and the disruption of the
delivery of nutrients and oxygen, resulting in ischemia and ultimately leading to damage
or death of brain cells [30,31].

Microvessels are below the currently achievable spatial resolution of MRI and other
clinically applicable imaging methods, making it impossible to perform direct non-invasive
measurement of the microvascular density. However, MRI can be used to measure per-
fusion, providing indirect read-outs of the underlying microvasculature alteration. Due
to its wide availability, the lack of ionizing radiation and its high spatial and temporal
resolution, MRI has become one of the best-suited, non-invasive techniques to study the
cerebral microcirculation and perfusion. The use of several hemodynamic parameters such
as Cerebral Blood Volume (CBV), Cerebral Blood Flow (CBF), Mean Transit Time (MTT),
vascular barrier permeability and tissue oxygenation provides valuable insights into the
cerebral microvascular function, integrity and architecture. Therefore, MRI can be used as
a promising tool to provide early detection and characterization of endothelial cell function
and microvascular perfusion.

Although patient studies are useful, they often fail to link indirect imaging readouts
with molecular and cellular processes, thus not providing sufficient information on the
mechanism of disease development. Pre-clinical animal models can validate the non-
invasive imaging with invasive techniques such as histology and immunohistochemistry
that assess microvascular dysfunction and density [32–34]. Biopsies from patients can only
rarely be obtained [35]. Post-mortem samples represent end points in neurodegenerative
disease where the disease in patients is progressed to a state where conclusions on the
onset and disease progression can hardly be drawn. Animal models allow the study of
the disease mechanism at several stages of the development, as well as before the onset of
symptoms, allowing investigation of the disease development [36]. Lastly, by using animal
models, a high group homogeneity can be achieved which increases the reproducibility
and statistical power of the experiments compared to clinical studies [37]. This makes pre-
clinical MRI an important tool for the development and validation of novel MRI sequences
for later applications in the clinic.

Rodents are by far the most common animals in pre-clinical research. While rodent
imaging can be performed on human MRI scanners, it is highly beneficial to perform it
on a high-resolution dedicated-small-animal MRI system [38]. In recent years, technical
improvements have led to the increased availability of high-field small-animal MRI systems
that achieve high spatial resolution in combination with excellent soft tissue contrast and a
high signal-to-noise ratio (SNR) [39]. These improvements have resulted in a rapid growth
in the use of MRI in rodents over the past years. However, pre-clinical MRI still has a
number of technical and biological limitations.

This article reviews the cerebral perfusion MRI techniques: Dynamic Contrast En-
hanced (DCE), Dynamic Susceptibility Contrast Enhanced (DSC) and Arterial Spin Labeling
(ASL), followed by several less established imaging strategies used to analyze cerebral
microcirculation. An overview of the MRI techniques described in this article can be found
in Table 1. For each technique, we will discuss the basic principle and its microcircula-
tory parameters. We will emphasize the advantages and limitations of each strategy, in
particular on applications for high-field small-animal MRI.
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Table 1. Overview of the MRI techniques discussed in this article.

Exogenous Endogenous

DCE
DSC

Contrast-based VASO
SSC MRI

Vessel size imaging
SAGE-based DSC

ASL
IVIM
VASO
iVASO

PC MRI
QSM

qBOLD
Abbreviations: DCE: Dynamic Contrast Enhanced; DSC: Dynamic Susceptibility Contrast Enhanced; SSC: Steady-
State Susceptibility Contrast; SAGE: Spin- And Gradient-Echo Echo-Planer; ASL: Arterial Spin Labeling; IVIM:
Intravoxel Incoherent Motion; (i)VASO: (Inflow) Vascular Space Occupancy; PC MRI: Phase Contrast MRI; QSM:
Quantitative Susceptibility Mapping; qBOLD: quantitative Blood-Oxygenation-Level-Dependent.

2. High Field Pre-Clinical MRI

The main advantage of dedicated-small-animal MRI systems is the combination of
a high magnetic field strength and high gradient strength, resulting in a high SNR and
resolution. This can be further increased by the use of dedicated coils that can be placed
close to the animal, the use of cryogen cooled coils [40] and longer acquisitions [37,41].
However, the high magnetic field also causes several artifacts and limitations such as
increased field inhomogeneity, increased specific absorption rate, susceptibility artifacts,
chemical shift artifacts and changes in the relaxation times [37,42]. Pre-clinical MRI systems
also often lack the implementation of pulse sequences that are used in well-established
and optimized clinical protocols. The lack of standardization and technical limitations has
led to great diversity across sequences and acquisition parameters, limiting the use and
translatability to the clinic [43]. The standardization of these protocols and their parameters
is crucial for an improved translatability.

Due to the smaller size of rodents and the fact that they would move during an
MRI acquisition, the use of anesthesia is required. This has an influence on several body
systems and can cause physiological alterations, which can influence the outcome of the
imaging experiment [44]. To maintain stable physiological and hemodynamic conditions
of anesthetized animals, close monitoring of the temperature, breathing rate and cardiac
cycle of the animal under anesthesia is required [42]. Furthermore, the breathing rate, heart
rate and velocity of blood flow are much higher in rodents compared to those of humans,
requiring a high temporal resolution.

3. Cerebral Perfusion MRI Techniques

Blood perfusion is defined as the delivery of blood through the microvascular network
to a tissue or organ. The main parameter used to assess perfusion in the brain is the
CBF, which is expressed in volume of blood per unit of time per unit of tissue mass
(mL/min/g). However, there are several additional physiological parameters such as
blood volume, blood velocity and blood oxygenation that provide valuable information
about the perfusion of tissues [45]. Quantitative perfusion weighted imaging allows the
measurement and examination of perfusion maps of several hemodynamic parameters
such as CBV, CBF, MTT, vessel permeability and tissue oxygenation, providing valuable
insights into the microvascular function, integrity and architecture.

In general, perfusion MRI techniques can be divided into two categories: exogeneous
techniques that make use of the injection of a contrast agent and the completely non-
invasive endogenous contrast techniques (Table 1). The exogenous techniques result in
a higher spatial resolution and are therefore more widely used [46]. The endogenous
techniques are not dependent on the injection of a contrast agent, making it safer to
study disease progression [45]. Furthermore, exogenous measurements are often limited
to a single injection of the contrast agent, making it more difficult to perform repeated
measurements during the same imaging session.
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3.1. Dynamic Contrast Enhanced MRI

DCE-MRI is an exogenous contrast-based technique, mainly used to provide an esti-
mation of the perfusion and the permeability of the cerebral microvasculature [47]. Using
DCE-MRI, T1 changes of tissue over time, following the introduction of a paramagnetic or
superparamagnetic contrast agent, can be measured. For paramagnetic contrast agents,
the acquisition consists of a baseline image (T10 map), followed by a series of T1-weighted
images after an intravenous bolus of contrast agent. After injection, the contrast agent
spreads through the tissue resulting in a change in the MR signal intensity proportional to
the concentration of the contrast agent (T1 shortening). These temporal changes provide a
signal intensity curve from which physiological parameters of the microvascular system
such as perfusion, vessel permeability and the extravascular-extracellular space of the
tissue can be derived [45,48].

There are two main approaches to analyze DCE measurements quantitatively, paramet-
ric and nonparametric approaches. The nonparametric (model free) or semi-quantitative
techniques measure empirical metrics directly from the signal intensity curve such as the
Bolus Arrival Time, Time-To-Peak, the maximal signal intensity or the area under the
signal Attenuation Curve. If the MR signal is converted to a signal concentration curve, the
latter is referred to as the initial area under the gadolinium curve. These metrics provide
information about the shape and the structure of the MR signal intensity and can often
be correlated to the underlying physiology [48–50]. Nonparametric approaches are suit-
able for fast and simple diagnostics and have been used in various (pre-)clinical studies.
However, nonparametric techniques have some important limitations. They are sensitive
to several parameters, such as the MRI acquisition protocol (sequence and parameters),
type of scanner, injection protocol and type of contrast agent, making comparison of the
results difficult [50]. Furthermore, the contribution of the physiological parameters to the
MR signal intensity remains unclear [51].

Parametric or quantitative studies estimate the physiological parameters that can be
directly related to the physiological properties [48]. The parametric evaluation of the signal
intensity attenuation curve is done by converting the MR signal intensity to a time contrast
concentration curve and fitting it to a model. In order to perform this kinetic modeling,
the Arterial Input Function (AIF), describing the concentration changes in a blood vessel
entering the tissue as a function over time, has to be identified. The accurate identification
of the AIF is far from straightforward. A detailed description of the determination of the
AIF can be found elsewhere [52].

Most of the studies use the two-compartmental pharmacokinetic (PK) model com-
prising the intravascular-extracellular space and the extravascular-extracellular space
introduced by Tofts et al. (Figure 1) [53]. The two-compartment model estimates the
volume transfer constant between the blood plasma and the extravascular-extracellular
space (Ktrans); the reflux exchange rate between the extravascular-extracellular space and
blood plasma (kep) and the volume of the EES per unit volume of tissue (νe = Ktrans/kep)
(Table 2) [45,48,49].

The transfer constant Ktrans is the most widely used kinetic parameter. It is a complex
function depending on the blood flow, the vascular surface area per unit mass of tissue
(representing the size and number of blood vessels) and the microvascular permeability,
making it dependent on the tissue and its physiology [45,48]. The dependence of Ktrans on
both perfusion and microvascular permeability complicates the interpretation of the results,
which is a major limiting factor of DCE-MRI. More complex DCE models, to describe the
underlying tissue physiology more accurately, have been proposed [54]. However, the
higher degree of complexity of these models, and the increased number of parameters to
be estimated, often results in increased errors in the parameters estimation [48,55].
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Figure 1. Schematic representation of the two-compartmental pharmacokinetic (PK) Tofts model comprising an intra-
vascular compartment (left) and extravascular -extracellular space (EES) compartment (right). The volume transfer between
the two compartments is depicted by the transfer constant between the blood plasma and the EES (Ktrans) and the transfer
constant between the EES and blood plasma (kep), respectively. kep can be calculated using kep = Ktrans /νe, whith νe

volume of the EES per unit volume of tissue.

Table 2. Summary of the different output parameters obtained by the different MRI techniques discussed in this article.

Technique Frequently Used Sequence Output Parameters Contrast Agent Main Disadvantages

DCE T1-weighted
GE EPI

IAUGC
Ktrans

νe
kep

exogenous
AIF

Ktrans combined measure

DSC

T2-weighted SE
or

T2*-weighted GE
EPI

CBF
CBV
MTT

(Ktrans, νe, kep)

exogenous
AIF

first pass measurement

ASL
2D EPI

or
3D GRASE

CBF
Bolus arrival time

Arterial CBV
endogenous low SNR

IVIM PGSE EPI
D
D*

fIVIM

endogenous
long acquisition time

different approaches

VASO T1-weighted
GE, SE or GRASE EPI

CBV exogenous/endogenous low SNR

only measurement of CBViVASO arterial CBV exogenous

SSC

T2 -weighted SE
or

T2*-weighted GE
EPI

relative CBV exogenous

only measurement of CBV

lack of clinically approved
contrast agents

Vessels size imaging SAGE EPI VSI exogenous

first pass measurement
or

lack of clinically approved
contrast agents

SAGE-based DSC SAGE EPI
CBF, CBV, MTT

Ktrans, νe, kep
VSI

exogenous
AIF

first pass measurement

2D PC MRA T2-weighted GE total CBF
(CMRO2) endogenous

only measurement of
global CBF

choice of optimal VENC
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Table 2. Cont.

Technique Frequently Used Sequence Output Parameters Contrast Agent Main Disadvantages

QSM 3D multi-echo GE OEF
(CMRO2) endogenous

assumes isotropic
magnetic susceptibilities

relative quantification

qBOLD

(multi echo)
GE/SE EPI

or
asymmetric SE EPI

DBV
OEF

(CMRO2)
endogenous requires additional field

map

DCE-MRI is frequently used in both clinical and pre-clinical studies. Parametric DCE-
MRI requires the fast and accurate determination of the T1 values. In practice, a trade-off
must often be made between the temporal resolution, spatial resolution, the SNR and the
field of view [55]. The limited spatial resolution in combination with increased susceptibility
artifacts at higher field strength and fast changes in the blood plasma contrast agent often
result in difficulties in the identification of the AIF in rodents [55,56]. In pre-clinical
studies, it is especially important to optimize the temporal resolution, allowing accurate
T1 determination, without reducing the spatial resolution. To decrease the relatively long
acquisition times in MRI, several acceleration techniques have been proposed [57]. The use
and implementation of acceleration techniques with high-field small-animal MRI systems
has remained limited so far. Better implementations and increased use of acceleration
techniques on high-field small-animal MRI scanners are needed to increase the reliability
and reproducibility of the quantitative kinetic parameters in future pre-clinical DCE-
MRI studies.

Since it is especially challenging to obtain a good identification of the AIF in small
animals, several alternative approaches and models have been proposed. The AIF can
also be determined by sampling arterial blood. However, due to their small blood volume,
repeated blood sampling can have a significant effect on the physiological status of the
animal [58]. Furthermore, the low sampling rate and the inability to collect blood samples
close to the tissue of interest often confound the identification of the AIF [55,59]. An average
population-based AIF is often used to avoid the need for a subject-specific AIF [60], but
this approach does not take inter-subject variability into account.

Completely non-invasive methods have been developed to determine the AIF on an
individual basis from the DCE-MRI [61,62]. These methods need high temporal resolution
and require often the presence of a large vessel within the field of view. A potentially
interesting alternative approach, which compares the obtained curve with that of a reference
region in healthy tissue, is the reference region model [60]. This approach is frequently
used in rodents and allows for quantitative analysis without the need of an AIF. Since this
technique does not require a high temporal resolution to determine the AIF, a higher spatial
resolution and/or SNR can be achieved. This has mainly been used in oncology to obtain
quantitative measurements of perfusion in brain tumors [63,64].

Additional problems can arise due to the difficulty and lack of standardization of the
contrast agent injection in rodents [65]. The administration of the contrast agent is typically
performed through injection in the jugular vein or tail vein, which is often challenging.
Changes in the bolus of the contrast agent can have a significant effect on the quantitative
parameters [55]. Therefore, an automated injection system is preferred to increase the
reproducibility compared to a manual injection.

3.2. Dynamic Susceptibility Contrast Enhanced MRI

The DSC MRI technique, also known as bolus tracking, is the most widely used MRI
technique to measure brain perfusion [45,66]. Similar to DCE MRI, the acquisition consists
of a pre-contrast baseline image followed by a series of MR images after an intravenous
bolus of contrast agent. In DSC MRI, the tissue perfusion is assessed by evaluation of a
series of rapidly repeated T2- or T2*-weighted MR images resulting from the first pass of a
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contrast agent bolus through the tissue [67,68]. During the first pass, the contrast agent is
mainly confined to the intravascular space allowing a good estimation of the perfusion.
The susceptibility induced signal loss over time (T2/T2* shortening), proportional to the
contrast agent concentration, provides a signal intensity attenuation curve. The DSC-
MRI technique is straightforward, has short acquisition times and has a high contrast to
noise ratio compared to other perfusion methods. Its main limitation is the need for the
identification of the AIF for quantitative analysis. In rodents, the capillary blood flow is
about five times higher than in humans. Therefore, first pass measurements in rodents
require extremely short bolus injections and acquisition times, making the MR signals
much more sensitive to T1 changes and susceptibility artifacts [69].

Similar to DCE, the signal intensity attenuation curve can be used to derive semi-
quantitative parameters. The transformation into the contrast concentration curve allows
quantitative evaluation of the following physiological parameters: CBV, defined as the
fraction of tissue volume occupied by blood (ml/g); CBF (ml/g/min) and MTT defined
as the average time the contrast agent travels through the vasculature of the brain tissue
(s) (Table 2). Figure 2 shows an example of a typical tissue contrast concentration curve
and explains how it can be used to derive the physiological parameters. The absolute
quantification of the physiological parameters is strongly dependent on the AIF, and most
of the artifacts in the quantification can be linked directly to an incorrect identification of the
AIF [52]. Since absolute quantification is difficult, the relative parameters calculated from
the contrast concentration curve without the identification of the AIF are often used instead.

Figure 2. Parameters derivation in Dynamic Susceptibility Contrast Enhanced (DSC) MRI: (a) Semi-quantitative interpreta-
tion can be derived from the signal intensity curve. The Arrival Time (AT) of the bolus can be determined from the time
interval between the injection of the contrast agent and the time point where the contrast agent is first detected in the tissue.
The Time-To-Peak (TTP) is determined by the time interval between the injection of the contrast agent and the peak of the
contrast agent in the tissue. The Full Width at Half Maximum (FWHM) is dependent on the Mean Transit Time (MTT) of the
tissue. (b) the contrast concentration curve can be calculated by deconvolution of the Arterial Input Function (AIF) and the
signal intensity curve. The Cerebral Blood Flow (CBF) is determined by the maximum height of the contrast concentration
curve (Tmax). The Cerebral Blood Volume (CBV) is determined by the area under the contrast concentration curve, while the
MTT can be calculated using MTT = CBV/CBF. Reproduced with permission from Leif Østergaard, Journal of Magnetic
Resonance Imaging, published by John Wiley and Sons, 2005 [68].

The DSC MRI technique relies on the assumption that the contrast agent remains
intravascular. As the contribution of the permeability and the volume of the extravascular-
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extracellular space increases with the time after the bolus injection, DSC MRI requires a high
temporal resolution. The disruption of the BBB can introduce errors in the measurements.
In order to correct for the leakage of the contrast agent, a preload of contrast agent can
be administered [70], or a leakage-correction algorithm can be used [70–72]. Recently,
double or multi-echo approaches to remove the T1 effects caused by leakage of the contrast
agent have gained increasing interest [73,74]. In addition to the leakage-correction, multi-
echo DSC MRI was shown to improve identification of the AIF [74], estimation of the
transfer constant Ktrans and the volume of the extravascular-extracellular space per unit
volume of tissue νe [75]. The multi-echo approach thus allows the extraction of the kinetic
parameters and the conventional DSC parameters without the need for multiple contrast
agent injections (Table 2) [75].

Both spin-echo (SE, T2) and gradient-echo (GE, T2*) sequences can be used for DSC
MRI. The susceptibility contrast in GE images arises from the contributions of both macro-
and microvasculature [76,77]. Therefore, it is preferable to use SE images, where the signal
loss is mainly sensitive to the microvasculature [78]. Recently, combination of the two
techniques referred to as Spin- and Gradient-Echo Echo-Planar Imaging (SAGE EPI) was
proposed by Schmiedeskamp et al. [79].

3.3. Arterial Spin Labeling

ASL is the most frequently used, completely non-invasive, cerebral perfusion MRI
technique (Table 1). It is based on the labeling, often referred to as ‘tagging’, of water spins
in the arterial blood supply. The labeled blood water spins are used as an endogenous
contrast agent. Several techniques combining different preparations and readout schemes
exist for ASL. The general ASL scheme consists of two consecutive acquisitions. Before the
first acquisition, the arterial blood water spins are tagged ‘upstream’ from the tissue of
interest using an inversion pulse. After a delay time (Inversion Time, TI), during which
the tagged spins travel to the tissue of interest and exchange with the stationary spins
in the extravascular-extracellular space, an image is acquired (Figure 3A). The second
acquisition, which serves as a control, is identical to the first acquisition without the
tagging of the arterial water spins [80]. The difference between both images provides a
signal proportional to the exchanged water magnetization and therefore the arterial blood
flow to the tissue after the delay time. This difference is therefore directly proportional to the
capillary blood flow in the tissue [81]. The signal intensities from the perfusion weighted
images can then be converted to quantitative measurements of CBF in physiological
units of flow (mL/g/min) [81]. The ASL technique was originally developed to provide
information about CBF, but recently several methods have been developed that enable the
estimation of other physiological parameters such as the bolus arrival time and arterial
CBV (Table 2) [82–85].

Several ASL sequences with different labeling schemes have been developed. The
most widely used ASL sequences, continuous ASL (CASL) [86], pulsed ASL (PASL) [87]
and pseudo-continuous ASL (pCASL), are shown in Figure 3B [88,89].

The CASL sequence uses a continuous Radiofrequency (RF) pulse in combination
with a constant imaging gradient in the direction of the arterial blood flow to invert the
arterial blood water spins. The main drawback of CASL is the requirement of long labeling
RF pulses causing signal loss due to strong magnetization transfer (MT) effects and high
specific absorption rates [80,81], historically limiting the applications to the acquisition
of a single slice. To correct for MT effects in multiple slices, a separate labeling coil can
be used (two-coil ASL) [90] or additional RF pulses during the control acquisition can be
applied [91]. In rats, a dedicated neck labeling coil has been used to minimize MT effects
and improve the SNR [86,92]. Due to their smaller size, two-coil CASL has proven to be
more challenging in mice. When the dedicated coil is placed on the neck of a mouse, the
short distance between the two coils will result in partial saturation of the brain signal.
To overcome this limitation, an alternative approach was developed where the dedicated
labeling coil is positioned at the heart region of the animal [93]. Even though CASL has
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a higher sensitivity than its pulsed counterpart, the use of CASL is limited due to the
need for hardware providing continuous RF, a dedicated labeling coil and a high specific
absorption rate.

Figure 3. Arterial Spin Labeling (ASL): (A) The general ASL scheme consists of two consecutive acquisitions. The first
acquisition consists of the tagging of the arterial blood spins (Left), followed by a post-labeling delay time, during which
the tagged spins flow to the tissue of interest and exchange with the stationary spins in the extravascular-extracellular
space (Middle), and finally, the image is acquired (Right). The second acquisition, which serves as a control, is identical to
the first acquisition without the tagging of the arterial water spins; (B) Schematic representation of the most widely used
ASL sequences. Continuous ASL (CASL), uses a continuous Radiofrequency (RF) pulse in combination with a constant
imaging gradient in the direction of the arterial blood flow to invert the water spins of arterial blood (Top). In Pulsed ASL
(PASL), the labeling is achieved using a pulse or a pulse train of short RF inversion pulses (Middle). pseudo-Continuous
ASL (pCASL) uses a train of short RF pulses that mimic the long continuous RF pulse from CASL (Top).

In PASL, the labeling is achieved using a pulse or a pulse train of short RF inversion
pulses. Depending on how the labeling is applied, the PASL sequences can be subdivided
into two groups: the techniques that perform the labeling symmetrical with respect to the
measured plane, called flow alternating inversion recovery (FAIR) [94], and the asymmet-
rical PASL sequences [87,95]. The PASL techniques have a higher inversion efficiency, a
lower specific absorption rate and smaller MT effects than CASL. This, in combination
with its ease of implementation and robustness, makes PASL the most widely used ASL
sequence [96]. Due to the ease of implementation, FAIR PASL is the most frequently used
PASL technique in pre-clinical studies.
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More recently, the pCASL sequence was developed to combine the advantages of
CASL and PASL [89]. It uses a train of short RF pulses that mimic the long continuous
RF pulse from CASL. This way, it combines the high SNR of PASL with the high labeling
efficiency of CASL without the need for specific hardware to generate a long continuous
labeling pulse. pCASL is less dependent on flow velocity and shows better reproducibility
than PASL and CASL [96]. Furthermore, it also shows better control of the MT effects
and increased label efficiency compared to CASL [89]. The implementation of multi-slice
pCASL is straightforward and does not require a dedicated labeling coil. Disadvantages are
the lower label efficiency and higher specific absorption rate compared to PASL and CASL.
Furthermore, pCASL has an increased sensitivity to magnetic field inhomogeneities in the
labeling plane [97]. This becomes an increasing problem at the higher field strengths used
in pre-clinical small-animal MRI. Even though pCASL is the recommended implementation
of ASL for clinical applications [98], it is rarely used in pre-clinical research due to the lack
of commercially available pCASL sequences on high field pre-clinical systems [99].

The major disadvantage of ASL in general is the low intrinsic SNR. Only a small part of
the brain tissue volume consists of blood (2–4%), while the rest of the volume is filled with
stationary tissue. Therefore, the signal of the labelled blood water spins represents only of a
very small fraction of the overall water volume in the tissue. Additionally, the longitudinal
T1 relaxation time of tagged blood water spins at clinical field strengths is similar to the
arterial transit time [98]. This causes the labeling of the blood water spins to decrease by
the time the measurement is performed resulting in lower SNR. The blood longitudinal
relaxation time increases linearly with the magnetic field strength [100]. Therefore, an
increase in the magnetic field results in a decreased labeling loss due to the decay of the
blood water spins. On the one hand, the high magnetic field strength and the increased
gradient strength on pre-clinical scanners improve the SNR and the resolution of the ASL
images [101]. On the other hand, the higher magnetic field strength results in an increased
T1 for gray matter, limiting SNR improvement [102]. The reduction in the T2* of blood, due
to stronger susceptibility effects of paramagnetic deoxygenated hemoglobin at higher fields
strengths, can lead to a decreased contribution of the capillaries to the ASL signal, which
can lead to an underestimation of the CBF [103]. Furthermore, the increased magnetic field
strength leads to increased contributions of magnetic field inhomogeneities in the labeling
plane. The combination of these effects and several artifacts, such as subtraction errors,
motion artifacts and susceptibility artifacts, make ASL a low SNR technique. To improve
the SNR, several advanced pulse sequence or readout techniques, such as background
suppression techniques [104,105], B0-correction [97,106,107], MT effect reduction [108] and
motion correction techniques [109], have been proposed.

Nevertheless, ASL is increasingly used in pre-clinical research, in particular in mod-
els of neurological and neurodegenerative diseases [110–113]. In contrast to exogenous-
perfusion-weighted imaging methods, ASL can be used to measure relatively rapid changes
in CBF, for example, in response to changed physiological parameters such as pCO2 or pH.
Exogenous-perfusion-weighted imaging methods would require first a clearance of the
contrast agent from the blood pool. Such ASL experiments have been used to determine
the cerebral vascular response to hypercapnia/hypoventilation (Figure 4), which was pro-
posed as an earlier marker for the detection of vascular disfunction in neurodegenerative
diseases [111].
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Figure 4. ALS experiments in control mice (Ctrl) and an Alzheimer disease model (biAT) according to [111]. (A) Illustration
of the experimental paradigm. Animals were intubated, and ventilation was controlled. ALS measurements commenced
during a period of normoventilation. In order to assess the cerebral vascular response (CVR) to a hypercapnic challenge,
animals were hypoventilated. This was followed by a control measurement under normoventilation. Expired CO2 levels
(expCO2) were recorded during the experiments. More details on the protocol can be found in [111,114]. (B) CBF maps and
calculation of the CVR based on the baseline CBF and the CBF acquired under hypoventilation. (C) Comparison of CVR
in the cortex (Ctx), hippocampus (hipp) and thalamus (thal) of control mice and biAT mice. This figure is based on data
presented in [111].

Recently, a novel labeling scheme called velocity-selective ASL (vsASL) has been
proposed [115]. In vsASL, the labeling is based on the velocity of the blood flow instead of
the spatial location of the arterial spins. This method was specifically developed to address
the cerebral blood flow in situations of slow flow, where the arterial transit time can be
longer than the T1 relaxation time. However, to our knowledge, this method has not been
implemented on a high field pre-clinical scanner.

3.4. Intravoxel Incoherent Motion

Intravoxel Incoherent Motion (IVIM) MRI, first described by Le Bihan et al. [116], is a
diffusion MRI technique that can provide information about both molecular diffusion and
perfusion at the same time [117]. The term IVIM stands for the motion of water within a
voxel during an MR experiment. In biological tissue, this motion consists of contributions
from the molecular diffusion of water and the microcirculation of blood in the microvascular
network [116]. Originally, IVIM MRI was introduced based on the assumption that blood
flow in randomly oriented capillaries mimics a random walk, similar to the Brownian
motion of water molecules. This so-called pseudo-diffusion process, characterized by the
pseudo diffusion coefficient (D*), results in an additional signal attenuation in diffusion-
weighted imaging measurements, making diffusion MRI sensitive to both diffusion and
perfusion. In the presence of diffusion gradients, both phenomena result in a decay of the
signal intensity. The signal attenuation increases with the degree of diffusion weighting
that is applied (b-value) [117]. However, during the typically applied short diffusion
encoding times, the IVIM signal cannot be attributed solely to the randomized motion in
the microvasculature network. The signal attenuation of the perfusion component will also
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have a contribution of phase dispersion caused by incoherent blood flow velocities within
the microvascular network.

The pseudo-diffusion coefficient, D*, related to the perfusion in the microvascular
network, is much higher than the molecular diffusion of water in the parenchymal tissue.
Therefore, D* results in a faster decay of the signal attenuation. The faster signal decay, in
combination with the small fraction capillary blood flow in the tissue, limits the contribution
of the pseudo-diffusion to low b-values. Hence, the signal attenuation at high b-values
is solely a consequence of diffusion effects in the extravascular-extracellular space. In
order to capture both phenomena, the acquisition of an IVIM experiment consists of
a conventional diffusion-weighted sequence, where a wide range of b-values are used.
Compared to ‘conventional’ diffusion-weighted imaging, a number of measurements at
low b-values are added to visualize the IVIM effect resulting from the pseudo-diffusion in
the microcirculation (Figure 5).

Figure 5. The general principle of the two-step fitting approach in Intravoxel Incoherent Motion
(IVIM) MRI: (A) In a first step, the signal attenuation at high b-values is fitted (red). Since the signal
attenuation at high b-values only contains contributions from the molecular diffusion of water in
the extravascular-extracellular space (EES), this can be used to estimate the diffusion coefficient.
In the second step, the data from all b-values are used to extract the other IVIM parameters. The
contribution of the pseudo-diffusion in the microvascular network (blue) can be visualized by
subtracting the diffusion contribution from the total IVIM signal (black-red); (B) Coronal B0 map in a
rat and; (C) Corresponding diffusion coefficient map, obtained from the first step in the two-step
fitting approach. The images were acquired from a mouse brain using a single shot gradient spin-echo
Echo Planar Imaging (EPI) sequence at a magnetic field strength of 9.4 T (Echo Time 37 ms, Repetition
Time 1000 ms, flip angle 90◦, 3 orthogonal diffusion gradient directions, gradient separation (∆)
1.6 ms, gradient duration (δ) 7.9 ms and 30 b-values 0–1000 s/mm2).

In general, the signal attenuation can be expressed as:

S(b) = S0 [(1 − fIVIM) × Fdiff (b)+ fIVIM × Fperf (b)], (1)

where S(b) represents the signal intensity at a certain b-value; S0 the signal intensity
without diffusion sensitizing gradients (b = 0 s/mm2); Fdiff (b) and Fperf (b) correspond to
the diffusion and the perfusion component; fIVIM the fraction of flowing blood in a voxel
(%) and (1 − fIVIM) the extravascular-extracellular space where only diffusion effects are
considered, respectively.
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Fitting the overall signal attenuation at multiple b-values allows the determination
of fIVIM and D* (Table 2). The IVIM parameters fIVIM and D* provide information about
the contribution of perfusion to the MRI signal and can be related to classical perfusion
parameters [117]. The original IVIM model describes both the perfusion and the diffusion
component by a mono-exponential model resulting in the classical bi-exponential model
for the signal attenuation. Over the past few years, several fitting approaches and different
models for both the diffusion and the perfusion component have been explored.

The diffusion component can be approximated using a mono-exponential model.
However, this is not correct in the case of biological tissue. This non-Gaussian behavior
becomes visible at high b-values. Due to the small scale of the IVIM effects, this can result
in significant errors in the parameter estimation. Examples of frequently used models that
address this non-Gaussian behavior are the Kurtosis Model [118], which is known to fail at
very high b-values [119], and the bi-exponential diffusion model containing a fast and a
slow diffusion component [120].

Originally, two perfusion IVIM models were proposed by Le Bihan et al. [116]. The
mono-exponential model assumes that the direction of the blood flow changes several
times during the measurement. This only holds true when long diffusion times are used or
under conditions of fast flow and short vessel segments [118,121]. At short diffusion times
or under conditions of slow flow and long vessel segments, the blood will remain in a
single segment during the measurement. Under these conditions, referred to as the ballistic
limit, the signal attenuation can be more accurately fitted using a sinc model [116,117].
However, in reality, the situation lies somewhere in between these two models. Several
other models have been proposed to fit the more realistic intermediate situation [122,123].

Multi-compartment models have been shown to fit signal attenuation for the perfusion
component more accurately [124], leading to several multi-compartment models being
proposed [121,125,126]. Recently, an in vivo rat brain study showed that the signal atten-
uation of the perfusion component can be more accurately fitted using a bi-exponential
IVIM model that splits the perfusion component into a slow vascular pool, resulting from
blood flow in the capillaries and a fast vascular pool, resulting from blood flow in the
medium-sized vessel [121].

The fitting of the signal attention can be performed using several curve-fitting ap-
proaches. The most common methods are the one-step and the two-step approach. The
one-step approach fits signal attenuation at all acquired b-values and simultaneously ex-
tracts the IVIM parameters using a nonlinear least-squares algorithm. This approach is easy
to use, but is very sensitive to noise and local minima and often results in an inaccurate
estimation of the parameters. The more robust two-step approach relies on the magnitude
difference between the diffusion coefficient (D) and D*. Since the pseudo-diffusion only
has a significant effect at low b-values, the signal attenuation at high b-values can be fitted
to extract D (Figure 5). In the second step, the data from all b-values are used to get fIVIM
and D*. The main limitation of these two-step approaches is that a threshold separating the
perfusion and the diffusion component has to be chosen. The optimal threshold can vary
strongly between the organ measured and different pathologies. To overcome the need to
select a cut-off threshold manually, an iterative algorithm to select the optimal threshold
was proposed [127]. Recently, more complex fitting methods such as the Bayesian-fitting
approach have gained interest [128].

The improvement of MRI hardware and software, improving the SNR and the acqui-
sition time, has quickly expanded the field of IVIM MRI in recent years. One of the key
features of IVIM is that it can provide quantitative information without the use of contrast
agents and the need for identification of an AIF. The IVIM technique is a promising tool
providing complementary information to the classical perfusion measurements (Table 1).
In particular, the addition of IVIM to ASL measurements could provide additional di-
agnostic information without the administration of a contrast agent. The perfusion in
several organs, such as the liver [129], kidney [130,131] and pancreas [132,133], has been
successfully studied using IVIM MRI. Due to the small cerebral perfusion fraction, the



Diagnostics 2021, 11, 926 14 of 31

implementation and the correlation with classical perfusion measurements in the brain has
been proven to be more difficult [129,134,135].

Several factors influence the accuracy and reproducibility of IVIM. Apart from the
different processing approaches, there is great diversity in the acquisition schemes used for
IVIM MRI. In practice, the b-values and their distribution are often chosen heuristically. In
general, an increase in the number of b-values results in a decreased error in the parameter
estimation. However, the amount of b-values is often limited due to long acquisition times.
Furthermore, it is often difficult to obtain accurate measurements at low b-values due
to instabilities in the gradient amplifiers and MRI hardware limitations [117]. Currently,
an increasing number of efforts are ongoing to optimize the number and distribution of
b-values [136,137].

Applications of IVIM in rodents are limited. The higher SNR resulting from the ultra-
high magnetic field used in small animal MRI systems improves the accuracy of the fit and
the parameter estimation. This allows for the identification of small differences, which is
crucial when measuring cerebral perfusion. However, the limitations mentioned above
in combination with the wide variations in magnetic field strength used in rodents result
in significant variance in the parameters across studies. There is therefore need for more
uniform acquisition schemes and post-processing approaches. This can lead to increased
reliability and reproducibility of the IVIM parameters.

3.5. Vascular Space Occupancy

Vascular Space Occupancy (VASO) is a relatively new endogenous MRI technique
that allows assessment of changes in the CBV based on the intrinsic T1 differences of
tissue and blood (Table 1) [138]. A schematic representation of the VASO principle is
shown in Figure 6. First, the spins of both blood and tissue are inverted using a spatially
non-slice-selective global inversion pulse. After the global inversion pulse, the longitudinal
magnetization relaxes back to its equilibrium at the spin-specific T1 relaxation rate [139].
The difference in T1 relaxation between tissue and blood is expressed in a time difference
for their magnetization curves to cross zero. The VASO technique exploits this difference
using an optimal inversion time (TI) for blood, referred to as blood nulling. When an image
is acquired at the TI, the only signal which is detectable arises from the extracellular tissue.
Assuming a constant water volume per voxel, the signal arising from the extravascular
tissue is proportional to (1-CBV) [139]. The optimal TI can be determined from the repetition
time (TR) and the T1 of blood.

The VASO signal mainly arises from the differences in CBV. However, the contrast
can be affected by several factors such as the CBF, the extravascular Blood Oxygenation
Level Dependent (BOLD) effect, the contribution of cerebrospinal fluid, inflow effects and
magnetization transfer effects. Some of these confounding contributions can be reduced
by optimizing the acquisition parameters. The contribution of the BOLD effect can be
minimized by using the shortest possible TE, while the TR should be chosen to be long
enough to avoid strong CBF contributions. Inflow caused by non-steady-state inflowing
blood spins can be minimized by the use of RF coils that cover the entire body or the
application of magnetization-reset and crushing-gradient techniques [139,140]. Due to
exchange of water between blood and tissue, the inverted blood spins will affect the signal
from the extravascular tissue. This will result in a lower SNR. This signal contrast between
blood and tissue can be enhanced by the application of a magnetization transfer pulse [141].

The global inversion pulse used in VASO results in a low SNR. In general, the SNR
is improved when higher magnetic field strengths are used. However, in VASO, there
are several confounding factors that counteract this improvement. First of all, at higher
magnetic field strengths, the difference between the T1 of tissue and blood will become
smaller, reducing the sensitivity. Secondly, the higher field strength results in increased
extravascular BOLD effects, counteracting the negative VASO signal and further reducing
the sensitivity. This could underestimate CBV values. Furthermore, the efficiency of the
blood nulling is limited due to increased field inhomogeneities, and the acquisition will
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become more prone to geometrical distortion and inflow artifacts [139,142]. To overcome
these limitations, an alternative method using a slab-selective inversion instead of a global
inversion was proposed [143]. This was further extended to slice-saturation slab-inversion
VASO by applying additional RF pulses before the slab-selective inversion, which further
improved the CNR compared to the original VASO method [142].

Figure 6. Schematic representation of the basic principle of Vascular Space Occupancy (VASO) MRI:
First, the spins of both blood and tissue are inverted by the use of a spatially non-slice-selective global
180◦ inversion pulse. After the global inversion pulse, the longitudinal magnetization of blood and
tissue relax back at their spin-specific T1 relaxation rate. At the optimal Inversion Time (TI), when
the longitudinal magnetization of the tissue crosses zero, an additional 90◦ excitation pulse is applied
to null the blood signal. Then, an image is acquired that contains only signals that arise from the
extravascular tissue.

The main limitation of VASO is that it does not provide an absolute measurement
of CBV. Therefore, VASO has been mainly used to measure CBV changes in functional
MRI studies. In order to provide quantitative information about the CBV values, an
alternative approach based on the T1 shortening effect of T1 contrast agents was devel-
oped (Table 1) [144]. Contrast-based VASO is a steady-state technique that relies on the
assumption that the contrast agent remains confined to the intravascular space. Therefore,
the T1 shortening effect is limited to the blood compartment. The acquisition consists of
identical pre-and post-contrast experiments. Due to the T1 shortening, the blood signal
from the post-contrast measurement will no longer be nulled at TI. Since the contrast agent
remains intravascular, the T1 weighting of the tissue will not be affected in between the
two experiments. The difference between the pre-and post-contrast images can be used to
calculate the absolute CBV (Table 2).

Compared to DSC MRI, VASO MRI has several advantages and limitations. Since
it is a steady-state technique, contrast-enhanced VASO does not require extremely short
bolus injections and acquisition times. This allows a higher spatial resolution compared to
a dynamic imaging method. Another advantage is that lower SNR of contrast-based VASO
can be improved by signal averaging over different acquisitions, which is not possible
in DSC [144]. Finally, contrast-enhanced VASO is less prone to geometric distortions
and susceptibility artifacts and does not require the estimation of the AIF. The main
disadvantage of contrast-based VASO is that it only provides information about the CBV,
while DSC also provides information on the CBF and MTT (Table 2).
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Recently, a new approach called inflow-VASO (iVASO) was introduced [145]. In
iVASO, only the water spins flowing into the slice are nulled using spatially slice-selective
inversion. The TI for the nulling of the blood water spins is similar to the transit time
of arterial blood water spins to reach the capillaries. Therefore, the iVASO technique is
no longer sensitive to the total CBV, but is mainly sensitive to the contribution of the
arterial and arteriolar compartment. Some of the main limitations of the original VASO
technique can be overcome by the modification of the VASO sequence. By using a spatially
slice-selective inversion pulse, the tissue signal is not affected by the blood nulling, which
significantly increases the SNR. The iVASO technique does not depend on the difference
between the T1 of the tissue, making it more interesting for use at higher magnetic fields
strengths. Furthermore, since no inversion is applied in the imaging slice, iVASO is less
dependent on T1 changes in the tissue. This makes iVASO a more suitable technique to
study CBV in pathological conditions. Finally, iVASO significantly reduces the contribution
of cerebrospinal fluid.

The iVASO signal changes are highly dependent on the choice of the TI and TR. When
short TR is used, iVASO will become mainly sensitive to arteriolar blood water spin effects.
At longer TR, capillary blood water spin effects will play a role. Due to its dependence on
the TI, iVASO requires prior knowledge about the arterial transit time to provide absolute
measurements of the arterial CBV [145,146]. To overcome this limitation, a quantitative
iVASO method was introduced [147,148]. This approach uses the consecutive acquisition of
a control scan without blood nulling and an iVASO acquisition where the inflowing blood
water spins are nulled. Since the tissue magnetization is the same in both acquisitions, the
subtraction of these two images provides an absolute measurement of the arterial CBV
(Table 2). The pulse sequence and the subtraction procedure are similar to ASL. However,
the fundamental difference is that in iVASO, the water spins are nulled, whereas they are
tagged in ASL [146].

The quantitative iVASO methods allow the completely non-invasive absolute measure-
ments of CBV with a higher SNR than the originally proposed VASO technique (Table 1).
Quantitative iVASO is a promising tool to study both normal tissue and tissue with altered
perfusion. It provides an interesting addition or alternative to the conventional methods
for measuring CBV (Table 2). To date, VASO MRI was mainly applied in clinical research.
However, due to the advantages of the more recently developed iVASO, it may become a
useful tool in future pre-clinical research.

3.6. Steady-State Susceptibility Contrast MRI

Steady-state contrast enhanced MRI (SSC MRI) is an exogenous MRI technique that
uses a contrast agent with a long (blood) half-life in order to maintain a more stable
contrast agent concentration during the experiment (Table 1). Most SSC MRI studies use
ultra-small super-paramagnetic iron oxide nanoparticles (USPIOs) as blood pool contrast
agents. USPIOs have a longer (blood) half-life than the frequently used gadolinium chelates,
allowing measurements closer to steady-state conditions. Furthermore, they have a larger
hydrodynamic diameter than gadolinium chelates and are therefore more likely to remain
confined to the intravascular space [149].

In SSC MRI, the susceptibility-induced contrast difference between the intravascular
and extravascular compartments can be used to assess the CBV. First, the transverse
relaxation rate R2 (SE) or R2* (GE) is measured before the injection of a contrast agent and
under the steady-state conditions after the administration of a contrast agent is measured.
Then, the linear relation between the changes in the transverse relaxation rate and the
intravascular contrast agent concentration are used to generate an index, the relative
CBV (rCBV).

Unlike DSC MRI, there is no need for rapid acquisition during the first pass of the
bolus. Therefore, in the steady-state approach, a higher SNR and thus a higher spatial
resolution can be achieved. The long half-life of the contrast agent allows for dynamic
CBV measurements in functional MRI studies [149,150]. The superparamagnetic properties
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of the USPIOs result in significant enhancement transverse relaxation rates compared to
gadolinium base contrast agents. The larger diameter of iron oxide particles might result in
slower leakage out of the vessel, even in case of BBB disruptions, reducing the error in the
rCBV measurements [151,152].

A limitation of SSC MRI is that no information about the CBF and MTT can be
obtained (Table 2). SSC MRI assumes that the susceptibility-induced contrast difference
is independent of its neighboring voxels. However, this could lead to an overestimation
of rCBV in the vicinity of large vessels. The steady-state approach has been commonly
used in pre-clinical studies to measure rCBV. The major limiting factor for translation to
the clinic is the lack of clinically approved contrast agents with a long enough half-life for
steady-state measurements.

3.7. Vessel Size Imaging

Vessel size imaging is an exogenous MRI technique that provides a measurement of
the average microvessel size within a voxel by comparing changes in the ∆R2 (GE) and
∆R2* (SE) relaxation rates induced by the injection of a blood pool contrast agent. The
quantitative information about the average vessel diameter within a voxel is represented by
the Vessel Size Index (VSI) (Table 2). Vessel size imaging can provide valuable information
about the microvascular density that was previously only available from non-invasive
measurements such as biopsies [153].

Vessel size imaging exploits the difference in response of the ∆R2 and ∆R2* transversal
relaxation rate, as the vessel diameter increases [154]. The dimensionless ratio ∆R2*/∆R2,
which increases with the vessel diameter, can be used to provide information on the
average vessel size within a voxel [76]. However, this dimensionless ratio depends on the
concentration of the contrast agent. To avoid this dependence, the mean vessel density (Q),
defined as the ratio ∆R2/(∆R2*)2/3, was introduced. Under conditions of appropriately
high contrast agent concentrations and long echo time, Q has shown a good correlation
with histological measurements of the vessel density [155]. Expanding on this, the VSI (µm)
was introduced to provide a quantitative measurement of the average vessel size within a
voxel. In order to measure the VSI from the ∆R2* and ∆R2 quantitatively, other parameters
such as the water diffusion rate, D, the contrast agent concentration and the absolute blood
volume fraction (CBV) should be considered.

Vessel size imaging has two types of applications, steady-state vessel size imag-
ing [156] and dynamic vessel size imaging [157]. Similar to SSC MRI, the steady-state
method uses a contrast agent with a long blood half-life. The absolute CBV cannot be mea-
sured in the steady-state approach. However, under the assumption that the contrast agent
remains intravascular during the measurement, and the concentration of the contrast agent
in the blood is known, the blood volume fraction can be determined from ∆R2*. When the
contrast agent concentration, which is proportional to the susceptibility difference between
blood and brain tissue ∆χ, and the diffusion coefficient D are determined, the absolute VSI
can be determined using the relation (∆R2/∆R2*)3/2 (D/∆χ)1/2. The steady-state approach
involves an invasive measurement of the blood contrast agent concentration, eliminating
the need to measure absolute CBV. The value of D can be determined by performing a
separate diffusion measurement or chosen based on prior knowledge. An advantage of
the steady-state approach is the higher achievable spatial resolution using longer acquisi-
tion times. Similar to SSC MRI, the steady-state approach is mainly used for pre-clinical
research, due to the lack of clinically approved contrast agents with a long enough blood
half-life.

The dynamic approach is an extension of DSC MRI that acquires both GE and SE
measurements during the first pass of the bolus of a contrast agent. In the dynamic
approach it is impossible to measure the concentration of the contrast agent in the blood.
However, in contrast to the steady-state approach, the absolute blood volume fraction
can be determined from the susceptibility difference between blood and brain tissue
∆χ obtained from ∆R2* measurements, as in conventional DSC, eliminating the need to
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measure the concentration of the contrast agent in the blood. When the absolute CBV
and the diffusion coefficient D are determined, the quantitative VSI can be obtained using
∆R2/(∆R2*)3/2 (CB D)1/2.

The dynamic approach requires the acquisition of both GE and SE measurements
during the first pass of the contrast agent bolus. This limits the spatial resolution that can
be achieved. In order to improve the spatial resolution, a method using separate GE and
SE acquisitions and a dual injection of contrast agent was proposed [158]. However, this
technique has several other disadvantages such as the need of a higher dose of contrast
agent, longer acquisition times and the potential influence of the first injection of the
contrast agent on the second measurement.

To date, vessel size imaging has mainly been used in tumor research. However, vessel
size imaging can also be explored as a promising tool in other neurodegenerative and
neurological diseases where changes in the vessel size or density are expected. The VSI
provides additional information on the mechanism behind perfusion changes in the brain
complementing other perfusion measurements.

3.8. SAGE-Based DSC MRI

Recently, a combined SAGE Echo-Planer Imaging (SAGE EPI) MRI pulse sequence that
allows the simultaneous measurement of spin-echo and gradient-echo DSC MRI without
the need for sequential acquisition of two experiments was developed [79,157,159]. Using a
multi-echo approach, this technique provides measures of the typical DSC MRI parameters
(CBF, CBV, MTT), the kinetic permeability parameters (Ktrans, νe) and the relative vessel
size (VSI) (Table 2). Unlike conventional DSC measurements, the SAGE-based approach is
independent of T1 effects [79].

The SAGE-based DSC MRI technique combines the advantages of several methods
into a single acquisition. It provides complementary perfusion measures obtained from first
pass measurements using a clinically approved contrast agent, making SAGE-based DSC
MRI a promising tool to study neurodegenerative diseases (Table 1). However, SAGE-based
DSC MRI also has its limitations.

Some of the limitations, such as the need to determine an AIF and geometric distor-
tions, the dependence on the injection protocol and the need for extremely short acquisition
times, have already been mentioned in the description of the conventional perfusion tech-
niques. In addition to these limitations, the use of DSC MRI has been limited by the need
for short TEs to measure changes in R2 and R2* accurately [160]. In particular, the first TE
used in SAGE-based MRI should be short enough, since the T2 and T2* become very short
during the bolus of the contrast agent. Parallel imaging methods can be used to shorten the
TE. However, on high-field pre-clinical small-animal systems, often a limited number of
channels is available, limiting the acceleration that can be obtained using parallel imaging.
Therefore, alternative approaches using partial Fourier encoding have been proposed [77].
The implementation of other acceleration methods such as the keyhole method [161] and
multiband or simultaneous multi-slice excitation [162] is highly beneficial for future pre-
clinical studies, especially since several acceleration methods can be combined with each
other and with parallel imaging, further reducing the scan time and the TE [160].

3.9. Phase Contrast Flow MRI

Phase Contrast MRI (PC MRI), also referred to as velocity mapping, is an endogenous
MRI technique that uses flow-encoding gradients to visualize and quantify the velocity of
moving fluids [163,164]. It relies on the dephasing of moving spins when they are subjected
to a bipolar gradient. The net phase shift of the moving spins will be proportional to the
velocity of the spins along the direction of the bipolar gradient. Spins in the same direction
of the bipolar gradient will obtain a positive net phase shift, while spins moving in the
opposite direction will acquire a negative net phase shift [164]. In order to compensate
for unwanted phase shifts induced by other sequence parameters and to remove the
background signal, the phase images are subtracted by a flow compensated reference
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image that was acquired with the same acquisition parameters but with an inverted bipolar
gradient [164,165]. The PC MRI technique is only sensitive to flow along the direction of
the bipolar gradient. In order to obtain measurements of flow in arbitrary directions, flow
encoding gradients can be applied along all three orthogonal directions. However, the
addition of measurements along multiple axes significantly increases the acquisition time
for PC MRI measurements.

Since the velocity-encoded images contain flow measured both in the direction off
and in the opposite direction of the bipolar gradient, a phase range spanning from -π to π

is chosen. Velocities corresponding to shifts larger than |π| will induce phase wrapping
or aliasing in the velocity encoding image. Therefore, the maximum velocity that can be
measured in a PC MRI experiment is limited. The maximum velocity that can be measured
without the occurrence of aliasing at a certain gradient strength is expressed by the velocity
encoding parameter (VENC). Before a PC MRI experiment, the VENC, which is inversely
proportional to the gradient strength, should be chosen so that the maximum velocity
corresponds to a phase shift of 180◦ to avoid aliasing. The correct choice of the VENC
parameter, which should be estimated based on the velocities of interest, is crucial for
the accuracy of PC MRI measurements. When the VENC is too high, the flow in the
velocity-encoded image will be compressed in a small range of phase shifts. The inability
to distinguish between small velocity differences will decrease the SNR and the accuracy
of the images [165]. This might lead to inaccurate measurements, especially in regions with
slow flow [166]. A too-low VENC will result in aliasing, making quantitative measurements
difficult. The VENC is inversely proportional to the strength of the bipolar gradient and
can be adapted by changing the bipolar gradient strength [163]. However, a decrease in the
field strength will be accompanied by a decreased SNR.

The main applications of PC MRI in the brain are flow measurements of cerebral
spinal fluid [164,167] and vascular imaging using phase contrast MR angiography (PC
MRA) [168]. When introduced, the PC MRA technique was mainly used to visualize large
vessels with active blood flow non-invasively [169,170]. This can be achieved with 3D cine
PC MRA or 4D PC MRA, which is discussed in detail elsewhere [170,171].

Rather than just generating angiograms, PC MRA can be used to measure the velocity
and the direction of blood flow within the vascular network. In order to quantify the total
global CBF in the brain non-invasively, the major cerebral feeding vessels 2D PC MRA are
used [172–175]. This is done by placing a thin imaging slice perpendicular to the main
feeding arteries of the brain. In 2D PC MRA, the total CBF can be measured using either
cardiac-gated or non-cardiac-gated acquisition, which significantly reduces the acquisition
time [176–178]. The total CBF, containing the entire blood supply to the brain, obtained with
PC MRA can be used to normalize other CBF mapping techniques such as DSC [179] and
ASL [180] to provide absolute CBF maps. This diminishes some confounding factors, such
as the need to identify an AIF or the labeling efficiency, typically hindering the absolute CBF
quantification [175,181]. When used in combination with measurements for quantification
of blood oxygenation, it can be used to estimate the cerebral metabolic rate of oxygen
(CMRO2) [182,183]. The CMRO2 is a key measure of cerebral functioning. Alterations in
CMRO2 have been suggested to play an important role in several neurological disorders
(19). In contrast to Positron Emission Tomography (PET), which is considered as the golden
standard for CMRO2 quantification, PC MRI provides a completely non-invasive way to
measure CMRO2.

Several limiting factors should be considered when 2D PC MRA is used to measure
flow velocities. In order to describe the velocity accurately, the acquisition slice should be
positioned perpendicular to the vessel orientation [163]. When the slice is not positioned
perpendicularly to the vessel, saturation effects might occur due to in-plane flow. Fur-
thermore, the acquisition slice should be placed in a straight vessel segment with laminar
flow to avoid intravoxel dephasing. Another limiting factor is the need to determine the
optimal VENC, which requires prior knowledge or a good approximation of the maximum
velocities in the vessel of interest.
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3.10. Quantitative Susceptibility Mapping

Susceptibility Weighted Imaging (SWI) exploits the magnetic susceptibility differences
between tissues, which are often the cause of artifacts in MR images, to obtain images with
increased contrast [184]. It exploits the complementary information about the structure
and function of tissues contained in phase images by combining magnitude and phase
data (Figure 7). The acquisition usually consists of a flow compensated T2*- weighted
3D gradient echo sequence. SWI is commonly used for tissue characterization based on
susceptibility differences caused by deoxygenated blood, iron deposition and calcification
in neurological disorders [184,185]. The SWI approach has several limitations. It is highly
dependent on imaging parameters, suffers from blooming artifacts and has the orientation
dependence of the phase signal. This limits SWI to mainly qualitative measurements [186].
To overcome these limitations, Quantitative Susceptibility Mapping (QSM) was developed
(Table 1). QSM is a post-processing technique that quantifies the underlying magnetic
susceptibilities based on the phase images.

Figure 7. Processing steps to generate Susceptibility Weighted Images (SWI) from magnitude and
phase data. The raw phase data are filtered to remove low frequency fluctuations. Then, a phase
mask that scales the filtered phase images to a range from 0 to 1 is created. This phase mask is then
multiplied several times (n) with the magnitude image to generate the SWI with enhanced contrast.

The computation of the magnetic susceptibility consists of a three-step process: First,
the magnetic field is estimated from the raw phase data using a phase unwrapping algo-
rithm [187,188]. Next, in order to get a map solely consisting of the susceptibility sources
inside the brain or region of interest, the contributions from outside the field of view are
removed by background field removal [189–191]. Finally, the inverse problem from field
perturbation to magnetic susceptibility has to be solved.

The magnetic field in perturbation in each voxel, caused by the magnetization of tissue
when placed into an external magnetic field, can be approximated as a magnetic dipole
producing a dipole field that extends beyond the voxel itself. Therefore, the magnetic
field perturbation in a certain voxel is a superposition of its own dipole field and that
of its neighboring voxels [192]. When the susceptibility distribution is known, the field
perturbation can be obtained by the convolution of the susceptibility distribution and the
field of a unit dipole (i.e., dipole kernel) [193]. However, multiple susceptibility distribution
could result in the same field perturbation, making this is an ill-posed inversion problem. A
simple kernel division would cause errors that would be represented as streaking artifacts
in the reconstructed susceptibility map [194,195]. Several methods to overcome this ill-
posed inversion problem have been proposed.

The ill-posed problem can be solved analytically by repeated acquisition of the mag-
netic field perturbation at different orientations relative to the magnetic field. This method
is referred to as calculation of susceptibility through multiple orientation sampling, or



Diagnostics 2021, 11, 926 21 of 31

COSMOS [196], and is regarded as the golden standard for QSM. This requires, however,
long acquisition times and the assumption of isotropic magnetic susceptibility, thereby
making this technique impractical for in vivo measurements [193,197]. Therefore, reg-
ularization approaches using prior information to determine a unique solution from a
single acquisition are used. Several regularization algorithms for solving the ill-posed
inversion problem from a single acquisition and minimizing the streaking artifacts have
been proposed [194,198–201].

The QSM post-processing technique has been used to provide quantitative measure-
ments of the cerebral mixed venous oxygenation saturation (SvO2) (Table 2). The SvO2 can
be calculated by exploiting the magnetic properties of hemoglobin. When fully oxygenated,
diamagnetic hemoglobin results in negative susceptibility, leading to a large susceptibility
decrease in arteries. In contrast, deoxygenated hemoglobin is paramagnetic. Therefore, the
venous vessels will result in increased susceptibility [202]. The ratio of blood oxygen de-
fined as the Oxygen Extraction Fraction (OEF) can be obtained by calculating the difference
between the susceptibility in the veins and tissue (Table 2). Additionally, when used in
combination with other MRI sequences that provides a measure of the CBF, QSM can pro-
vide a completely non-invasive quantitative measurement of CMRO2 (Table 2) [197]. QSM
can provide important complementary information to other perfusion MRI techniques
and has high potential to be used as an early biomarker for small changes in the cerebral
physiology [197].

A major limitation of QSM is the assumption of the isotropic magnetic susceptibility
within a voxel. However, this assumption does not hold for all types of brain tissue. In
order to account for tissue containing anisotropic magnetic susceptibilities, tensor imaging
was developed [203,204]. Another important limitation of QSM is that it can only provide
a relative quantification of the magnetic susceptibility [205,206]. So far, this has limited
the inter-subject comparison of QSM measurements. The accuracy of QSM is strongly
dependent on several factors, which requires careful standardization and optimization of
the post-processing and acquisition parameters to increase its reproducibility and accuracy
further [205]. To date, QSM has mainly been used in the human brain, but it might also
become useful in other parts of the body.

Only a few studies have investigated QSM in rodents [207–209]. Pre-clinical QSM
could provide interesting insight in brain functioning under altered physiological con-
ditions. Comparing data under normoxic, hyperoxic and hypercapnic conditions, and
verification with blood gas analysis, could improve our understanding of neurological
disease mechanisms and cerebral functioning. QSM especially benefits from a high mag-
netic field strength, as higher field strength increases both the SNR and the contrast in the
phase images.

3.11. Quantitative Blood-Oxygenation-Level-Depedent MRI

The BOLD MRI technique is based on the different magnetic properties of oxygenated
and deoxygenated blood. During brain activation, the neurons consume an increased
amount of oxygen. This results in a local increase in the regional CBF towards the site
of activation. When placed in an external magnetic field, the deoxyhemoglobin in the
blood vessels will induce a magnetic susceptibility difference between blood and tissue.
This susceptibility difference results into signal changes of the local contrast in both T2-
and T2*-weighted images and can therefore be used as an endogenous contrast agent to
measure brain activation indirectly [210]. The temporal resolution of BOLD MRI is too
poor to perform direct measurements of neuronal activity in the brain. However, due to its
high spatial resolution and the ability to measure the much slower response in regional
blood flow, BOLD fMRI has been used extensively as a tool to investigate temporal MR
signal changes non-invasively during brain activity as a response to a cognitive tasks or
stimuli under both normal and pathophysiologic conditions [211,212].

However, the BOLD effect can also be used to study the resting state or baseline of
the brain and its impairment by neurodegenerative diseases. This allows quantitative
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evaluation of cerebral blood oxygenation and was therefore named quantitative BOLD
(qBOLD) (Table 1) [213]. The deoxyhemoglobin present in the blood vessels creates tissue
specific mesoscopic field inhomogeneities [214]. Using a Gradient Echo Sampling of Spin
Echo (GESSE) sequence, the mesoscopic field inhomogeneities can be separated from
microscopic and macroscopic inhomogeneities [215]. The mesoscopic, tissue specific BOLD
signal can then be fitted to a multi-compartment model based on prior knowledge about
the brain tissue. This allows derivation of quantitative hemodynamic parameters, such as
the deoxygenated blood volume on the venous site of the blood vessel network (DBV) and
the brain tissue OEF [213] (Table 2). The results from qBOLD are in good correspondence
with direct measurements of blood oxygenation in a validation study in a rat model [216].

The original qBOLD method has some limitations. An additional field map needs
to be acquired to correct for signal loss near air-tissue interfaces. This becomes increas-
ingly important when imaging rodents due to the smaller brain size, the close location
of sinuses to the brain and the associated decreased shim quality high magnetic field
strength. Furthermore, the use of multi-compartment models, removing the R2-weighting
and nulling the cerebrospinal fluid signal, requires a high SNR due to the large amount of
modeling parameters. An alternative method using a FLAIR-GASE method was recently
proposed [217]. However, this method has not been validated in animal models yet. Fur-
thermore, a dynamic approach using a parallel acceleration technique to provide a higher
temporal resolution compared to the GESSE sequence, named multi-echo asymmetric spin
echo (MASE), was proposed [218]. This method can be used to measure dynamic changes
in the brain oxygenation during brain activation.

Similar to QSM, the combination of qBOLD with another technique that provides
measurements of the CBF allows quantitative measurement of CMRO2. The estimation
of CMRO2 in QSM and qBOLD relies on a number of assumptions. Recently, a combined
QSM+qBOLD (QQ) approach was proposed [219]. The QQ approach allows the quantifica-
tion of OEF and CMRO2 without the need for altered physiological conditions or empirical
assumptions. This combined approach showed clearer gray and white matter compared to
separate acquisitions of QSM and qBOLD, and a more uniform OEF and better agreement
with independent methods to estimate CMRO2, compared to QSM. This makes QQ a highly
promising method for improvement in the accuracy of blood oxygenation measurements
in the brain.

4. Conclusions

Perfusion MRI is a highly versatile non-invasive imaging technique, widely used in
clinical and pre-clinical investigation of the cerebral microcirculation. Pre-clinical perfusion
MRI has the potential to overcome some of the shortcomings of clinical perfusion studies.
Pre-clinical MRI is an important translational tool for the development and validation of
novel MRI sequences to study changes in the cerebral microvasculature. Future advance-
ments facilitated by the novel perfusion methods, advanced techniques such as parallel
imaging, acceleration methods, artificial intelligence and in particular increased standard-
ization of perfusion MRI protocols will result in increased reliability and reproducibility of
perfusion parameters in high-field small-animal MRI. This will increase the translational
value of pre-clinical perfusion MRI and may result in a better insight in pathophysiological
disease mechanisms associated with changes in the cerebral microcirculation.
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