

GOPEN ACCESS

Citation: Ashfaq M, Blagoev G, Tahir HM, Khan AM, Mukhtar MK, Akhtar S, et al. (2019) Assembling a DNA barcode reference library for the spiders (Arachnida: Araneae) of Pakistan. PLoS ONE 14(5): e0217086. https://doi.org/10.1371/ journal.pone.0217086

Editor: Sebastian D. Fugmann, Chang Gung University, TAIWAN

Received: January 15, 2019

Accepted: May 4, 2019

Published: May 22, 2019

Copyright: © 2019 Ashfaq et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: Collection data, a photograph, a taxonomic assignment, and DNA barcode (COI-5p) sequence for each specimen are available in the public dataset, "DS-MASPD DNA barcoding spiders of Pakistan" on the Barcode of Life Data System (BOLD) (www.boldsystems.org). (dx.doi.org/10.5883/DS-MASPD).

Funding: This study was enabled by grant 106106-001 "Engaging Developing Nations in iBOL" from the International Development Research Centre in Canada and by grant HEC No. 20-1403/R& D/09

RESEARCH ARTICLE

Assembling a DNA barcode reference library for the spiders (Arachnida: Araneae) of Pakistan

Muhammad Ashfaq¹[•], Gergin Blagoev¹[•], Hafiz Muhammad Tahir², Arif M. Khan³, Muhammad Khalid Mukhtar⁴, Saleem Akhtar⁵, Abida Butt⁶, Shahid Mansoor⁷, Paul D. N. Hebert¹

 Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada, 2 Department of Zoology, GC University, Lahore, Pakistan, 3 Department of Biotechnology, University of Sargodha, Sargodha, Pakistan, 4 Department of Zoology, University of Sargodha, Sargodha, Pakistan, 5 Directorate of Entomology, Ayub Agricultural Research Institute, Faisalabad, Pakistan, 6 Department of Zoology, University of the Punjab, Lahore, Pakistan, 7 National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan

 $\ensuremath{\mathfrak{O}}$ These authors contributed equally to this work.

* mashfaq@uoguelph.ca

Abstract

Morphological study of 1,795 spiders from sites across Pakistan placed these specimens in 27 families and 202 putative species. COI sequences >400 bp recovered from 1,782 specimens were analyzed using neighbor-joining trees, Bayesian inference, barcode gap, and Barcode Index Numbers (BINs). Specimens of 109 morphological species were assigned to 123 BINs with ten species showing BIN splits, while 93 interim species included representatives of 98 BINs. Maximum conspecific divergences ranged from 0–5.3% while congeneric distances varied from 2.8–23.2%. Excepting one species pair (*Oxyopes azhari–Oxyopes oryzae*), the maximum intraspecific distance was always less than the nearest-neighbor (NN) distance. Intraspecific divergence values were not significantly correlated with geographic distance. Most (75%) BINs detected in this study were new to science, while those shared with other nations mainly derived from India. The discovery of many new, potentially endemic species and the low level of BIN overlap with other nations highlight the importance of constructing regional DNA barcode reference libraries.

Introduction

With nearly 48,000 known species in 117 families [1], spiders are a major component of terrestrial ecosystems with important practical applications as biocontrol agents [2] and as bio-indicators [3,4]. Prior studies have documented 4,300 spider species in Europe [5] and a similar number (3,800) in the Nearctic [6]. By contrast, just 2,300 species have been reported from South Asia [7], suggesting that many species await detection in this region. Although studies on the spider fauna of Pakistan began nearly a century ago [8], work has recently intensified, but most of these studies have produced regional checklists (S1 Table). Unfortunately, these "Sequencing DNA Barcodes of Economically Important Insect Species from Pakistan" from the Higher Education Commission of Pakistan awarded to MA. Sequence analysis was made possible by a grant from the Government of Canada through Genome Canada and Ontario Genomics in support of the International Barcode of Life (iBOL) project awarded to PDNH. This is a contribution to the Food From Thought project supported by the Canada First Research Excellence Fund awarded to PDNH. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

publications often employ invalid or incorrect species names or only identify specimens to a family [9], compromising their value [10-12]. It is likely that many species reported as new discoveries from Pakistan [13] await description. For example, in her dissertation research on spiders of Punjab, Parveen [13] reported the discovery of 33 new species but only one has been formally described [9]. Examination of prior taxonomic work (S1 Table) indicates that just 400 species of spiders have been documented from Pakistan. Considering the country's diverse ecosystems [14], this count must seriously underestimate the true diversity of its fauna given the much higher numbers reported for India (1686) [15] and Iran (528) [16]. The limited knowledge of the spider fauna of Pakistan is a particular example of the barrier to our general understanding of spider biodiversity in a global context, a factor compromising both scientific progress and conservation efforts [17].

The poor documentation of spider diversity of Pakistan reflects, in part, the paucity of taxonomic specialists working on the group [18]. Moreover, spiders pose a challenge for morphological approaches because cryptic species are common [19], and sexual dimorphism is often striking [20]. DNA barcoding [21] provides an alternate approach to identifications. It employs sequence diversity in a standard gene region (COI-5') to discriminate both morphologically cryptic species and all life stages, even for species with sexual dimorphism [22,23]. Although concerns about the use of single marker [24,25] or discordance between the barcode and other gene regions [26] have been voiced [27], the advantages of employing a single standard gene region for DNA barcoding is now very well established [28]. Fifteen years after its introduction, this approach has demonstrated its effectiveness in discriminating species in diverse groups, including spiders [29–34].

The use of DNA barcoding for specimen identification and species discovery is greatly facilitated by BOLD, the Barcode of Life Data System (http://www.boldsystems.org). This informatics platform assembles specimen metadata and sequences and provides tools to facilitate data analysis and publication [35]. It also enables species discrimination by assigning each COI sequence cluster to a Barcode Index Number (BIN) [36], which is an analogue of Operational Taxonomic Unit (OTU). Because BINs have high congruence with species recognized through morphological analysis [37–40], they are now routinely used as a species proxy [41,42]. Consequently, they have gained wide adoption [41,43] for cryptic species recognition [40,43], species discovery [44], taxonomic revisions [45], and faunal assessments [46,47]. The DNA barcode reference libraries available for diverse animal groups [48–54] are helping to identify newly collected specimens [45,54] and to speed taxonomic progress [33]. By assigning sequences from unidentified specimens to a species proxy [44], the BIN system has greatly augmented the application of barcode data in groups where taxonomic knowledge is poor. These barcode libraries are, in effect, forming the foundation for a global "DNA library of life" [55].

At present, BOLD holds 6.8 million records derived from specimens representing 587,000 BINs (accessed 13 April, 2019). This total includes 117,000 records from spiders that have been assigned to more than 10,000 BINs. Past work on spiders has had varied motivations [39,56–60], but just two prior studies have aimed to construct a comprehensive DNA barcode library for a national fauna–Canada [61] and Germany [62]. The need for similar work in other regions is evident, particularly in south Asia. For example, barcode records are only available for 73 species of spiders from India [35,63] and for 41 species from Pakistan [64–66]. The current study aimed to develop a barcode library for the spider fauna of Pakistan and investigate the spider diversity overlap with other regions using BINs. The study addresses the gap for reference data in the country by expanding DNA barcode coverage for Pakistan to 202 species.

Materials and methods

Ethics statement

No specific permissions were required for this study. The study did not involve endangered or protected species.

Spider collection

From 2010 to 2016, 1,795 spiders were collected at 225 sites in Pakistan (Fig 1). Each spider was provisionally identified by collectors in Pakistan before it was sequenced for the barcode region of the mitochondrial COI gene [21]. GB subsequently validated and refined identifications by examining (including genitalic dissections) representative specimens from each barcode cluster. Generic and species assignments generally followed taxonomic publications on Asian spiders (S1 Table), but nomenclature was updated as required to follow the World Spider Catalog [1]. Collection data, a photograph, and a taxonomic assignment for each specimen are available in the public dataset, "DS-MASPD DNA barcoding spiders of Pakistan" (dx.doi. org/10.5883/DS-MASPD) on BOLD. The 1,795 specimens are held in four repositories: Centre for Biodiversity Genomics, University of Guelph, Guelph, Canada (585); National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan (1126); University of Sargodha, Sargodha, Pakistan (84). The location of any particular specimen is reported in the dataset.

Molecular analysis

DNA extraction, PCR, and Sanger sequencing were performed at the Canadian Centre for DNA Barcoding (CCDB) (http://ccdb.ca/resources/) using standard protocols. A single leg was removed from each specimen with a sterile forceps and transferred into a well in a 96-well microplate pre-filled with 30 µl of 95% EtOH. DNA was subsequently extracted by tissue lysis at 56°C overnight followed by a column-based protocol [67]. PCR amplification of the COI-5' barcode region employed the primer pair C_LepFolF and C_LepFolR (http://ccdb.ca/site/wpcontent/uploads/2016/09/CCDB_PrimerSets.pdf). This primer cocktail includes equal volume of LepF1 [68] /LCO1490 [69] and LepR1 [68] /HCO2198 [69], respectively. The target COI region was amplified using 2 μ L of DNA template in a 12.5 μ L reaction containing standard PCR ingredients [30] employing the following PCR regime: 94°C (1 min), 5 cycles of 94°C (40 s), 45°C (40 s), 72°C (1 min); 35 cycles of 94°C (40 s), 51°C (40 s), 72°C (1 min) and final extension of 72°C (5 min). Amplicons were analyzed on a 2% agarose E-gel 96 system (Invitrogen Inc.) and were sequenced bidirectionally using the BigDye Terminator Cycle Sequencing Kit (v3.1) on an Applied Biosystems 3730XL DNA Analyzer. Sequences were assembled, aligned, and edited using CodonCode Aligner (CodonCode Corporation, USA) and validated in MEGA5 [70] to ensure they lacked a stop codon.

Data analysis

All sequences were submitted to BOLD (DS-MASPD) where those meeting required quality criteria (>507 bp, <1% Ns, no stop codon or contamination flag) were assigned to a BIN [36]. An accumulation curve, BIN discordance, genetic distance analysis, barcode gap analysis (BGA), and geo-distance correlation were determined using analytical tools on BOLD. The Accumulation Curve plots the rise in the number of BINs with increased sampling effort making it possible to ascertain if asymptotic diversity has been reached. The BGA determines if the maximum sequence divergence within members of a species or BIN is less than the distance to its Nearest-Neighbor (NN) species or BIN, a condition required for unambiguous identification [71,72]. The geo-distance correlation ascertains the correlation between geographic

Fig 1. Map showing collection localities for the 1,795 spiders examined in this study. The map was developed using www.simplemappr. net. The author of SimpleMapper has waived all copyrights and no permission is needed to use. GPS coordinates (Latitude, Longitude) for the collection localities were: 24.45, 70.8; 25.488, 67.821; 25.681, 67.781; 25.756, 67.739; 25.757, 67.732; 25.759, 67.737; 25.76, 67.732; 25.801, 67.733; 25.812, 67.739; 25.9, 69.85; 28.083, 70.283; 28.261, 70.647; 28.293, 70.115; 28.304, 70.134; 28.306, 70.128; 28.308, 70.132; 28.308; 70.132; 28.308; 70.132; 28.308; 70.132; 28.308; 70.132; 28.308; 70.132; 28.308; 70.132; 70 70.134; 28.309, 70.13; 28.309, 70.131; 28.309, 70.133; 29.083, 69.083; 29.103, 70.324; 29.104, 70.324; 29.105, 70.328; 29.24, 71.415; 29.242, 71.413; 29.39, 71.68; 29.393, 71.688; 29.393, 71.684; 29.394, 71.682; 29.396, 71.683; 29.401, 71.627; 29.429, 71.548; 29.454, 71.161; 29.518, 71.684; 71.68471.645; 29.584, 71.439; 29.868, 71.291; 29.9167, 69.9667; 30, 70.6; 30.026, 71.381; 30.053, 71.385; 30.065, 71.363; 30.105, 71.417; 30.189, 71.417; 30.180; 71.417;71.455; 30.189, 71.458; 30.189, 71.457; 30.191, 71.457; 30.516, 72.583; 30.518, 72.624; 30.519, 72.606; 30.52, 72.624; 30.522, 72.635; 30.523, $72.629; \ 30.525, \ 72.624; \ 30.529, \ 72.63; \ 30.531, \ 72.655; \ 30.531, \ 72.632; \ 30.533, \ 72.63; \ 30.534, \ 72.633; \ 30.534, \ 72.606; \ 30.537, \ 72.638; \ 30.538, \ 72.638; \ 72.638$ 72.641; 30.54, 72.608; 30.585, 72.993; 30.6, 73.0667; 30.65, 73.1; 30.66, 73.1; 30.6612, 73.1086; 30.791, 72.594; 30.8, 72.05; 30.832, 72.512; 30.85, 72.083; 30.85, 72.544; 30.854, 72.538; 30.855, 72.54; 30.855, 72.539; 30.856, 72.572; 30.857, 72.542; 30.859, 72.566; 30.862, 72.56; 30.862, 72.554; 30.866, 72.555; 30.875, 72.557; 30.959, 73.984; 31.024, 74.531; 31.033, 73; 31.0833, 73.95; 31.2167, 73.8667; 31.3333, 73.4167; 31.3833, 73.0167; 31.3833, 73; 31.393, 73.027; 31.394, 73.026; 31.4167, 73.05; 31.4167, 73.0667; 31.45, 73.7; 31.45, 73.6833; 31.45, 73.1333; 31.463, 74.436; 31.4667, 73.2; 31.496, 74.294; 31.5, 73.2667; 31.532, 73.063; 31.5333, 74.3333; 31.56, 72.54; 31.6167, 73.8667; 31.64, 74.13; 31.825, 72.541; 31.8424, 70.8952; 31.86, 73.276; 31.924, 72.863; 31.965, 72.867; 31.976, 72.328; 31.986, 72.832; 32.027, 72.653; 32.034, 72.703; 32.05, 73; 32.055, 72.946; 32.059, 73.011; 32.063, 73.042; 32.0667, 72.6667; 32.0667, 72.6833; 32.067, 73.05; 32.074, 72.684; 32.077, 72.671; 32.077, 72.67; 32.078, 72.672; 32.08, 72.9; 32.081, 72.667; 32.082, 72.675; 32.083, 73.067; 32.0837, 72.6719; 32.084, 72.68; 32.088, 72.673; 32.093, 72.684; 32.1, 73.067; 32.102, 72.957; 32.109, 72.846; 32.11, 72.655; 32.119, 72.679; 32.122, 72.681; 32.125, 72.693; 32.1333, 74.1833; 32.15, 74.1833; 32.17, 72.26; 32.19, 73.025; 32.267, 72.476; 32.275, 72.904; 32.287, 72.43; 32.3054, 72.3482; 32.5333, 69.85; 32.56, 72.02; 32.59, 72.999; 32.59, 72.008; 32.59, 73.049; 32.59, 73.999; 32.591, 73.008; 32.591, 72.999; 32.5916, 72.3446; 32.592, 73.011; 32.592, 72.999; 32.593, 72.999; 32.594, 73.02; 32.594, 72.999; 32.595, 72.999; 32.5964, 72.217; 32.597, 73.041; 32.601, 73.369; 32.601, 73.038; 32.603, 73.042; 32.624, 73.041; 32.601, 73.369; 32.601, 73.041; 32.601; 32.673; 32.629, 73.009; 32.63, 73.005; 32.632, 73.013; 32.637, 73.008; 32.637, 72.008; 32.652, 73; 32.656, 73.005; 32.657, 73.004; 32.658, 73.003; 32.6581, 73.0034; 32.659, 73.008; 32.6592, 72.2433; 32.755, 72.677; 33.686, 73.076; 33.714, 73.132; 33.714, 73.133; 33.714, 73.13; 33.715, $73.132; \ 33.716, \ 73.129; \ 33.7167, \ 73.0333; \ 33.7167, \ 73.05; \ 33.7667, \ 73.8833; \ 33.8, \ 72.9167; \ 33.8167, \ 73.8167; \ 33.9, \ 73.3833; \ 33.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167, \ 73.3833; \ 73.9167,$ 34.333, 73.204; 34.334, 73.201; 34.38, 73.52; 34.38, 73.54; 34.385, 73.544; 34.386, 73.546; 34.386, 73.545; 34.541, 73.348; 34.543, 73.348; 34.546, 73.349; 34.638, 73.461; 34.639, 73.461; 34.639, 73.462; 34.7333, 72.35; 34.7667, 72.35; 34.776, 73.527; 34.777, 73.526; 34.778, 73.528; 34.78, 73.53; 34.78, 73.531; 34.8167, 72.3333; 35.426, 74.098; 35.461, 72.588; 35.465, 72.584; 35.4667, 72.5833; 35.478, 72.588; 35.918, 74.29; 35.918, 74.289.

distance and genetic distance in each species or BIN employing two methods. The Mantel Test [73] examines the relationship between the geographic distance (km) and genetic divergence (K2P) matrices. The second approach compares the spread of the minimum spanning tree of collection sites and maximum intra-specific divergence [61]. The relationship between geographic and intraspecific distances was analyzed for each species with at least one individual from three or more sites. The analysis included all the conspecific records public on BOLD.

A neighbor-joining (NJ) tree was generated in MEGA5 using the Kimura-2-Parameter (K2P) [74] distance model along with pairwise deletion of missing sites. Nodal support on the NJ tree was estimated by 1000 bootstrap replicates. Bayesian inference (BI) was calculated by MrBayes v3.2.0 [75] using representative sequences of the 221 BINs and employing Phalangium opilio (Arachnida: Opiliones) and Galeodes sp. (Arachnida: Solifugae) as outgroups. The data was partitioned in two ways; i) a single partition with parameters estimated across all codon positions, ii) a codon-partition in which each codon position was allowed different parameter estimates. Sequence evolution was modelled by the $GTR+\Gamma$ model independently for the two partitions using the "unlink" command in MrBayes. Analyses were run for 10 million generations using four chains with sampling every 1000 generations and the BI trees were obtained using the Markov Chain Monte Carlo (MCMC) technique. Posterior probabilities were calculated from the sample points once the MCMC algorithm converged. Convergence was determined when the standard deviation of split frequencies was less than 0.022 and the PSRF (potential scale reduction factor) approached 1, and both runs converged to a stationary distribution after the burn-in stage (the first 25% of samples were discarded by default). The resultant trees were visualized in FigTree v1.4.0. The NJ and Bayesian analyses were employed to assess support for the BINs detected in this study, not to reconstruct the phylogeny of Araneae.

Results

Coupling of the DNA sequence results with detailed morphological analysis made it possible to assign 1,574 of the 1,795 barcoded specimens to one of 109 species, but the other 221 specimens could only be placed into one of 93 interim species. Collectively, these specimens included representatives of 27 families, 113 genera, and 202 species (Table 1). Most species were only represented by a single sex, usually females. Two-thirds (1,256) of the specimens were immatures that lacked the diagnostic characters required for species assignment. However, their DNA barcodes allowed them to be linked to adults whose identification was established through morphology. Four families (Amaurobiidae, Atypidae, Ctenidae, Segestriidae), 43 genera, and 74 species identified here represent first records for Pakistan (Tables 1 and S1). As adults from 12 of the 93 interim species possessed clear morphological differences from any known species in their genus, they are likely new to science (Table 1).

As the accumulation curve failed to approach an asymptote (Fig 2), it is certain that more species await detection. Although one species (*Artema transcaspica*) failed to qualify for a BIN assignment because its only sequence was too short, the other 108 morphological species were assigned to 123 BINs with 10 species showing a split to two or more BINs (Table 1 and Fig 3). The 93 interim species were allocated to 98 BINs with three showing BIN splits (Table 1), making the total BIN count 221 –with 94 of them singletons. NJ clustering (Fig 3) and Bayesian inference (Fig 4), supported the monophyly of all 221 BINs. Barcode distances (K2P) varied for differing taxonomic ranks with conspecific values ranging from 0.0–5.3% (mean = 0.8%), congenerics from 2.8–23.2% (mean = 8.8%), and confamilials from 4.3–26.7% (mean = 15.1%) (Table 2). Excepting 14 species, maximum intraspecific divergences did not exceed 2% in the 90 species that were represented by two or more specimens (Table 1). The barcode gap analysis

	No.	Таха		K2P	NN	BINs
		Agelenidae C. L. Koch,1837				
	1	Draconarius sp. 1GAB_PAK	BOLD:AAO2052			
	2	Draconarius sp. 2GAB_PAK	2	0	8.8	BOLD:AAO2053
* NP	3	Tegenaria domestica (Clerck, 1757)	1	N/A	19	BOLD:AAF1312
NP		Amaurobiidae Thorell,1870				
*NS	4	Himalmartensus cf. martensi Wang & Zhu, 2008	1	N/A	14	BOLD:ACB2928
		Araneidae Clerck, 1757				
NP	5	Araneus affinis Zhu, Tu & Hu, 1988	2	0.6	12	BOLD:AAV7611
	6	Araneus mitificus (Simon, 1886)	20	1.7	13	BOLD:AAV1598
	7	Araniella sp. 1GAB_PAK	4	0.8	10	BOLD:AAV1625
	8	Argiope aemula (Walckenaer, 1841)	8	1.4	10	BOLD:ACG0732
	9	Argiope anasuja Thorell, 1887	1	N/A	9.5	BOLD:ACB2926
NP	10	Argiope lobata (Pallas, 1772)	2	0.5	12	BOLD:ACI8559
NP	11	Argiope pulchella Thorell, 1881	6	0.8	9.5	BOLD:ACG0576
	12	Argiope trifasciata (Forsskål, 1775)	15	1.1	10	BOLD:AAQ2634
NP	13	Chorizopes wulingensis Yin, Wang & Xie, 1994	2	0.5	12	BOLD:ABX7347
U	14	Cyclosa confraga (Thorell, 1892)	8	0.8	18	BOLD:ADF2726
	15	Cyclosa hexatuberculata Tikader, 1982	4	0	11	BOLD:ADD8756
NP	16	Cyclosa moonduensis Tikader, 1963	9	1.1	11	BOLD:ACZ2455
	17	Cyrtophora citricola (Forsskål, 1775)	66	1.6	13	BOLD:AAO2032
	18	Eriovixia excelsa (Simon, 1889)	40	1.1	16	BOLD:AAQ0105
	19	Gea subarmata Thorell, 1890	1	N/A	10	BOLD:ACG0733
*NS	20	Hypsosinga cf. alboria Yin, Wang, Xie & Peng, 1990	4	0	10	BOLD:ABX7344
* NP	21	Hypsosinga wanica Song, Qian & Gao, 1996	17	1.6	10	BOLD:AAQ0134
	22	Larinia phthisica (L. Koch, 1871)	5	0.9	10	BOLD:AAO2160
	23	Larinia sp. 1GAB_PAK	1	N/A	11	BOLD:ABX7407
*	24	Leviellus sp. 1GAB_PAK	2	0	14	BOLD:AAV1590
NP	25	Neoscona polyspinipes Yin, Wang, Xie & Peng, 1990	20	0.8	4.9	BOLD:AAO1983
NP	26a	Neoscona scylla (Karsch, 1879)	13	1.9	7.8	BOLD:ACI8762
	26b	Neoscona scylla (Karsch, 1879)	16			BOLD:AAO1997
	27	Neoscona sp. 1BAG_PAK	1	N/A	7.6	BOLD:ACI2573
	28	Neoscona sp. 2BAG PAK	1	N/A	9	BOLD:ADD4537
NP	29	Neoscona subfusca (C. L. Koch, 1837)	1	N/A	8.6	BOLD:AAV3851
	30	Neoscona theisi (Walckenaer, 1841)	160	2.5	7.6	BOLD:ACM3489
	31	Neoscona vigilans (Blackwall, 1865)	38	38 1.5 4.9		BOLD:AAO2202
	32	Plebs himalayaensis (Tikader, 1975)	2	0	17	BOLD:ACI8675
NP		Atypidae Thorell, 1870				
*NS	33	Calommata sp. 1GAB_PAK	1 N/A 2!		BOLD:ACP9624	
		Cheiracanthiidae Wagner, 1887				
NP	34	Cheiracanthium inornatum O. Pickard-Cambridge, 1874	5	2.3	7.4	BOLD:ACC4872
NP	35	Cheiracanthium insulanum (Thorell, 1878)	20	3.3	6.9	BOLD:AAQ0110
	36	Cheiracanthium sp. 1GAB_PAK	2	0.2	11	BOLD:ACA7676
	37	Cheiracanthium sp. 2GAB_PAK	2	1.1	4.9	BOLD:ABW2880
	38	Cheiracanthium sp. 3GAB_PAK	2	0.2	4.9	BOLD:AAU6055
		Clubionidae Wagner, 1887				
	39	Clubiona drassodes O. Pickard-Cambridge, 1874	28	0.9	13	BOLD:AAV1620
	40	Clubiona filicata O. Pickard-Cambridge, 1874	18	0.9	13	BOLD:AAV1603

Table 1. Species, maximum barcode divergence (K2P), nearest neighbor distance (NN), and BIN assignment of 1,795 spiders collected in Pakistan.

	No.	Taxa		K2P	NN	BINs			
	41	Clubiona sp. 1GAB_PAK		N/A	8.8	BOLD:AAV1602			
	42	Clubiona sp. 2GAB_PAK	1	N/A	8.8	BOLD:AAO2055			
		Corinnidae Karsch, 1880							
	43	Castianeira sp. 1GAB_PAK	1	N/A	16	BOLD:ACP7698			
NP		Ctenidae Keyserling, 1877							
*	44	Anahita sp. 1GAB_PAK	1	N/A	12	BOLD:ADF5307			
*	45	Ctenus sp. 1GAB_PAK	1	N/A	9	BOLD:AAV1591			
*	46	Ctenus sp. 2GAB_PAK	1	N/A	9	BOLD:ABW2888			
		Filistatidae Ausserer, 1867							
	47	Kukulcania sp. 1GAB_PAK	1	N/A	22	BOLD:ABX7408			
		Gnaphosidae Pocock, 1898							
	48	Berlandina afghana Denis, 1958	1	N/A	14	BOLD:AAV1613			
	49	Drassodes sp. 1GAB_PAK	1	N/A	12	BOLD:AAV1404			
* NP	50	Drassyllus coreanus Paik, 1986	2	0	14	BOLD:AAV0899			
	51	Gnaphosa jodhpurensis Tikader & Gajbe, 1977	2	1.2	15	BOLD:ACR0656			
* NP	52	Haplodrassus signifer (C. L. Koch, 1839)	1	N/A	13	BOLD:ACB2432			
	53	Micaria sp. 1GAB_PAK	1	N/A	13	BOLD:ACP3811			
*	54	Phaeocedus sp. 1GAB_PAK	2	1.2	14	BOLD:AAV1605			
*NP	55	Scopoides maitraiae (Tikader & Gajbe, 1977)	2	0	16	BOLD:ACZ1655			
* NP	56	Trachyzelotes kulczynskii (Bösenberg, 1902)	1	N/A	13	3 BOLD:AAQ2633			
NS	57	Zelotes cf. puritanus Chamberlin, 1922	2	0.8	12	BOLD:AAQ0137			
NP	58	Zelotes shantae Tikader, 1982	1	N/A	12	BOLD:ADD7482			
	59	Zelotes sp. 1GAB_PAK	1	N/A	12	BOLD:ACZ4032			
* NP	60	Zimiris diffusa Platnick & Penney, 2004	1	N/A	14	BOLD:AAV1616			
		Hersiliidae Thorell, 1870							
	61	Hersilia savignyi Lucas, 1836	16	1.1	17	BOLD:AAP4789			
		Linyphiidae Blackwall, 1859							
	62	Gnathonarium dentatum (Wider, 1834)	5	5 0 14		BOLD:AAQ0150			
*	63	Mermessus sp. 1GAB_PAK	1	N/A 14		BOLD:ACP3810			
* NP	64	Neriene emphana (Walckenaer, 1841)	3	0.8	14	BOLD:ACI8558			
		Lycosidae Sundevall, 1833							
*	65	Alopecosa sp. 1GAB_PAK	1	N/A	9.2	BOLD:AAV1615			
NS	66	Arctosa cf. serrulata Mao & Song, 1985	1	N/A	9.4	BOLD:ACB2931			
	67	Arctosa sp. 1GAB_PAK	1	N/A	13	BOLD:AAV1608			
	68	Draposa oakleyi (Gravely, 1924)	19	1.6	5.8	5.8 BOLD:ABX7398			
NS	69	Evippa sp. 1GAB_PAK	5	1.4	8.3	BOLD:ABX7397			
	70	Evippa sp. 2GAB_PAK	1	N/A	8.3	BOLD:ABW2890			
	71a	Hippasa pisaurina Pocock, 1900	16	4.1	5.8	BOLD:AAO2058			
	71b	Hippasa pisaurina Pocock, 1900	1			BOLD:ADF3448			
	72	Hippasa sp. 1GAB_PAK	1	N/A	5.8	BOLD:ADE8277			
*	73	Hogna sp. 1GAB_PAK	5	0.6	10	BOLD:AAQ0158			
*	74	Hogna sp. 2GAB_PAK	1	N/A	11	BOLD:ADF5080			
	75	Lycosa poonaensis Tikader & Malhotra, 1980	5	0.6	10	BOLD:ABW2889			
	76	Lycosa sp. 1GAB_PAK	1	1 N/A 10 BOLD:AAO2168		BOLD:AAO2168			
E	77	Lycosa terrestris Butt, Anwar & Tahir, 2006	45	0.9	4.3	BOLD:AAO2150			
NP	78	Pardosa mionebulosa Yin, Peng, Xie, Bao & Wang, 1997	3	1.6	5.3	BOLD:ACZ3882			
	79	Pardosa pseudoannulata (Bösenberg & Strand, 1906)	5	0.6	5.9	BOLD:AAO2149			

80 Pardess p. ICAB, PAK 33 0.2 5.9 POLAAQ2146 81 Pardess p. ICAB, PAK 1 N/A 44 9 DICAAQ2148 82 Pardess qp. ICAB, PAK 11 N/A 5.2 POLDAAQ2148 83 Pardess qp. ICAB, PAK 13 2.4 4.6 ROLDAAQ2147 84 Pardess qp. ICAB, PAK 4 0.8 5.2 POLDAAQ2148 85 Pardess qp. ICAB, PAK 4 0.6 S.2 ROLDAAV320 86 Trochess qp. ICAB, PAK 3 0.3 5.5 POLDAAV321 87 Trochess qp. ICAB, PAK 3 0.3 5.5 POLDAAV320 80 Occobiling partor, Pickard Cambridge, 1876 10 0.4 HOLDAAV164 90 Cocyopic acheris But 8 Bcg. 2001 112 3.6 3.6 BOLDAAV199 91 Occyopic acheris But Res, 2001 121 3.6 3.6 BOLDAAV1999 92 Ocyopic hardinger 1995 3 5.1 J.3 BOLDAAV1999 <th></th> <th>No.</th> <th>Taxa</th> <th>N</th> <th>K2P</th> <th>NN</th> <th>BINs</th>		No.	Taxa	N	K2P	NN	BINs		
81 Perdos g. 2GAB_PAK 1 N/A 4.9 90DPAA02148 83 Pardos g. GAB,PAK 11 N/A 5.2 BOID_AAV1589 84 Pardos g. SGAB,PAK 13 2.4 4.6 BOID_AAV1599 85 Pardos g. SGAB,PAK 13 2.4 4.6 BOID_AAV1599 84 Pardos g. SGAB,PAK 14 0.8 5.2 BOID_AAV1599 85 Pardos g. SGAB,PAK 3 0.3 5.9 BOID_AAV159 86 Tochons agateria transks, 1985 17 0.6 5.9 BOID_AAV1200 87 Tochons agateria transks, 1982 30 0.3 5.9 BOID_AAV1200 88 Wardron fidels (D. Pickart-Cambridge, 1872) 75 1.9 7.2 BOID_AAV1624 0 Occobing patto 0. Pickart-Cambridge, 1872 10 0.4 H4 BOID_AAV1624 0 Occobing patto 0. Pickart-Cambridge, 1872 10 3.6 BOID_AAV1624 9 Occobing patto 0. Pickart-Cambridge, 1872 10 3.6 B		80	Pardosa sp. 1GAB_PAK	3	0.2	5.9	BOLD:AAO2146		
82 Parkos sp. 3CAR_PAK 1 N/A 5.2 BOID-AAVIS88 83 Parkos sp. 5CAB_PAK 13 2.4 4.6 0.012-0.02147 84 Parkos sp. 5CAB_PAK 4 0.8 5.2 BOID-AAVIS89 87 85 Parkos sp. 5CAB_PAK 4 0.8 5.2 BOID-AAVIS89 87 Trokosa sp. 1CAB_PAK 3 0.3 0.3 5.9 BOID-AAVIS00 87 Trokosa sp. 1CAB_PAK 3 0.3 0.4 5.9 BOID-AAVIS00 88 Warkcos fakito (D. Pickard-Cambridge, 1876 10 0.4 1 ROID-AAVI624 9 Occobias paira O. Pickard-Cambridge, 1876 10 0.4 1 ROID-AAVI624 9 Ocyopte admethenetik Reg. 201 112 3.6 BOID-AAV1624 0.0 18 91 Oxyopte admethenetik Reg. 201 121 3.6 10 0.0 19 Oxyopte admethenetik Reg. 201 121 3.6 10DL-AAV1624 19 Oxyopte sechemehytenetic strokese		81	Pardosa sp. 2GAB_PAK	1	N/A	4.9	BOLD:AAO2148		
83 Pendos op. 4GAB_PAK 13 2.4 46 BOLD-AAQ2147 84 Pardosa unkrfandl (Gravely, 1924) 7 0.2 46 BOLD-AAV2300 87 85 Pardosa unkrfandl (Gravely, 1924) 7 0.2 46 BOLD-AAV2300 88 Tordones aguadia Tanaka, 1985 17 0.6 5.9 BOLD-AAV2300 **** 88 Wadrow phich (O. Pickard-Cambridge, 1872) 75 1.9 7.2 BOLD-AAV1230 ***** 88 Wadrow phich (O. Pickard-Cambridge, 1876) 10 0.4 14 BOLD-AAV1624 •***** 0 Occohing patko O. Pickard-Cambridge, 1876 10 0.4 14 BOLD-AAV1624 •****** 0 Occohing patko O. Pickard-Cambridge, 1876 10 0.4 14 BOLD-AAD191 ************************************		82	Pardosa sp. 3GAB_PAK	1	N/A	5.2	BOLD:AAV1588		
84 Perioda gs. SCAR. PAK 4 0.85 52. BOID.PARY111 *** 85 Parkas subtradi (Grave) (192) 7 0.2 4.6 BOID.PARY111 *** 86 Trochoss sp. ICAR. PAK 3 0.3 0.5 80ID.PARY111 *** 88 Walkoon fields (D. Pickara-Cambridge, 1872) 75 1.9 7.2 80ID.PARY545 *** 89 Occobility pairs O. Pickard-Cambridge, 1872) 75 1.9 7.2 80ID.PARY545 *** 89 Occobility pairs O. Pickard-Cambridge, 1872) 76 1.0 0.4 1.4 BOID.PARY545 *** 90 Oxyppe and marks Res gg. 2001 1.11 3.6 BOID.PARY10 *** 92 Oxyppe and marks Res gg. 2001 1.23 3 5.6 BOID.PARY10 **** 92 Oxyppe and marks Res gg. 2001 1.23 3 5.6 BOID.PARY10 ***** 94 Oxyppe marksmarks Rus Res gg. 2015 1.3 1.3 BOID.PARY10 ************************************		83	Pardosa sp. 4GAB_PAK	a sp. 4GAB_PAK 13 2.4					
№ 85 Paraleas subteriod (Gravely, 1924) 7 0.2 4.6 100DABX7411 № 86 Trochoss aquaticas Tanaka, 1985 17 0.6 5.9 BOID-AAV3200 87 Trochoss aquaticas Tanaka, 1985 3 0.3 5.9 BOID-AAV1230 88 Warkcoss fields (O. Pickard-Cambridge, 1872) 75 1.9 7.2 BOID-AAV1230 90 Occobities pates O. Pickard-Cambridge, 1876 10 0.4 14 BOID-AAV1624 90 Oxyopica scherabhensis Makhar, 2017 5 0.9 6.4 BOID-ABV1624 10 Oxyopica scherabhensis Makhar, 2017 5 0.9 6.4 BOID-ABOT991 18 9.1 Oxyopica scherabhensis Matchiar, 2017 12 3.5 5.8 BOID-AAV1624 19 Oxyopica scherabhensis Matchiar, 1901 123 3 5.6 BOID-AAV1750 10 Oxyopica matchinis Barrion & Lisinger, 1995 3 2.1 1 BOID-ACX1414 16 Oxyopica matchinis Barrion & Lisinger, 1995 1 1.1		84	Pardosa sp. 5GAB_PAK	4	0.8	5.2	BOLD:AAV1589		
No 17 0.6 5.9 BOLDAAV3200 87 Trachoss ap.IGAB_PAK 3 0.3 5.9 BOLDAAD1475 *** 88 Watters Idells (O. Pickard Cambridge, 1872) 7.5 1.9 7.2 BOLDAAC7566 80 Occobitize Biacksall, 1862	NP	85	Pardosa sutherlandi (Gravely, 1924)	7	0.2	4.6	BOLD:ABX7411		
87 Trechoss p. IGAB_PAK 3 0.3 5.9 BOIDADF4175 **** 88 Wadkron fiddis (0, Pickard-Cambridge, 1872) 75 1.9 7.2 ROIDADF4175 *** 90 Occobins prints O, Pickard-Cambridge, 1876 10 0.4 14 BOID-AAG7456 *** 90 Oxyope achari Batt & Beg. 2001 1112 3.6 3.6 BOID-AAD1991 *** 91 Oxyope achari Batt & Beg. 2001 1123 3.6 4.8 BOID-AAD1991 *** 91 Oxyope indecemptitishum (Lattelle, 1844) 8 0.3 4.9 BOID-AAD1991 *** 92 Oxyope indecemptitishum (Lattelle, 1844) 8 1.5 1.3 BOID-AAD1999 *** 95.0 Oxyope matiensis Barrios & Lisinger, 1995 3 2.1 1.8 BOID-ACX149 *** 95.0 Oxyope syste Makhag & Qoar, 1999 52 1.9 5.6 BOID-AC24927 *** 96 Oxyope syste AGAB_PAK 1 N/A 11 BOID-AC24927 *** <td>NP</td> <td>86</td> <td>Trochosa aquatica Tanaka, 1985</td> <td>17</td> <td>0.6</td> <td>5.9</td> <td>BOLD:AAV3200</td>	NP	86	Trochosa aquatica Tanaka, 1985	17	0.6	5.9	BOLD:AAV3200		
**** 88 Walkings fidels (0.) Pickard-Cambridge, 1872) 75 1.9 7.2 BOLD-AAG7256 89 Occobius puts 0. Pickard-Cambridge, 1876 10 0.4 14 BOLD-AAV1624 **** Ocyopies advari Butt 8. Beg. 2001 112 3.6 5.6 BOLD-AAV1624 **** 91 Oxyope advari Butt 8. Beg. 2001 112 3.6 5.6 BOLD-AAV1991 ***** 92 Oxyope advariated t8. Beg. 2001 123 3. 5.6 BOLD-AAO1999 93 Oxyope advariated t8. Beg. 2001 123 3. 5.6 BOLD-AAO1999 94 Oxyope matients Barrino t8. Listinger, 1995 5 1.8 BOLD-AAC149 95 Oxyope sp. GAB_PAK 1 N/A 6.7 BOLD-AC2319 95 Oxyope sp. GAB_PAK 3 1.2 7.8 BOLD-AC2419 95 Oxyope sp. 2CAB_PAK 1 N/A 1.8 BOLD-AC2419 97 Oxyope sp. 2CAB_PAK 1 N/A 1.8 BOLD-AC24193 98		87	Trochosa sp. 1GAB_PAK	3	0.3	5.9	BOLD:ADF4175		
B9 Oecohina Blackwall, 1802 Image: Comparing pratus O, Pickard-Cambridge, 1876 Image: Comparing Praticipation Pickard-Cambridge, 1876 Image: Comparing Pickard-Cambridge, 1876 10 Oxyope rations R	* NP	88	Wadicosa fidelis (O. Pickard-Cambridge, 1872)	75	1.9	7.2	BOLD:AAG7456		
89 Occobins paths O, Pickard Cambridge, 1876 10 0.4 14 POLPAAV1624 ** 90 Oxyopes aharl Butt & Beg, 201 112 3.6 3.6 BOLDAA01991 ** 91 Oxyopes chandbanks (Larellle, 1804) 8 0.3 4.9 OLDAAD579 *** 92 Oxyopes Industating boack, 1901 123 3 5.6 BOLDAAD579 *** 94 Oxyopes macilentis L Koch, 1878 8 1.5 1.3 BOLDAA00599 *** 95. Oxyopes macilentis L Koch, 1878 8 1.5 1.3 BOLDAA01990 *** 95. Oxyopes microis Barrion & Lisinger, 1995 5. 1.3 BOLDAAC5149 *** 96 Oxyopes p. 1GAB_PAK 1 N/A 1.8 BOLDAAC2433 *** 90 Oxyopes p. 1GAB_PAK 1 N/A 1.8 BOLDAC24199 *** 99 Oxyopes p. 1GAB_PAK 1 N/A 1.8 BOLDAC24193 *** 101 Paccetia sp. 1GAB_PAK 1			Oecobiidae Blackwall, 1862						
Image: bit of the second sec		89	Oecobius putus O. Pickard-Cambridge, 1876	10	0.4	14	BOLD:AAV1624		
■ Oxyope achari but % Beg. 201 112 3.6 3.6 BOLDAAD1991 ■ 91 Oxyope sheadensis Mukhar, 2017 \$ 0.9 6.4 BOLDAAD0599 92 Oxyope sheadensis Mukhar, 2017 \$ 0.9 6.4 BOLDAAD0599 93 Oxyope sheadentus L Koch, 1878 \$ 1.3 BOLDAAD01990 NP 94 Oxyope smatienis Barrion & Litsinger, 1995 3 2.1 1.3 BOLDAAX5149 95b Oxyopes matienis Barrion & Litsinger, 1995 5			Oxyopidae Thorell, 1870						
Image: bit of the second sec	E	90	Oxyopes azhari Butt & Beg, 2001	112	3.6	3.6	BOLD:AAO1991		
NP 92 Oxyopes hindivisations (Latrellie, 1804) 8 0.3 4.9 BOLD-AD0599 93 Oxyopes mailentus is Koch, 1878 1.5 1.3 BOLD-AAD0590 ^{NP} 95a Oxyopes mailentus is Koch, 1878 3 2.1 1.3 BOLD-ACX5149 95b Oxyopes mattensis Barrion & Litsinger, 1995 55 1.9 3.6 BOLD-ACX5149 95b Oxyopes sp.; and Raisinger, 1995 52 1.9 3.6 BOLD-ACX5149 97 Oxyopes sp.; and Raisinger, 1995 52 1.9 3.6 BOLD-ACZ323 ⁸⁸ Oxyopes sp.; GAB_PAK 3 1.2 5.7 BOLD-ACZ4097 99 Oxyopes sp.; GAB_PAK 3 1.2 5.7 BOLD-ACZ4193 NP 10.0 Peticetia rangunathani Biswas & Roy, 2005 1.4 0.8 11 BOLD-ACE4193 NP 10.0 Peticetia rangunathani Biswas & Roy, 2005 1.4 0.8 11 BOLD-ACE4196 101 Peticetia rangunathani Biswas & Roy, 2005 1.4 0.8 11	E	91	Oxyopes chenabensis Mukhtar, 2017	5	0.9	6.4	BOLD:ABX7410		
93 Oxyopes inidiosanicus Pocock, 1901 123 3 5.6 BOLD>AAO(1990) ^{NP} 94 Oxyopes matientis Bartion & Litsinger, 1995 3 2.1 1.3 BOLD>AAP9665 ^{NP} 95a Oxyopes matientis Bartion & Litsinger, 1995 3 2.1 1.3 BOLD>AAP9665 ^{PS} Oxyopes matientis Bartion & Litsinger, 1995 5 2 1.9 3.6 BOLD>AAO(1989) 97 Oxyopes sp. 1GAB_PAK 1 N/A 6.7 BOLD>ACZ4097 99 Oxyopes sp. 2GAB_PAK 1 N/A 11 BOLD>ACZ4097 99 Oxyopes sp. 3GAB_PAK 1 N/A 11 BOLD>ACZ4097 99 Oxyopes sp. 2GAB_PAK 1 N/A 11 BOLD>ACZ4097 101 Precetiar sp. IGAB_PAK 1 N/A 13 BOLD>ACZ4097 102 Philodromidae Thorel, 1870 2 0 12 BOLD>ACB4189 102 Philodromus sp. 1GAB_PAK 1 N/A 12 BOLD>ACD4189 NB	NP	92	Oxyopes heterophthalmus (Latreille, 1804)	8	0.3	4.9	BOLD:AAD0599		
NP 94 Oxyopes matchemus L. Koch, 1878 8 1.5 1.3 BOLD:AAP9665 NP 95a Oxyopes matchensis Barrion & Litisinger, 1995 3 2.1 1.3 BOLD:AXX5149 95b Oxyopes matchensis Barrion & Litisinger, 1995 5 DOLD:AXX5149 BOLD:AXX5149 8 0.xyopes sp. EGAB_PAK 1 N/A 6.7 BOLD:ACC2333 NP 98 Oxyopes sp. 2GAB_PAK 3 1.2 5.7 BOLD:ACC2497 99 Oxyopes sp. 3GAB_PAK 1 N/A 11 BOLD:ACP193 NP 100 Preucetia ranganathani Biswas & Roy.2005 14 0.8 11 BOLD:ACCH997 101 Preucetia sp. IGAB_PAK 1 N/A 13 BOLD:ACB4189 102 Philodromids ThoreIL 1870 - - - - - 102 Philodromius sp. 1GAB_PAK 1 N/A 12 BOLD:ACB4189 103 Philodromus sp. 2GAB_PAK 3 2 13 BOLD:ACB4189 NP <td></td> <td>93</td> <td>Oxyopes hindostanicus Pocock, 1901</td> <td>123</td> <td>3</td> <td>5.6</td> <td>BOLD:AAO1990</td>		93	Oxyopes hindostanicus Pocock, 1901	123	3	5.6	BOLD:AAO1990		
№ 95a Oxyopes matiensis Barrion & Litsinger, 1995 3 2.1 1.3 BOLD:ACX5149 95b Oxyopes matiensis Barrion & Litsinger, 1995 5 BOLD:ACX5149 BOLD:ACX5149 8 0 Oxyopes sp. 1GAB_PAK 1 N/A 6.7 BOLD:ACZ323 ^{NS} 98 Oxyopes sp. 1GAB_PAK 3 1.2 5.7 BOLD:ACZ323 ^{NS} 98 Oxyopes sp. 3GAB_PAK 3 1.2 5.7 BOLD:ACZ4997 99 Oxyopes sp. 3GAB_PAK 1 N/A 11 BOLD:ACZ4997 99 Oxyopes sp. 3GAB_PAK 1 N/A 11 BOLD:ACZ4997 101 Peucetia ranganathomi Biswas & Roy, 2005 14 0.8 11 BOLD:ACB4190 101 Peucetia sp. 1GAB_PAK 1 N/A 12 BOLD:ACB4190 103 Philodromus sp. 1GAB_PAK 3 2 13 BOLD:AD8987 NN 104 Pulchellodromus mainlingensis (Hu & Li, 1987) 2 0 12 BOLD:AAO2159	NP	94	Oxyopes macilentus L. Koch, 1878	8	1.5	1.3	BOLD:AAF9665		
95b Oxyopes matiensis Barrion & Litsinger, 1995 5 BOLD:ABX7414 ^a 96 Oxyopes ory zad Mushtaq & Qadar, 1999 52 1.9 3.6 BOLD:AAC)1989 97 Oxyopes sp. IGAB_PAK 1 N/A 6.7 BOLD:ACZ3233 ^{NS} 98 Oxyopes sp. 2GAB_PAK 3 1.2 5.7 BOLD:ACZ3097 99 Oxyopes sp. 3GAB_PAK 1 N/A 11 BOLD:ACZ4193 ^{NN} 100 Peucetia ranganathani Biswas & Roy, 2005 14 0.8 11 BOLD:ACZ4193 101 Peucetia ranganathani Biswas & Roy, 2005 14 0.8 11 BOLD:ACZ4193 101 Peucetia ranganathani Biswas & Roy, 2005 14 0.8 11 BOLD:ACZ4193 104 Peucetia ranganathani Biswas & Roy, 2005 14 0.8 11 BOLD:ACZ4193 101 Peucetia ranganathani Biswas & Roy, 2005 14 0.8 12 BOLD:ACZ4193 102 Philodromius a bindingensis (Ha & Li, 1987) 2 0 12 BOLD:ACE1183	NP	95a	Oxyopes matiensis Barrion & Litsinger, 1995	3	2.1	1.3	BOLD:ACX5149		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		95b	Oxyopes matiensis Barrion & Litsinger, 1995	5			BOLD:ABX7414		
97 Oxyopes sp. 1GAB_PAK 1 N/A 6.7 BOLD:AC22323 ^{N8} 98 Oxyopes sp. 2GAB_PAK 3 1.2 5.7 BOLD:AC24997 99 Oxyopes sp. 3GAB_PAK 1 N/A 11 BOLD:AC24193 ^{N9} 100 Peucetia ranganathani Biswas & Roy, 2005 14 0.8 11 BOLD:AC24190 101 Peucetia sp. 1GAB_PAK 1 N/A 13 BOLD:ACB4188 Philodromidae Thorell, 1870 1 N/A 12 BOLD:ACB4188 102 Philodromus sp. 1GAB_PAK 1 N/A 12 BOLD:ACB4189 ^{NN} 104 Pulchellodromus sp. 2GAB_PAK 3 2 0 12 BOLD:ACB4189 ^{NN} 104 Pulchellodromus sp. 1GAB_PAK 3 2 0 12 BOLD:ACB4189 ^{NN} 104 Pulchellodromus sp. 1GAB_PAK 3 2 0 13 BOLD:ACB4189 ^{NN} 105 Rhysodromus cf. xinjiangensis (Tang & Song, 1987) 4 0 <td< td=""><td>E</td><td>96</td><td>Oxyopes oryzae Mushtaq & Qadar, 1999</td><td>52</td><td>1.9</td><td>3.6</td><td>BOLD:AAO1989</td></td<>	E	96	Oxyopes oryzae Mushtaq & Qadar, 1999	52	1.9	3.6	BOLD:AAO1989		
№ 98 Oxyopes sp. 2GAB_PAK 3 1.2 5.7 BOLD:ACZ4097 99 Oxyopes sp. 3GAB_PAK 1 N/A 11 BOLD:ACZ4193 № 100 Peucetia anganathani Biswas & Roy, 2005 14 0.8 11 BOLD:ACZ4193 № 100 Peucetia sp. 1GAB_PAK 1 N/A 13 BOLD:ACZ4193 101 Puilodromida Thorell, 1870 1 N/A 12 BOLD:ACB4188 102 Philodromus sp. 1GAB_PAK 1 N/A 12 BOLD:ADD8987 103 Philodromus sp. 2GAB_PAK 3 2 13 BOLD:ADD8987 104 Pulcheliodromus mainlingensis (Hu & Li, 1987) 2 0 12 BOLD:ACB4189 ^{NB} 105 Thanatus sulgaris (Smon, 1870 2 0.3 15 BOLD:AAQ0111 Pholcidae C. L. Koch, 1850 2 1 N/A 19 - 107 Artema sp. 1GAB_PAK 1 N/A 19 - - - -		97	Oxyopes sp. 1GAB_PAK	1	N/A	6.7	BOLD:ACZ2323		
99 Oxyopes sp. 3GAB_PAK 1 N/A 11 BOLD:ACP4193 NP 100 Peucetia ranganathani Biswas & Roy, 2005 14 0.8 11 BOLD:ACB4190 101 Peucetia sp. 1GAB_PAK 1 N/A 13 BOLD:ACB4188 102 Philodromids p. 1GAB_PAK 1 N/A 12 BOLD:ADB987 103 Philodromus sp. 1GAB_PAK 3 2 13 BOLD:ADB987 104 Pukhelloromus sp. 1GAB_PAK 3 2 13 BOLD:ADB987 105 Rhysodromus cf. xinjiangensis (Hu & Li, 1987) 2 0 12 BOLD:ACB4189 N* 106 Thanatus vulgaris Simon, 1870 2 0.3 15 BOLD:AA02159 N* 106 Thanatus vulgaris Simon, 1870 2 0.3 15 BOLD:AAQ0111 Pholoidae C. L. Koch, 1850 1 N/A 19 BOLD:AAQ2159 107 Artema sp. 1GAB_PAK 1 N/A 19 BOLD:AAQ2159 108 Artema sp. 1GAB_PAK <t< td=""><td>NS</td><td>98</td><td>Oxyopes sp. 2GAB_PAK</td><td>3</td><td>1.2</td><td>5.7</td><td>BOLD:ACZ4097</td></t<>	NS	98	Oxyopes sp. 2GAB_PAK	3	1.2	5.7	BOLD:ACZ4097		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		99	Oxyopes sp. 3GAB_PAK	1	N/A	11	BOLD:ACP4193		
101 Peucetia sp. 1GAB_PAK 1 N/A 13 BOLD:ACB4188 102 Philodromius Thorell, 1870	NP	100	Peucetia ranganathani Biswas & Roy, 2005	14	14 0.8 1		BOLD:ACB4190		
Index Philodromidae Thorell, 1870 Image: Constraint of the second secon		101	Peucetia sp. 1GAB_PAK	etia sp. 1GAB_PAK 1 N/A		13	BOLD:ACB4188		
102 Philodromus sp. 1GAB_PAK 1 N/A 12 BOLD:ADD8987 103 Philodromus sp. 2GAB_PAK 3 2 13 BOLD:ADX87412 * ^{NP} 104 Pulchellodromus sp. 2GAB_PAK 3 2 0 12 BOLD:ACB4189 ^{NN} 105 Rhysodromus cf. xinjiangensis (Hu & Li, 1987) 2 0 13 BOLD:ACB4189 ^{NN} 105 Rhysodromus cf. xinjiangensis (Tang & Song, 1987) 4 0 13 BOLD:AC0159 ^{NN} 106 Thanatus vulgaris Simon, 1870 2 0.3 15 BOLD:AAO2159 ^{NN} 106 Artema sp. 1GAB_PAK 1 N/A 19 BOLD:AAO2159 107 Artema sp. 1GAB_PAK 1 N/A 19 BOLD:AA02795 108 Artema transcaspica Spassky, 1934 2 1 19 - 108 Crossopriza maculipes (Spassky, 1934) 1 BOLD:ACN4846 BOLD:AAU5412 100c Crossopriza maculipes (Spassky, 1934) 1 BOLD:ACM2929 BOLD:ACM292			Philodromidae Thorell, 1870						
103 Philodromus sp. 2GAB_PAK 3 2 13 BOLD:ABX7412 * ^{NN} 104 Pulchellodromus mainlingensis (Hu & Li, 1987) 2 0 12 BOLD:ACB4189 ^{NN} 105 Rhysodromus cf. xinjiangensis (Tang & Song, 1987) 4 0 13 BOLD:ACQ2159 ^{NP} 106 Thanatus vulgaris Simon, 1870 2 0.3 15 BOLD:AAQ2159 ^{NP} 106 Thanatus vulgaris Simon, 1870 2 0.3 15 BOLD:AAQ2159 ^{NP} 106 Thanatus vulgaris Simon, 1870 2 0.3 15 BOLD:AAQ2159 ^{NP} 106 Artema sp. 1GAB_PAK 1 N/A 19 BOLD:AAQ2795 109 Crossopriza dyoni (Blackwall, 1867) 2 0.3 16 BOLD:ACN4846 110a Crossopriza maculipes (Spassky, 1934) 4 5.3 16 BOLD:ACN4846 110b Crossopriza maculipes (Spassky, 1934) 1 N/A 12 BOLD:ACM424512 110c Crossopriza maculipes (Spassky, 1934) 1		102	Philodromus sp. 1GAB_PAK	1	N/A	12	BOLD:ADD8987		
*NP 104 Pulchellodromus mainlingensis (Hu & Li, 1987) 2 0 12 BOLD:ACB4189 ^{NS} 105 Rhysodromus cf. xinjiangensis (Tang & Song, 1987) 4 0 13 BOLD:AA02159 ^{NP} 106 Thanatus vulgaris Simon, 1870 2 0.3 15 BOLD:AA02159 ^{NP} 106 Thanatus vulgaris Simon, 1870 2 0.3 15 BOLD:AA02159 ^{NP} 106 Thanatus vulgaris Simon, 1870 2 0.3 15 BOLD:AA02159 ^{ID} Artema sp. 1GAB_PAK 1 N/A 19 BOLD:AA02795 ^{ID} 108 Artema transcaspica Spassky, 1934 2 0.3 16 BOLD:AA62795 ID Crossopriza maculipes (Spassky, 1934) 4 5.3 16 BOLD:AA45412 ID Crossopriza maculipes (Spassky, 1934) 7 100 BOLD:AA45412 BOLD:ACN4846 I10b Crossopriza maculipes (Spassky, 1934) 1 N/A 12 BOLD:ACN4846 I10c Crossopriza maculipes (Spassky, 1934) <td></td> <td>103</td> <td>Philodromus sp. 2GAB_PAK</td> <td>3</td> <td>2</td> <td>13</td> <td>BOLD:ABX7412</td>		103	Philodromus sp. 2GAB_PAK	3	2	13	BOLD:ABX7412		
$ \begin{array}{ c c c c c c } \hline NS \\ \hline 105 & Rhysodromus cf. xinjiangensis (Tang & Song, 1987) & 4 & 0 & 13 & BOLD:AAO2159 \\ \hline NP \\ \hline 106 & Thanatus vulgaris Simon, 1870 & 2 & 0.3 & 15 & BOLD:AAQ0111 \\ \hline Pholcidae C. L. Koch, 1850 & & & & & & & & & & & & & & & & & & &$	* NP	104	Pulchellodromus mainlingensis (Hu & Li, 1987)	2	0	12	BOLD:ACB4189		
NP 106 Thanatus vulgaris Simon, 1870 2 0.3 15 BOLD:AAQ0111 I Pholcidae C, L. Koch, 1850 I N/A 19 BOLD:ABW2886 I 107 Artema sp. IGAB_PAK I N/A 19 BOLD:ABW2886 NP 108 Artema transcaspica Spassky, 1934 2 1 19 - 109 Crossopriza lyoni (Blackwall, 1867) 2 0.3 16 BOLD:AAG2795 110a Crossopriza maculipes (Spassky, 1934) 4 5.3 16 BOLD:AAG2795 110b Crossopriza maculipes (Spassky, 1934) 7 0.4 BOLD:AAG2795 110c Crossopriza maculipes (Spassky, 1934) 7 BOLD:AAU5412 BOLD:AAU5412 100c Crossopriza maculipes (Spassky, 1934) 1 N/A 10 BOLD:AAU5412 101c Crossopriza maculipes (Spassky, 1934) 1 N/A 10 BOLD:AAU5412 101c Crossopriza maculipes (Spassky, 1934) 1 N/A 10 BOLD:AAU5412 1010c	NS	105	Rhysodromus cf. xinjiangensis (Tang & Song, 1987)	4	0	13	BOLD:AAO2159		
Image: Pholeidae C. L. Koch, 1850Image: Market	NP	106	Thanatus vulgaris Simon, 1870	2	0.3	15	BOLD:AAQ0111		
$ \begin{array}{ c c c c c c } \hline 107 & Artema sp. 1GAB_PAK & 1 & N/A & 19 & BOLD:ABW2886 \\ \hline NP & 108 & Artema transcaspica Spassky, 1934 & 2 & 1 & 19 & - \\ \hline 109 & Crossopriza lyoni (Blackwall, 1867) & 2 & 0.3 & 16 & BOLD:AAG2795 \\ \hline 100 & Crossopriza maculipes (Spassky, 1934) & 4 & 5.3 & 16 & BOLD:ACN4846 & \\ \hline 110b & Crossopriza maculipes (Spassky, 1934) & 7 & BOLD:ACM2846 & \\ \hline 110b & Crossopriza maculipes (Spassky, 1934) & 7 & BOLD:ACM2846 & \\ \hline 110b & Crossopriza maculipes (Spassky, 1934) & 7 & BOLD:ACM2846 & \\ \hline 110c & Crossopriza maculipes (Spassky, 1934) & 1 & BOLD:ACM2829 & \\ \hline 110c & Crossopriza maculipes (Spassky, 1934) & 1 & BOLD:ACM2829 & \\ \hline NP & 111 & Pisaura mirabilis (Clerck, 1757) & 4 & 0.5 & 10 & BOLD:AAE4245 & \\ \hline 112 & Pisaura sp. 1GAB_PAK & 1 & N/A & 12 & BOLD:AAD2059 & \\ \hline NP & 113 & Bianor albobimaculatus (Lucas, 1846) & 21 & 0.7 & 12 & BOLD:AAP4728 & \\ \hline 114 & Bianor sp. 1GAB_PAK & 1 & N/A & 13 & BOLD:AC18750 & \\ \hline NP & 115 & Epocilla sirohi Caleb, Chatterjee, Tyagi, Kundu, Kumar, 2018 & 7 & 1.9 & 11 & BOLD:ADD4346 & \\ \hline NP & 116 & Euophrys sp. 1GAB_PAK & 1 & N/A & 13 & BOLD:ADD4346 & \\ \hline 116 & Euophrys sp. 1GAB_PAK & 3 & 0.8 & 9 & BOLD:AAV1614 & \\ \hline \end{array}$			Pholcidae C. L. Koch, 1850						
$ \begin{array}{ c c c c c c } \hline \mathbb{NP} & 108 & Artema transcaspica Spassky, 1934 & 2 & 1 & 19 & - \\ \hline 109 & Crossopriza lyoni (Blackwall, 1867) & 2 & 0.3 & 16 & BOLD:AAG2795 \\ \hline 10a & Crossopriza maculipes (Spassky, 1934) & 4 & 5.3 & 16 & BOLD:ACN4846 \\ \hline 110b & Crossopriza maculipes (Spassky, 1934) & 7 & BOLD:ACB2929 \\ \hline 110c & Crossopriza maculipes (Spassky, 1934) & 1 & BOLD:ACB2929 \\ \hline & \mathbf{Pisauridae Simon, 1890} & 1 & BOLD:ACB2929 \\ \hline & \mathbf{Pisauridae Simon, 1890} & 1 & BOLD:ACB2929 \\ \hline & \mathbf{Pisauridae Simon, 1890} & 4 & 0.5 & 10 & BOLD:AAE4245 \\ \hline & 112 & Pisaura mirabilis (Clerck, 1757) & 4 & 0.5 & 10 & BOLD:AAE4245 \\ \hline & 112 & Pisaura sp. 1GAB_PAK & 1 & N/A & 12 & BOLD:AAO2059 \\ \hline & Salticidae Blackwall, 1841 & & & & & & \\ \hline & \mathbb{NP} & 113 & Bianor albobimaculatus (Lucas, 1846) & 21 & 0.7 & 12 & BOLD:AAP4728 \\ \hline & 114 & Bianor sp. 1GAB_PAK & 1 & N/A & 13 & BOLD:AC18750 \\ \hline & \mathbb{NP} & 115 & Epocilla sirohi Caleb, Chatterjee, Tyagi, Kundu, Kumar, 2018 & 7 & 1.9 & 11 & BOLD:AD1307 \\ \hline & \mathbb{NP} & 117 & Evarcha sp. 1GAB_PAK & 3 & 0.8 & 9 & BOLD:AAV1614 \\ \hline \end{array}$		107	Artema sp. 1GAB_PAK	1	N/A	19	BOLD:ABW2886		
$ \begin{array}{ c c c c c } \hline 109 & Crossopriza lyoni (Blackwall, 1867) & 2 & 0.3 & 16 & BOLD:AAG2795 \\ \hline 110a & Crossopriza maculipes (Spassky, 1934) & 4 & 5.3 & 16 & BOLD:ACN4846 \\ \hline 110b & Crossopriza maculipes (Spassky, 1934) & 7 & BOLD:ACB2929 \\ \hline 110c & Crossopriza maculipes (Spassky, 1934) & 1 & BOLD:ACB2929 & BOLD:ACB2929$	NP	108	Artema transcaspica Spassky, 1934	2	1	19	-		
$ \begin{array}{ c c c c c c } \hline 110a & Crossopriza maculipes (Spassky, 1934) & 4 \\ \hline 110b & Crossopriza maculipes (Spassky, 1934) & 7 \\ \hline 110c & Crossopriza maculipes (Spassky, 1934) & 1 \\ \hline 110c & Crossopriza maculipes (Spassky, 1934) & 1 \\ \hline \\$		109	Crossopriza lyoni (Blackwall, 1867)	2	0.3	16	BOLD:AAG2795		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		110a	Crossopriza maculipes (Spassky, 1934)	4	5.3	16	BOLD:ACN4846		
110c Crossopriza maculipes (Spassky, 1934) 1 BOLD:ACB2929 Image: MP Pisauridae Simon, 1890 Image: MP BOLD:AAE4245 $*^{NP}$ 111 Pisaura mirabilis (Clerck, 1757) 4 0.5 10 BOLD:AAE4245 Image: Im		110b	Crossopriza maculipes (Spassky, 1934)	7			BOLD:AAU5412		
Pisauridae Simon, 1890 Image: Clerck, 1757 Pisaura mirabilis (Clerck, 1757)		110c	Crossopriza maculipes (Spassky, 1934)	1			BOLD:ACB2929		
*NP 111 Pisaura mirabilis (Clerck, 1757) 4 0.5 10 BOLD:AAE4245 112 Pisaura sp. 1GAB_PAK 11 N/A 12 BOLD:AAE02059 Salticidae Blackwall, 1841 11 N/A 12 BOLD:AAP4728 NP 113 Bianor albobimaculatus (Lucas, 1846) 21 0.7 12 BOLD:AAP4728 114 Bianor sp. 1GAB_PAK 11 N/A 13 BOLD:ADD4346 NP 115 Epocilla sirohi Caleb, Chatterjee, Tyagi, Kundu, Kumar, 2018 7 1.9 11 BOLD:ADD4346 116 Euophrys sp. 1GAB_PAK 1 N/A 13 BOLD:ADD1307 * ^{NS} 117 Evarcha sp. 1GAB_PAK 3 0.8 9 BOLD:AAV1614			Pisauridae Simon, 1890						
112Pisaura sp. 1GAB_PAK1N/A12BOLD:AAO2059Salticidae Blackwall, 1841 </td <td>* NP</td> <td>111</td> <td>Pisaura mirabilis (Clerck, 1757)</td> <td>4</td> <td>0.5</td> <td>10</td> <td>BOLD:AAE4245</td>	* NP	111	Pisaura mirabilis (Clerck, 1757)	4	0.5	10	BOLD:AAE4245		
Salticidae Blackwall, 1841Image: Constraint of the second sec		112	Pisaura sp. 1GAB_PAK	1	N/A	12	BOLD:AAO2059		
NP 113 Bianor albobimaculatus (Lucas, 1846) 21 0.7 12 BOLD:AAP4728 114 Bianor sp. 1GAB_PAK 1 N/A 13 BOLD:ACI8750 NP 115 Epocilla sirohi Caleb, Chatterjee, Tyagi, Kundu, Kumar, 2018 7 1.9 11 BOLD:ADD4346 116 Euophrys sp. 1GAB_PAK 1 N/A 13 BOLD:ADD1307 * ^{NS} 117 Evarcha sp. 1GAB_PAK 3 0.8 9 BOLD:AAV1614			Salticidae Blackwall, 1841						
114 Bianor sp. 1GAB_PAK 1 N/A 13 BOLD:ACI8750 NP 115 Epocilla sirohi Caleb, Chatterjee, Tyagi, Kundu, Kumar, 2018 7 1.9 11 BOLD:ADD4346 116 Euophrys sp. 1GAB_PAK 1 N/A 13 BOLD:ADD1307 * ^{NS} 117 Evarcha sp. 1GAB_PAK 3 0.8 9 BOLD:AAV1614	NP	113	Bianor albobimaculatus (Lucas, 1846)	21	0.7	12	BOLD:AAP4728		
NP 115 Epocilla sirohi Caleb, Chatterjee, Tyagi, Kundu, Kumar, 2018 7 1.9 11 BOLD:ADD4346 116 Euophrys sp. 1GAB_PAK 1 N/A 13 BOLD:ADD1307 * ^{NS} 117 Evarcha sp. 1GAB_PAK 3 0.8 9 BOLD:AAV1614		114	Bianor sp. 1GAB_PAK	1	N/A	13	BOLD:ACI8750		
116 Euophrys sp. 1GAB_PAK 1 N/A 13 BOLD:ADD1307 * ^{NS} 117 Evarcha sp. 1GAB_PAK 3 0.8 9 BOLD:AAV1614	NP	115	<i>Epocilla sirohi</i> Caleb, Chatterjee, Tyagi, Kundu, Kumar, 2018	7	1.9	11	BOLD:ADD4346		
* ^{NS} 117 Evarcha sp. 1GAB_PAK 3 0.8 9 BOLD:AAV1614		116	Euophrys sp. 1GAB_PAK	1	N/A	13	BOLD:ADD1307		
	* NS	117	Evarcha sp. 1GAB_PAK	3	0.8	9	BOLD:AAV1614		

	No.	Таха	N	K2P	NN	BINs
	118	Hasarius adansoni (Audouin, 1826)	2	0	13	BOLD:AAW0165
NP	119	Hyllus dotatus (Peckham & Peckham, 1903)	3	0.7	11	BOLD:AAV1597
NP	120	Menemerus brevibulbis (Thorell, 1887)	3	1.4	7.7	BOLD:AAO2155
	121	Menemerus marginatus (Kroneberg, 1875)	1	N/A	11	BOLD:AAV1611
	122	Menemerus nigli Wesolowska & Freudenschuss, 2012	12	1.1	7.7	BOLD:AAQ0156
*NP	123	Modunda staintoni (O. Pickard-Cambridge, 1872)	3	0.8	14	BOLD:AAV0387
NP	124	Mogrus cognatus Wesolowska & van Harten, 1994	12	1.4	8.1	BOLD:AAV1599
	125	Mogrus sp. 1GAB_PAK	1	N/A	8.1	BOLD:ACZ1977
	126	Mogrus sp. 2GAB_PAK	6	0.8	10	BOLD:AAQ2635
	127	Myrmarachne melanocephala MacLeay, 1839	1	N/A	6.7	BOLD:AAV1609
	128	Myrmarachne robusta (Peckham & Peckham, 1892)	5	1.4	6.7	BOLD:ACS0377
*NP	129	Philaeus chrysops (Poda, 1761)	1	N/A	9.8	BOLD:ACE4347
*	130	Philaeus sp. 1GAB_PAK	1	N/A	9.8	BOLD:AAV0574
	131	Phintella vittata (C. L. Koch, 1846)	11	0	9.9	BOLD:ACR1776
	132a	Plexippus paykulli (Audouin, 1826)	34	5	8.8	BOLD:AAO2152
	132b	Plexippus paykulli (Audouin, 1826)	4			BOLD:AAO2151
	132c	Plexippus paykulli (Audouin, 1826)	1			BOLD:ACU8433
	132d	Plexippus paykulli (Audouin, 1826)	1			BOLD:ABX7409
	132e	Plexippus paykulli (Audouin, 1826)	1			BOLD:ACZ4027
	133	Plexippus sp. 1GAB_PAK	2	0.2	8.8	BOLD:AAV1604
	134a	Pseudicius admirandus Logunov, 2007	8	1.4	9.4	BOLD:AAQ0115
	134b	Pseudicius admirandus Logunov, 2007	2			BOLD:ADD4534
NP	135	Rhene albigera (C. L. Koch, 1846) 1 N/A		5.9	BOLD:AAV5815	
NP	136	Rhene flavigera (C. L. Koch, 1846)	4	0	5.4	BOLD:ADD7823
	137	Rhene sp. 1GAB_PAK	1	N/A	5.4	BOLD:ACU6737
*NS	138	Sonoita cf. lightfooti Peckham & Peckham, 1903	1	N/A	13	BOLD:ADD9560
	139	Stenaelurillus arambagensis (Biswas & Biswas, 1992)	3	0.3	11	BOLD:ABX7343
*	140	Talavera sp. 1GAB_PAK	1	N/A 12		BOLD:ACZ2472
	141	Telamonia dimidiata (Simon, 1899)	17	1.4	10	BOLD:ACG1123
	142	Thyene imperialis (Rossi, 1846)	56	3.5	9	BOLD:AAO2153
	143	Thyene sp. 1GAB_PAK	1 N/A 11		BOLD:AAV1607	
*NS	144	Trite sp. 1GAB_PAK	13	0.5	11	BOLD:AAO2154
NP		Segestriidae Simon, 1893				
*	145	Ariadna sp. 1GAB_PAK	1	N/A	20	BOLD:AAO2054
		Sparassidae Bertkau, 1872				
NP	146	Heteropoda maxima Jäger, 2001	20	0.3	4.3	BOLD:ACB5077
	147a	Heteropoda sp. 3GAB_PAK	K 1 2.3 5.		5.4	BOLD:ABW2881
	147b	Heteropoda sp. 3GAB_PAK 1				BOLD:AAO2057
	148	Heteropoda sp. 4GAB_PAK	1 N/A 4.		4.3	BOLD:ACB5549
	149	Olios sp. 1GAB_PAK		N/A	3.9	BOLD:ADD6859
	150	Olios sp. 2GAB_PAK 10 0.5		0.5	3.9	BOLD:ADD7417
	151	Olios sp. 3GAB_PAK		0.3	4.1	BOLD:ACB4191
	152	Olios sp. 4GAB_PAK	4	1.1	7.2	BOLD:AAQ0159
	153	Olios sp. 5GAB_PAK	15	2.2	7.2	BOLD:AAQ0157
	154a	Olios tener (Thorell, 1891)	4	1.9	11	BOLD:AAQ0107
	154b	Olios tener (Thorell, 1891)	1			BOLD:ADK3497
	154c	1			BOLD:ADJ7965	

	No.	Таха	N	K2P	NN	BINs
	155	Pseudopoda prompta (O. Pickard-Cambridge, 1885)	4	0.9	13	BOLD:AAO2056
	156a	Spariolenus tigris Simon, 1880	880 1 4.1			
	156b	Spariolenus tigris Simon, 1880			BOLD:ABW2878	
		Tetragnathidae Menge, 1866				
* NP	157	Glenognatha tangi (Zhu, Song & Zhang, 2003)	hu, Song & Zhang, 2003) 3 1.2 18			
	158	Guizygiella indica (Tikader & Bal, 1980)	8	1.1	14	BOLD:ABX7345
	159	Leucauge celebesiana (Walckenaer, 1841)	7	0.2	11	BOLD:AAO2068
	160	Leucauge decorata (Blackwall, 1864)	30	0.5	11	BOLD:AAG8516
*	161	Metleucauge sp. 1GAB_PAK	1	N/A	19	BOLD:AAV1600
NP	162	Tetragnatha boydi O. Pickard-Cambridge, 1898	3	0	15	BOLD:ACB2930
NP	163	Tetragnatha cavaleriei Schenkel, 1963	2	0.5	16	BOLD:AAT8904
	164	Tetragnatha javana (Thorell, 1890)	43	2.8	17	BOLD:AAO2174
	165	Tetragnatha mandibulata Walckenaer, 1841	1	N/A	15	BOLD:AAK2567
NP	166	Tetragnatha maxillosa Thorell, 1895	4	0.3	15	BOLD:AAK2560
NP	167	Tetragnatha nitens (Audouin, 1826)	6	0.8	15	BOLD:AAD3790
	168	Tetragnatha sp. 1GAB_PAK	1	N/A	16	BOLD:ABW2885
		Theraphosidae Thorell, 1869				
*	169	Chilobrachys sp. 1GAB_PAK	1	N/A	4.3	BOLD:ADD5278
*	170	Chilobrachys sp. 2GAB_PAK	1	N/A	4.3	BOLD:AAQ0160
		Theridiidae Sundevall, 1833				
*NP	171	Emertonella taczanowskii (Keyserling, 1886)	1	N/A	12	BOLD:AAV1610
	172	Enoplognatha sp. 1GAB PAK	1	N/A	12	BOLD:ACI8909
	173	Enoplognatha sp. 2GAB PAK	1	N/A	15	BOLD:ACP4208
*	174	Euryopis sp. 1GAB PAK	1	N/A	12	BOLD:AAQ0155
	175	Latrodectus sp. 1GAB PAK	1	N/A 1		BOLD:AAV1732
	176	Latrodectus sp. 2GAB PAK	1	1 N/A 1		BOLD:AAO3347
*	177	Meotipa sp. 1GAB PAK	2	2	12	BOLD:AAQ0152
	178	Phylloneta sp. 1GAB_PAK	11	0.3	11	BOLD:AAV3043
*NP	179	Steatoda cingulata (Thorell, 1890)			BOLD:ABW2877	
NP	180	Theridion melanostictum O. Pickard-Cambridge, 1876	1	N/A	11	BOLD:AAV1617
	181	Theridion sp. 1GAB_PAK	1	N/A	11	BOLD:ACB2932
	182	Theridion sp. 3GAB_PAK	1	N/A	12	BOLD:AAV1623
		Thomisidae Sundevall, 1833				
* NP	183	Coriarachne melancholica Simon, 1880	1	N/A	7.9	BOLD:ACI8639
*NP	184	Ebelingia kumadai (Ono, 1985)	3	0	12	BOLD:AAV1619
	185	Henriksenia hilaris (Thorell, 1877)	1	N/A	11	BOLD:AAV1618
NP	186	Lysiteles kunmingensis Song & Zhao, 1994	3	0	9.9	BOLD:ACI8899
*	187	Misumenoides sp. 1GAB_PAK	1	N/A	11	BOLD:AAV1594
*	188	Misumenops sp. 1GAB_PAK	2	1.9	11	BOLD:AAV1596
*	189	Ozvptila sp. 1GAB PAK 1 N/A		N/A	11	BOLD:ADF5201
	190a Runcinia insecta (L. Koch. 1875)		40	4.9	11	BOLD:AAI0997
	190b	Runcinia insecta (L. Koch, 1875)	2			BOLD:AAQ0108
* NP	191	Tharpyna indica Tikader & Biswas, 1979	1	- 1 N/A 12		BOLD:AAV1606
NP	192	Thomisus onustus Walckenaer, 1805	1	N/A	8.6	BOLD:AAD7031
E	193a	Thomisus zaheeri Parveen, Khan, Mushtao, Ahmad & Rana. 2008	30	4.3	11	BOLD:AAP4819
	193b	Thomisus zaheeri Parveen, Khan, Mushtao, Ahmad & Rana. 2008	1	1 BOLD A		
	194 Tmarus dostinikus Barrion & Litsinger, 1995		13	0.2	11	BOLD:ABX7413

	No.	Taxa	N	K2P	NN	BINs
NS	195a	Tmarus sp. 1GAB_PAK	3	2.9	11	BOLD:ABX7346
	195b	Tmarus sp. 1GAB_PAK	5			BOLD:ADJ6297
	195c	Tmarus sp. 1GAB_PAK	4			BOLD:ADK4624
	195d	Tmarus sp. 1GAB_PAK	1			BOLD:ADK4625
NP	196	<i>Xysticus joyantius</i> Tikader, 1966	1	N/A	13	BOLD:ADF4849
	197	Xysticus sp. 1GAB_PAK	3	0.6	7.9	BOLD:ACI8898
	198	Xysticus sp. 2GAB_PAK	1	N/A	12	BOLD:ADF4647
		Uloboridae Thorell, 1869				
*	199	Hyptiotes sp. 1GAB_PAK	1	N/A	15	BOLD:AAQ2632
	200a	Uloborus sp. 1GAB_PAK	4	4	14	BOLD:AAW8359
	200b	Uloborus sp. 1GAB_PAK	1			BOLD:ABW2879
		Zodariidae Thorell, 1881				
*	201	Zodarion sp. 1GAB_PAK	1	N/A	14	BOLD:AAV1621
*	202	Zodarion sp. 2GAB_PAK	1	N/A	14	BOLD:ACG0983
		Total	1795			221

N = number of individuals; K2P = maximum Kimura 2-parameter distance; NN = distance to Nearest Neighbor species; BIN = Barcode Index Number; ^{NP} = new species or family to Pakistan; ^{*} = new genus to Pakistan; ^E = endemic species to Pakistan; ^U = undescribed opposite sex; ^{NS} = putative new species to science.

https://doi.org/10.1371/journal.pone.0217086.t001

showed that maximum intraspecific distance for all but one of the 90 species with two or more records was less than its NN distance (*Oxyopes azhari* was the exception, overlapping with *Oxyopes oryzae*) (Fig 5). The Mantel test was non-significant (P>0.01) for 60 of the 69 species and the regression line for all species showed a weak positive relationship ($R^2 = 0.08$; y = 0.0003x + 2.62) (Fig 6).

The similarity between the spider fauna in Pakistan and that of other nations was calculated by examining BIN overlap. Less than a quarter (52/221) of the BINs from Pakistan were

Fig 3. NJ analysis of spider species based on the analysis of 1,782 COI sequences. Bootstrap values (50% or higher; 1000 replicates) are shown above the branches. The scale bar shows K2P distances. The node for each species with multiple specimens is collapsed to a vertical line or triangle, with the horizontal depth indicating the level of intraspecific divergence. Species assigned to multiple BINs are indicated in **bold**. The tree is presented in two parts.

https://doi.org/10.1371/journal.pone.0217086.g003

represented among the 10,229 spider BINs reported in prior studies. As expected, the highest overlap (23%) was with India, but the proportion of shared BINs was far lower for the other 43 countries (Fig 7).

Discussion

Most prior work on the spider fauna of Pakistan has had a regional focus and only employed morphological approaches. For example, 157 species were reported from the province of Punjab [9], 56 from the district of Sargodha [76], 23 from Peshawar [11], and 13 from Buner [77].

Fig 4. Bayesian phylogenetic analysis of spiders from Pakistan based on COI sequences. Posterior probabilities are indicated at the nodes. Taxa are followed by the BINs. *Phalangium opilio* (Arachnida: Opiliones) and *Galeodes sp.* (Arachnida: Solifugae) were employed as outgroups. Due to its large size, the tree is presented in two parts.

Distance class	n	Taxa	Comparisons	Min (%)	Mean (%)	Max (%)
Intraspecific	1702	122	44347	0	0.8	5.3
Congeners	1338	44	56792	2.8	8.8	23.2
Confamilial	1662	15	137164	4.3	15.1	26.7

 Table 2. Sequence divergences (K2P) for differing levels of taxonomic affinity for the COI-5' gene region for the spiders from Pakistan. Analysis was restricted to sequences >400 bp.

https://doi.org/10.1371/journal.pone.0217086.t002

A recent checklist for the spiders of Pakistan [10] included records for 239 species, but the present study has substantially increased this total by adding first records for 84 described species and another 93 that could not be assigned to a known taxon. Most importantly, this study generated a DNA barcode reference library for 202 species, facilitating their future identification.

Because the spider fauna of Pakistan has seen such limited study, the discovery of new species was not unexpected, and follows a pattern seen for spiders in other regions. For example, the analysis of 80 species of Salticidae from Papua New Guinea revealed 34 species and five genera new to the country [78]. Likewise, 6% of the 136 spider species recovered from the Northern Cape Province, South Africa were new [79]. This study employed a mix of methods for spider collection, including beating, sweeping, and pitfalls. The choice of sampling method impacts species detection [80] and extensive sampling is critical to generate comprehensive species coverage [81]. Although the present study involved collections at 225 sites, the resultant species accumulation curve did not reach an asymptote, indicating that many more species await detection.

Fig 5. Barcode gap analysis for spider species represented by three or more records. Points that fall above the 1:1 line (blue) indicate the presence of a local barcode gap. NN = Nearest-Neighbor species.

Fig 6. Intraspecific sequence divergence (K2P) for the COI gene (blue dots) versus geographic distance (km) for spider species from Pakistan with data from other regions. The relationship between genetic and geographic distances is indicated by a regression line. P-values for the Mantel Test are indicated by red vertical lines.

https://doi.org/10.1371/journal.pone.0217086.g006

The present study revealed a close correspondence (93%) between BINs and morphospecies as 188 of the 202 species were assigned to a unique BIN, reinforcing a pattern seen in other groups [37,38,40]. For example, the concordance between BINs and species was 78% in a study that examined 30,000 Canadian spiders representing 1,018 species [61] with most

Fig 7. Percentage of spider BINs shared between Pakistan and 41 other nations.

discordances reflecting BIN splits suggestive of overlooked species. Stronger species-BIN correspondence has been reported in several insect groups; 96% for Erebidae (Lepidoptera) from the Iberian Peninsula [38], 94% for tiger moths from Brazil [82] and 92% for beetles from central Europe [40]. However, some arthropod groups have shown relatively low level of species-BIN concordance; for example, orthopterans in Central Europe (76%) [83], waterstriders in Germany (82%) [84] and katydids in China (75%) [85]. Thirteen (6%) species in this study were assigned to two or more BINs (BIN splits), and one species (*Plexippus paykulli*) was assigned to five. BIN splits often indicate the presence of a species complex [43]. For example, 13% of 1,018 species of Canadian spiders [61], 13% of 1,541 Canadian Noctuoidea [86], 5.7% of 1,872 Finnish beetles [87], and 20% of 62 global mealybugs [88] possessed BIN splits. Although in most cases the subsequent morphological investigation has revealed overlooked species [89], other factors can cause BIN splits/mergers, such as hybridization [90], incomplete lineage sorting [83], or rapid speciation [91].

K2P divergences >2% were found in 14 of the 202 spider species from Pakistan with a maximum value of 5.3%. There was, however, no significant relationship between intraspecific divergence and the number of specimens analyzed. For example, 12 specimens of *Crossopriza maculipes* (3 BINs) showed 5.3% divergence and were assigned to three BINs while 160 specimens of *Neoscona theisi* possessed a maximum divergence of 2.5%. High COI divergence is not uncommon in spiders. For example, the maximum intraspecific divergence in 561 spider species from Germany was 10.1%, but it was below 2.5% in 95% of the cases with an arithmetic mean of 0.7% [62]. The divergence could depend on several factors such as the number of specimens analyzed, the number of localities, the geographic distance between them and the dispersal capabilities of the particular species [92,93]. With the exception of a single species (*Oxyopes azhari*), high conspecific distances did not impede the capacity of DNA barcodes to discriminate the species encountered in our study. However, species with BIN splits and high divergences are likely to represent a cryptic species complex. Preliminary morphological analyses including genitalic dissections of specimens from taxa with BIN splits in this study reinforced this conclusion.

Correlation analysis revealed only a weak relationship between the geographic range of the species examined in this study and their intraspecific divergence value. The Mantel test was significant for a few (13%) species, but species identification was not impeded as maximum intraspecific distances were nearly always less than NN distances. Similar results have been reported for Lepidoptera from Europe [94], Pakistan [32] and Central Asia [95]. Although a study that examined a single tribe, Agabini, of aquatic beetles in Europe [96] argued that regional divergences were so great as to obscure species assignments, this result is clearly not the rule [72].

Because BINs are generally an effective species proxy [41], we used them to assess faunal overlap. This work revealed that most (76%) BINs detected in this study were first records. Just 52 BINs have records from other nations and 13 of these were shared only with India. The BIN overlap with other nations was considerably lower for the spiders (24%) of Pakistan than for its Lepidoptera (42%) [42], but this difference almost certainly reflects the intensive barcode studies on the latter group. Although DNA barcoding has been used to assess regional biodiversity [41,47] and to ascertain species connections [42], the limited data availability complicates interpretation. Although further sampling will add new BINs, it is also likely to raise BIN overlap with other regions, improving our understanding of faunal overlap. Such efforts to better document local biodiversity are also certain to reveal new species as evidenced by the discovery of 93 taxa in this study that could not be assigned to a known species.

Supporting information

S1 Table. Taxonomic publications consulted for this study. (DOCX)

Author Contributions

Conceptualization: Muhammad Ashfaq, Paul D. N. Hebert.

Data curation: Muhammad Ashfaq, Gergin Blagoev, Hafiz Muhammad Tahir, Paul D. N. Hebert.

Formal analysis: Muhammad Ashfaq, Gergin Blagoev.

Funding acquisition: Muhammad Ashfaq, Paul D. N. Hebert.

Investigation: Muhammad Ashfaq, Gergin Blagoev, Hafiz Muhammad Tahir, Arif M. Khan, Muhammad Khalid Mukhtar, Abida Butt.

Methodology: Muhammad Ashfaq, Gergin Blagoev, Hafiz Muhammad Tahir, Arif M. Khan, Saleem Akhtar, Shahid Mansoor, Paul D. N. Hebert.

Project administration: Muhammad Ashfaq, Paul D. N. Hebert.

Resources: Muhammad Ashfaq, Hafiz Muhammad Tahir, Arif M. Khan, Shahid Mansoor, Paul D. N. Hebert.

Software: Muhammad Ashfaq.

Supervision: Muhammad Ashfaq, Paul D. N. Hebert.

Validation: Muhammad Ashfaq, Paul D. N. Hebert.

Visualization: Muhammad Ashfaq, Paul D. N. Hebert.

Writing - original draft: Muhammad Ashfaq, Gergin Blagoev.

Writing - review & editing: Paul D. N. Hebert.

References

- 1. World Spider Catalog. World Spider Catalog. Version 20.0. Natural History Museum Bern, online at http://wsc.nmbe.ch, accessed on 7 January 2019. doi: 10.24436/2.
- 2. Riechert SE, Lockley T. Spiders as biological control agents. Annu Rev Entomol. 1984; 29: 299–320.
- Maelfait J-P, Hendrickx F. Spiders as bio-indicators of anthropogenic stress in natural and semi-natural habitats in Flanders (Belgium): some recent developments. In: Selden PA (ed.), Proceedings of the 17th European Colloquium of Arachnology, Edinburgh; 1998. pp. 293–300.
- Rybak J. Accumulation of major and trace elements in spider webs. Water Air Soil Pollut. 2015; 226: 105. https://doi.org/10.1007/s11270-015-2369-7 PMID: 25821258
- 5. van Helsdingen PJ. The merits of a European checklist of spiders (Arachnida: Araneae). Logunov DV, Penney D, (Eds). Eur Arachnology. 2003; 1: 101–106.
- 6. Ubick D, Paquin P, Cushing P, Roth V. Spiders of North America: An Identification Manual, Second Edition 2nd Edition. American Arachnological Society. 2017: 425 pp.
- 7. Siliwal M, Molur S. Checklist of spiders (Arachnida: Araneae) of South Asia including the 2006 update of Indian spider checklist. Zoos' Print J. 2007; 22: 2551–2597.
- Dyal S. Fauna of Lahore. 4. -Spiders of Lahore. Bulletin of the Department of Zoology of the Panjab University. 1935; 1, i–ii, 119–252.
- Parveen R, Khan AA, Mushtaq S, Rana SA. A checklist of the spiders of the Punjab. Pak J Agric Sci. 2007; 44: 625–626.
- 10. Ghazanfar M, Hussain M, Hashim M, Fahid AM. Checklist of spider (Araneae) fauna of Pakistan: A review. J Entomol Zool Studies. 2016; 4: 245–256.

- 11. Perveen F, Jamal A. Checklist of spider fauna of FR Peshawar, FATA, Pakistan. Arthropods. 2012; 1: 35–39.
- 12. Sial N, Ruby T, Malik S, Mushtaq S. A checklist of the spiders of Cholistan and neighbouring areas. Pak J Agric Sci. 2012; 49: 301–304.
- Parveen R. Taxonomic study on some spiders of Punjab, Pakistan. PhD Thesis. Department of Zoology and Fisheries, Agriculture University Faisalabad, Pakistan. 2003: 356 pp. <u>http://prr.hec.gov.pk/jspui/</u> handle/123456789//4123
- 14. Baig MB, Al-Subaiee FS. Biodiversity in Pakistan: Key issues. Biodiversity 2009; 10: 20–29.
- Keswani S, Hadole P, Rajoria A. Checklist of spiders (Arachnida: Araneae) from India-2012. Indian J Arachnol. 2012; 1: 1–129.
- Mirshamsi O, Marusik YM, Zamani A, Moradmand M, Kashefi R. Annotated checklist of the spiders of Iran (Arachnida: Araneae). Iranian J Biosyst Fauna Iranica. 2015; 1: 1–108.
- Borges PAV, Wunderlich J. Spider biodiversity patterns and their conservation in the Azorean archipelago, with descriptions of new species. In: Systematics and Biodiversity; 2008. pp. 249–282.
- 18. Drew LW. Are we losing the science of taxonomy? BioScience. 2011; 61: 942–946.
- Zhang Y, Li S. A spider species complex revealed high cryptic diversity in South China caves. Mol Phylogenet Evol. 2014; 79: 353–358. https://doi.org/10.1016/j.ympev.2014.05.017 PMID: 24994029
- Hamilton CA, Formanowicz DR, Bond JE. Species delimitation and phylogeography of *Aphonopelma* hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas. PLOS ONE. 2011; 6: e26207. https://doi.org/10.1371/journal.pone.0026207 PMID: 22022570
- Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc Biol Sci. 2003; 270: 313–321. https://doi.org/10.1098/rspb.2002.2218 PMID: 12614582
- Dhananjeyan KJ, Paramasivan R, Tewari SC, Rajendran R, Thenmozhi V, Leo SV, et al. Molecular identification of mosquito vectors using genomic DNA isolated from eggshells, larval and pupal exuvium. Trop Biomed. 2010; 27: 47–53. PMID: 20562813
- Iftikhar R, Ashfaq M, Rasool A, Hebert PDN. DNA barcode analysis of thrips (Thysanoptera) diversity in Pakistan reveals cryptic species complexes. PLOS ONE. 2016; 11: e0146014. <u>https://doi.org/10.1371/journal.pone.0146014 PMID: 26741134</u>
- Dupuis JR, Roe AD, Sperling FAH. Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Mol Ecol. 2012; 21: 4422–36. https://doi.org/10.1111/j.1365-294X.2012. 05642.x PMID: 22891635
- 25. Abe TA, Spence JR, Sperling FAH. Mitochondrial introgression is restricted relative to nuclear markers in a water strider (Hemiptera: Gerridae) hybrid zone. Can J Zool. 2005; 83:432–444.
- Pazhenkova EA, Lukhtanov VA. Nuclear genes (but not mitochondrial DNA barcodes) reveal real species: Evidence from the *Brenthis* fritillary butterflies (Lepidoptera, Nymphalidae). J Zool Syst Evol Res. 2018; https://doi.org/10.1111/jzs.12252
- Hickerson MJ, Meyer CP, Moritz C. DNA Barcoding will often fail to discover new animal species over broad parameter space. Syst Biol. 2006; 55: 729–739. https://doi.org/10.1080/10635150600969898 PMID: 17060195
- Stein ED, White BP, Mazor RD, Jackson JK, Battle JM, Miller PE, et al. Does DNA barcoding improve performance of traditional stream bioassessment metrics? Freshw Sci. 2014; 33: 302–311.
- Yang J, Zhang X, Zhang W, Sun J, Xie Y, Zhang Y, et al. Indigenous species barcode database improves the identification of zooplankton. PLOS ONE. 2017; 12: e0185697. https://doi.org/10.1371/ journal.pone.0185697 PMID: 28977035
- Hebert PDN, DeWaard JR, Zakharov EV, Prosser SW, Sones JE, McKeown JT, et al. A DNA 'barcode blitz': rapid digitization and sequencing of a natural history collection. PLOS ONE. 2013; 8: e68535. https://doi.org/10.1371/journal.pone.0068535 PMID: 23874660
- Slowik J, Blagoev GA. A survey of spiders (Arachnida: Araneae) of Prince of Wales Island, Alaska; combining morphological and DNA barcode identification techniques. Insecta Mundi. 2012; 251: 1–12.
- Blagoev GA, Nikolova NI, Sobel CN, Hebert PDN, Adamowicz SJ. Spiders (Araneae) of Churchill, Manitoba: DNA barcodes and morphology reveal high species diversity and new Canadian records. BMC Ecol. 2013; 13: 44. https://doi.org/10.1186/1472-6785-13-44 PMID: 24279427
- Cao XW, Liu J, Chen J, Zheng G, Kuntner M, Agnarsson I. Rapid dissemination of taxonomic discoveries based on DNA barcoding and morphology. Sci Rep. 2016; 6: 13. <u>https://doi.org/10.1038/s41598-016-0006-3</u>
- Nadolny AA, Omelko MM, Marusik YM, Blagoev GA. A new species of spider belonging to the *Pardosa lugubris-group* (Araneae: Lycosidae) from Far East Asia. Zootaxa. 2016; 4072: 263–281. https://doi.org/10.11646/zootaxa.4072.2.8 PMID: 27395923

- Ratnasingham S, Hebert PDN. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol Ecol Notes. 2007; 7: 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x PMID: 18784790
- Ratnasingham S, Hebert PDN. A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLOS ONE. 2013; 8: e66213. <u>https://doi.org/10.1371/journal.pone.0066213</u> PMID: 23861743
- Ashfaq M, Akhtar S, Khan AM, Adamowicz SJ, Hebert PDN. DNA barcode analysis of butterfly species from Pakistan points towards regional endemism. Mol Ecol Resour. 2013; 13: 832–43. https://doi.org/ 10.1111/1755-0998.12131 PMID: 23789612
- Ortiz AS, Rubio RM, Guerrero JJ, Garre MJ, Serrano J, Hebert PDN, et al. Close congruence between Barcode Index Numbers (BINs) and species boundaries in the Erebidae (Lepidoptera: Noctuoidea) of the Iberian Peninsula. Biodivers Data J. 2017; 5: e19840.
- Wirta H, Varkonyi G, Rasmussen C, Kaartinen R, Schmidt NM, Hebert PDN, et al. Establishing a community-wide DNA barcode library as a new tool for arctic research. Mol Ecol Resour. 2016; 16: 809–822. https://doi.org/10.1111/1755-0998.12489 PMID: 26602739
- 40. Hendrich L, Morinière J, Haszprunar G, Hebert PDN, Hausmann A, Köhler F, et al. A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD. Mol Ecol Resour. 2015; 15: 795–818. <u>https://doi.org/10.1111/1755-0998</u>. 12354 PMID: 25469559
- Hebert PDN, Ratnasingham S, Zakharov EV, Telfer AC, Levesque-Beaudin V, Milton MA, et al. Counting animal species with DNA barcodes: Canadian insects. Phil Trans R Soc B. 2016; 371: 20150333. https://doi.org/10.1098/rstb.2015.0333 PMID: 27481785
- Ashfaq M, Akhtar S, Rafi MA, Mansoor S, Hebert PD. Mapping global biodiversity connections with DNA barcodes: Lepidoptera of Pakistan. PLOS ONE. 2017; 12: e0174749. <u>https://doi.org/10.1371/journal.pone.0174749</u> PMID: 28339501
- Ashfaq M, Hebert PDN. DNA barcodes for bio-surveillance: Regulated and economically important arthropod plant pests. Genome. 2016; 59: 933–945. https://doi.org/10.1139/gen-2016-0024 PMID: 27753511
- Mutanen M, Kekkonen M, Prosser SWJ, Hebert PDN, Kaila L. One species in eight: DNA barcodes from type specimens resolve a taxonomic quagmire. Mol Ecol Resour. 2015; 15: 967–984. <u>https://doi.org/10.1111/1755-0998.12361 PMID: 25524367</u>
- 45. Miller SE, Hausmann A, Hallwachs W, Janzen DH. Advancing taxonomy and bioinventories with DNA barcodes. Philos Trans Royal Soc B. 2016; 371: 20150339.
- 46. Telfer AC, Young MR, Quinn J, Perez K, Sobel CN, Sones JE, et al. Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve. Biodivers Data J. 2015; 30: 2015.
- Ashfaq M, Sabir JSM, El-Ansary HO, Perez K, Levesque-Beaudin V, Khan AM, et al. Insect diversity in the Saharo-Arabian region: Revealing a little-studied fauna by DNA barcoding. PLOS ONE. 2018; 13: e0199965. https://doi.org/10.1371/journal.pone.0199965 PMID: 29985924
- Kerr KC, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PDN. Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes. 2007; 7: 535–543. https://doi.org/10.1111/j.1471-8286.2007.01670.x PMID: 18784793
- Hawlitschek O, Moriniere J, Dunz A, Franzen M, Rodder D, Glaw F, et al. Comprehensive DNA barcoding of the herpetofauna of Germany. Mol Ecol Resour. 2016; 16: 242–253. <u>https://doi.org/10.1111/</u> 1755-0998.12416 PMID: 25892157
- Dinca V, Zakharov EV, Hebert PDN, Vila R. Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe. Proc Biol Sci. 2010; 278: 347–355. https://doi.org/10.1098/rspb.2010.1089 PMID: 20702462
- Raupach MJ, Hendrich L, Kuchler SM, Deister F, Moriniere J, Gossner MM. Building-up of a DNA barcode library for true bugs (Insecta: Hemiptera: Heteroptera) of Germany reveals taxonomic uncertainties and surprises. PLOS ONE. 2014; 9: e106940. https://doi.org/10.1371/journal.pone.0106940 PMID: 25203616
- Moriniere J, Hendrich L, Balke M, Beermann AJ, Konig T, Hess M, et al. A DNA barcode library for Germany's mayflies, stoneflies and caddisflies (Ephemeroptera, Plecoptera and Trichoptera). Mol Ecol Resour. 2017; 17: 1293–1307. https://doi.org/10.1111/1755-0998.12683 PMID: 28449274
- 53. Porco D, Chang CH, Dupont L, James S, Richard B, Decaens T. A reference library of DNA barcodes for the earthworms from Upper Normandy: Biodiversity assessment, new records, potential cases of cryptic diversity and ongoing speciation. Appl Soil Ecol. 2018; 124: 362–371.
- Garcia-Robledo C, Kuprewicz EK, Staines CL, Kress WJ, Erwin TL. Using a comprehensive DNA barcode library to detect novel egg and larval host plant associations in a Cephaloleia rolled-leaf beetle (Coleoptera: Chrysomelidae). Biol J Linnean Soc. 2013; 110: 189–198.

- 55. Gall LLE, Delsuc F, Hourdez S, Lecointre G, Rasplus JY. Toward the DNA library of life. Eur J Taxon. 2017; 266: 1–9.
- Robinson EA, Blagoev GA, Hebert PDN, Adamowicz SJ. Prospects for using DNA barcoding to identify spiders in species-rich genera. ZooKeys. 2009; 16: 27–46.
- 57. Blagoev GA, Dondale CD. A new species of *Alopecosa* (Araneae: Lycosidae) from Canada: a morphological description supported by DNA barcoding of 19 congeners. Zootaxa. 2014; 3894: 152–160. https://doi.org/10.11646/zootaxa.3894.1.12 PMID: 25544627
- Magalhaes ILF, Martins PH, Nogueira AA, Santos AJ. Finding hot singles: matching males to females in dimorphic spiders (Araneidae: *Micrathena*) using phylogenetic placement and DNA barcoding. Invertebr Syst. 2017; 31: 8–36.
- Piacentini LN, Scioscia CL, Carbajal MN, Ott R, Brescovit AD, Ramirez MJ. A revision of the wolf spider genus *Diapontia* Keyserling, and the relationships of the subfamily Sosippinae (Araneae: Lycosidae). Arthropod Syst Phylo. 2017; 75: 387–415.
- Ivanov V, Lee KM, Mutanen M. Mitonuclear discordance in wolf spiders: Genomic evidence for species integrity and introgression. Mol Ecol. 2018; 27: 1681–1695. https://doi.org/10.1111/mec.14564 PMID: 29575366
- Blagoev GA, deWaard JR, Ratnasingham S, deWaard SL, Lu L, Robertson J, et al. Untangling taxonomy: a DNA barcode reference library for Canadian spiders. Mol Ecol Resour. 2016; 16: 325–341. https://doi.org/10.1111/1755-0998.12444 PMID: 26175299
- Astrin JJ, Hofer H, Spelda J, Holstein J, Bayer S, Hendrich L, et al. Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLOS ONE. 2016; 11: e0162624. <u>https://doi.org/10. 1371/journal.pone.0162624</u> PMID: 27681175
- Gaikwad S, Warudkar A, Shouche Y. Efficacy of DNA barcoding for the species identification of spiders from Western Ghats of India. Mitochondrial DNA Part A. 2017; 28: 638–644.
- 64. Tahir HM, Naseem S, Akhtar S, Ashfaq M, Butt A, Mukhtar MK. DNA barcode record of some common spiders from Punjab, Pakistan. Pak J Zool. 2016; 48(1): 159–164.
- 65. Naseem S, Tahir HM. Use of mitochondrial COI gene for the identification of family Salticidae and Lycosidae of spiders. Mitochondrial DNA. 2018; 29: 96–101. <u>https://doi.org/10.1080/24701394.2016</u>. 1248428 PMID: 27841048
- 66. Majeed N, Butt A, Krammer H-J, Astrin JJ. DNA barcoding in jumping spider communities of Pakistan reveals a new species (Araneae: Salticidae). ZooKeys. (In Press).
- 67. Ivanova NV, deWaard JR, Hebert PDN. An inexpensive, automation-friendly protocol for recovering high quality DNA. Mol Ecol Notes. 2006; 6: 998–1002.
- Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly *Astraptes fulgerator*. Proc Natl Acad Sci USA. 2004; 101: 14812–14817. https://doi.org/10.1073/pnas.0406166101 PMID: 15465915
- Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994; 3: 294–299. PMID: 7881515
- 70. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28: 2731–2739. https://doi.org/10.1093/molbev/msr121 PMID: 21546353
- Meyer CP, Paulay G. DNA barcoding: Error rates based on comprehensive sampling. PLOS Biol. 2005; 3: e422. https://doi.org/10.1371/journal.pbio.0030422 PMID: 16336051
- 72. Candek K, Kuntner M. DNA barcoding gap: reliable species identification over morphological and geographical scales. Mol Ecol Resour. 2015; 15: 268–277. https://doi.org/10.1111/1755-0998.12304 PMID: 25042335
- Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967; 27: 209–220. PMID: 6018555
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980; 16: 111–120. PMID: 7463489
- 75. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012; 61: 539–542. https://doi.org/10.1093/sysbio/sys029 PMID: 22357727
- Mukhtar MK, Khan SY, Jabeen S, Tahir HM, Qadir A, Ahmad KR, et al. A preliminary checklist of the spider fauna of Sargodha (Punjab), Pakistan. Pak J Zool. 2012; 44: 1245–1254.
- 77. Ahmad S, Akhtar N, Saeed K. Some observations on spider fauna of district Buner, Khyber Pakhtunkhwa, Pakistan. J Entomol Zool Studies. 2015; 3: 47–52.

- Zhang J-X, Maddison WP. New euophryine jumping spiders from Papua New Guinea (Araneae: Salticidae: Euophryinae). Zootaxa. 2012; 3491: 1–74.
- 79. Dippenaar-Schoeman AS, Haddad CR, Lyle R, Lotz LN, Foord SH, Jocque R, et al. South African National Survey of Arachnida: A checklist of the spiders (Arachnida, Araneae) of the Tswalu Kalahari Reserve in the Northern Cape province, South Africa. KOEDOE. 2018; 60: a1486.
- **80.** King JR, Porter SD. Evaluation of sampling methods and species richness estimators for ants in upland ecosystems in Florida. Environ Entomol. 2005; 34: 1566–1578.
- Skalak SL, Sherwin RE, Brigham RM. Sampling period, size and duration influence measures of bat species richness from acoustic surveys. Methods Ecol Evol. 2012; 3: 490–502.
- Zenker MM, Rougerie R, Teston JA, Laguerre M, Pie MR, Freitas AVL. Fast census of moth diversity in the neotropics: A comparison of field-assigned morphospecies and DNA barcoding in tiger moths. PLOS ONE. 2016; 11: e0148423. https://doi.org/10.1371/journal.pone.0148423 PMID: 26859488
- Hawlitschek O, Moriniere J, Lehmann GUC, Lehmann AW, Kropf M, Dunz A, et al. DNA barcoding of crickets, katydids and grasshoppers (Orthoptera) from Central Europe with focus on Austria, Germany and Switzerland. Mol Ecol Resour. 2017; 17(5):1037–1053. <u>https://doi.org/10.1111/1755-0998.12638</u> PMID: 27863033
- Havemann N, Gossner MM, Hendrich L, Moriniere J, Niedringhaus R, Schafer P, et al. From water striders to water bugs: the molecular diversity of aquatic Heteroptera (Gerromorpha, Nepomorpha) of Germany based on DNA barcodes. PeerJ. 2018; 6: e4577. <u>https://doi.org/10.7717/peerj.4577</u> PMID: 29736329
- Zhou Z, Guo H, Han L, Chai J, Che X, Shi F. Singleton molecular species delimitation based on COI-5P barcode sequences revealed high cryptic/undescribed diversity for Chinese katydids (Orthoptera: Tetti-goniidae). BMC Evol Biol. 2019; 19: 79. https://doi.org/10.1186/s12862-019-1404-5 PMID: 30871464
- Zahiri R, Lafontaine JD, Schmidt BC, DeWaard JR, Zakharov EV, Hebert PDN. A transcontinental challenge–a test of DNA barcode performance for 1,541 species of Canadian Noctuoidea (Lepidoptera). PLOS ONE. 2014; 9: e92797. https://doi.org/10.1371/journal.pone.0092797 PMID: 24667847
- Pentinsaari M, Hebert PDN, Mutanen M. Barcoding beetles: a regional survey of 1872 species reveals high identification success and unusually deep interspecific divergences. PLOS ONE. 2014; 9: e108651. https://doi.org/10.1371/journal.pone.0108651 PMID: 25255319
- Ren J-M, Ashfaq M, Hu X-N, Ma J, Liang F, Hebert PDN, et al. Barcode index numbers expedite quarantine inspections and aid the interception of nonindigenous mealybugs (Pseudococcidae). Biol Invasions. 2018; 20: 449–460.
- 89. Landry J-F, Hebert PDN. *Plutella australiana* (Lepidoptera, Plutellidae), an overlooked diamondback moth revealed by DNA barcodes. Zookeys. 2013; 327: 43–63.
- Gottsberger B, Mayer F. Behavioral sterility of hybrid males in acoustically communicating grasshoppers (Acrididae, Gomphocerinae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007; 193: 703–714. https://doi.org/10.1007/s00359-007-0225-y PMID: 17440734
- Hawlitschek O, Hendrich L, Espeland M, Toussaint EFA, Genner MJ, Balke M. Pleistocene climate change promoted rapid diversification of aquatic invertebrates in Southeast Australia. BMC Evolutionary Biology. 2012; 12:142. https://doi.org/10.1186/1471-2148-12-142 PMID: 22873814
- 92. Papadopoulou A, Bergsten J, Fujisawa T, Monaghan MT, Barraclough TG, Vogler AP. Speciation and DNA barcodes: testing the effects of dispersal on the formation of discrete sequence clusters. Philos Trans R Soc Lond B Biol Sci. 2008; 363: 2987–2996. <u>https://doi.org/10.1098/rstb.2008.0066</u> PMID: 18522916
- 93. Huemer P, Hebert PDN, Mutanen M, Wieser C, Wiesmair B, Hausmann A, et al. Large geographic distance versus small DNA barcode divergence: Insights from a comparison of European to South Siberian Lepidoptera. PLOS ONE. 2018; 13: e0206668. https://doi.org/10.1371/journal.pone.0206668 PMID: 30388147
- 94. Huemer P, Mutanen M, Sefc KM, Hebert PDN. Testing DNA barcode performance in 1000 species of European Lepidoptera: large geographic distances have small genetic impacts. PLOS ONE. 2014; 9: e115774. https://doi.org/10.1371/journal.pone.0115774 PMID: 25541991
- 95. Lukhtanov VA, Sourakov A, Zakharov EV, Hebert PDN. DNA barcoding Central Asian butterflies: increasing geographical dimension does not significantly reduce the success of species identification. Mol Ecol Resour. 2009; 9: 1302–1310. <u>https://doi.org/10.1111/j.1755-0998.2009.02577.x</u> PMID: 21564901
- 96. Bergsten J, Bilton DT, Fujisawa T, Elliott M, Monaghan MT, Balke M, et al. The effect of geographical scale of sampling on DNA barcoding. Syst Biol. 2012; 61: 851–869. https://doi.org/10.1093/sysbio/sys037 PMID: 22398121