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We investigate a Bayesian hierarchical model for the analysis of categorical longitudinal data from sedation measurement for
Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT). Data for each patient is observed at different time
points within the time up to 60min. A model for the sedation level of patients is developed by introducing, at the first stage of a
hierarchical model, a multinomial model for the response, and then subsequent terms are introduced. To estimate the model, we
use the Gibbs sampling given some appropriate prior distributions.

1. Introduction

Magnetic Resonance Imaging (MRI) and Computerized
Tomography (CT) require the patient to lie still for periods
of up to 60min.These two diagnostic procedures also require
strict immobility and sedation for a successful result. If a child
cannot remain adequately still for examination, sedation
may be necessary. Optimal sedation management of children
before MRI and CT has received attention in the last decade
[1, 2]. The sedation medications must be chosen carefully for
children’s safety and effectiveness. Many researches related
to the comparison of different sedation medications have
been performed successfully [3, 4]. In these studies, for each
medication group sedation levels were obtained at different
time points within the time up to 60min. In addition to
sedation level measurements, the other multiple assessments
of the same patient were recorded, and the within subject
ones, such as sedation levels at different time points for a
given patient, were correlated. This case is an example when
a longitudinal study is made with responses being measured
repeatedly on the same patient across time. In medical
studies, statistical analysis of the data set described earlier has
been performed by many researchers, who use the known
methods such as ANOVA, MANOVA, and Linear Models,
assuming that the repeated observations from each patient

are uncorrelated. Since repeated observations are made on
the same patient, observed responses are generally correlated.
For robust analysis, this association must be accounted for.
Weighted least squares model is used for repeated categorical
data. This model works well for large sample size, no missing
data, a small number of response variables, and discrete
independent variables. Recent years have witnessed new
statistical methods of analysing for data that do not meet
these conditions.

Mathematical models for multiple regression, linear
models, and time series are generally useful where random
variables are approximately normal and can be explained by
some linear structure. However, data can be clearly nonnor-
mal when they represent categorical or frequency observa-
tions. Generalized Linear Models (GLMs) offer convenient
and highly applicable tools for these kinds of data.They allow
for more general structures and more general distributions
than linear regression and ANOVA. Nelder andWedderburn
developed the concept of GLMs [5], and an extensive treat-
ment was given by [6]. With the introduction of GLM, a
much more flexible instrument for statistical modeling was
created. As special cases, they include multiple linear regres-
sion, logit and probit models for quanta responses, and log
linear response models for counts. Introduced Generalized
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Estimating Equations (GEEs) [7] were developed to extend
the GLM introduced by [5].

Longitudinal researches are defined as studies in which
the response of each patient is observed on two or more
occasions.They are often used inmedical and health research.
The methods used for the analysis of longitudinal data
differ from the traditional regression analysis such as mul-
tiple regressions. Longitudinal data sets consist of repeated
observations of an patient and a set of covariates for each
of many patients which may be fixed or which may be
changed with time. Longitudinal data sets are defined by the
fact that repeated observations for a patient are correlated
[8]. Therefore the modeling of the correlation structure is
required. When the response variable is normal, a large class
of linear models is available for analysis. However, when
the response variable is categorical, other methods must be
considered. In recent years, considerable effort has gone into
the development of statistical methods for the analysis of
longitudinal categorical response data. While much of this
effort has focused on methods for binary or Poisson data,
relatively little attention has been given to nominal categorical
data.

More generally, hierarchical models describe efficiently
complex datasets incorporating correlation or including
other properties in our model. Hence, when multivariate
or repeated responses are observed, correlation can be
incorporated in the model via a common “random” effect
for all measurements referring to the same individual. This
introduces a marginal correlation between repeated data,
while interpretation is based on the conditional means.
Therefore, given the random effects, the structure and the
interpretation are similar to common generalized linear
models. Accordingly, hierarchical models naturally appear,
for example, when modeling spatiotemporal data in which
correlation between time and space can be added by using
common random effects on adjacent (in time or space)
responses. Hierarchical models can also be used to imply
a complicated marginal distribution but (at the same time)
keep the conditional structure as simple as possible [9].

Bayesian analyses of hierarchical linear models have been
considered for at least forty years [10] and have remained a
topic of theoretical and applied interest [11–14]. Reference [15]
reviewsmuch of the extensive literature in the course of com-
paring Bayesian and non-Bayesian inferences for hierarchical
models. As part of their article, Browne and Draper consider
some different prior distributions for variance parameters;
here, we explore the principles of hierarchical prior distribu-
tions in the context of a specific class of models. Hierarchical
(multilevel) models are central to modern Bayesian statistics
for both conceptual and practical reasons. At a practical
level, hierarchical models are flexible tools for combining
information and partial pooling of inferences [16–18].

In this study, we use a Bayesian approach to fit several
hierarchical models of increasing complexity to assess the
significance of both fixed and random effects on sedation
levels and investigate a Bayesian hierarchical model for
the analysis of categorical longitudinal data from sedation
measurement forMRI and CT. Amodel for the sedation level
of patients is developed by introducing, at the first stage of

a hierarchical model, a multinomial model for the response
and then subsequent terms are introduced.

2. Material and Method

There are several methods that may be used to estimate the
determinants of sedation levels with categories (1, . . . , 6).

First method we considered is the multinomial logit
approach. The model
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In our analysis the response has six levels (𝑗 = 1, . . . , 6).

For identifiability, 𝑗 = 1 is set as the reference category so
that the parameters estimated from the multinomial logistic
model are interpreted as the logarithm of the change in the
odds of being outcome 𝑗 relative to that of being outcome 2 for
a one unit change in the corresponding explanatory variable
at time 𝑡.

We investigate the relationship between sedation levels
and both categorical and continuous explanatory variables by
specifying a Bayesian hierarchical model for the multinomial
response. We also include the lagged response variable in
the model to assess the probability of transition between the
times. Reference [19] considers a dynamic multinomial logit
panelmodel with random effects to explain the labourmarket
level of individuals in urbanMexico.The individual effects are
assumed to be independent of the observed characteristics
and to follow a multivariate normal distribution. We use a
similar model for explaining the sedation levels of patients in
which the selected covariates and sedation levels at the time
of the previous time may influence the sedation levels of a
patient.

Assume that patient 𝑖 (= 1, . . . , 𝑁) can be in any of 𝑗
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Table 1: The model used in this study.
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So log(𝜇
𝑖𝑡𝑗
) can be interpreted as the log of the probability of

being in level 𝑗 relative to the probability of being in level 1.
The posterior distributions for all parameters are as

follows

𝑃 (𝛽, 𝛾, 𝛼, Σ | 𝑦) ∝ 𝑃 (𝑦 | 𝛽, 𝛾, 𝛼, Σ)

× 𝑃 (Σ) × 𝑃 (𝛽) × 𝑃 (𝛾) ,
(5)

where we have assumed that unknown parameters 𝛽, 𝛾,
and Σ are a priori independent and 𝛼 depend only on Σ.
MCMC methods are used to sample from the posterior
distributions of the unknown parameters. We have used the
WinBug software which uses the Gibbs sampling to form
the posterior distribution for each unknown parameter by
drawing samples from their full conditional distributions.

Our primary interest in modeling sedation levels is to
investigate the effects of the some covariates as well as the
transition from one sedation level to another as time since
arrival progresses. To do this we consider five variations of the
model in Table 1. The models contain combinations of terms
to capture the covariate effects, the transition effects, and a
random effects term to capture over dispersion in the form of
between-subject variability.

In the model 1, given sedation level 𝑗, the regression
effects remain constant but each individual 𝑖 is considered
as a cluster of responses over time (𝑡 = 1, 2, 3). A random
intercept term 𝛼

𝑖𝑗
which is allowed to vary between indi-

viduals, given level 𝑗, is included in the model to account
for time constant unobserved variability. In the model 2,
given sedation level 𝑗, thismodel includes constant regression
effects 𝛽

𝑗
for the covariates 𝑋

𝑖𝑡
as well as constant regression

effects 𝛾
𝑗
for the lagged response variable 𝑍

𝑖𝑡
. The term

representing the lagged response may be useful in explaining
the transition between sedation levels and absorb some of the
unobserved variability between individuals. The model 3 is
similar to model 2 with a random effect term 𝛼

𝑖𝑗
included

to capture any additional between-subject variation. In the
model 4, given sedation level 𝑗, this model includes constant
regression effects for the covariates but differs to model 2

Table 2: Descriptions of predictor values used in the analysis.

Predictor Description

Group M: Midazolam; D: Diazepam; L: Luminal; C: Cardiac
Cocktail.

Age Between 4 months old and 13 years old.
Weight Between 6 kg and 46 kg.
Test CT and MRI.
Sex Male and female.
Disease Diseased with neurological damage. Not diseased.
SBP Systolic blood pressure.
PUL Pulse.
OSAT Oxygen saturation.
Comp Complication: yes and no.

Table 3: Ramsay sedation scale.

Categories Response
Sed1 Anxious or restless or both
Sed2 Cooperative, orientated, and tranquil
Sed3 Responding to commands
Sed4 Brisk response to stimulus
Sed5 Sluggish response to stimulus
Sed6 No response to stimulus

as it also includes time-varying effects 𝛾
𝑗𝑡

for the lagged
response variable, 𝑍

𝑖𝑡
. These effects are included to capture

any change in the transition in sedation levels between the
different times. The model 5 is similar to model 4 with a
random effect term 𝛼

𝑖𝑗
included to capture any additional

between-subject variation.
The ability to fit complex hierarchical models using

MCMC techniques presents a need for methods to compare
alternative models. Standard model comparison techniques
such as the Akaike Information Criterion (AIC) [20] and the
Bayesian Information Criterion (BIC) [21] require the speci-
fication of the number of parameters in eachmodel. For hier-
archical models which contain random effects, the number
of parameters is not generally obvious and so an alternative
methodof comparison is required.TheDeviance Information
Criterion (DIC) is a hierarchical modeling generalization of
the AIC and BIC. It is particularly useful in Bayesian model
selection problems where the posterior distributions of the
models have been obtained by MCMC simulation. Like AIC
and BIC it is an asymptotic approximation as the sample size
becomes large.

DICwas developed by [22].TheDIC statistic is a measure
of model complexity and fit and is defined as

DIC = 𝐷 (𝜃) + 𝑝
𝐷
, (6)

where 𝐷(𝜃) is the deviance given the model parameters
𝜃, 𝐷(𝜃) is the posterior mean of the deviance, 𝐷(𝜃) is the
deviance evaluated at the posterior mean 𝜃, and 𝑝

𝐷
= 𝐷(𝜃) −

𝐷(𝜃) is the effective number of parameters in the model.
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Table 4: Posterior summaries for the effect on log[𝑃(Sed6)/𝑃(Sed1)] using Model 1.

Variables Mean Sd MC error %2.5 Median %97.5 Start Sample
Group

C −3,1681 4,172 0,0043 −1,121 −3,017 7,016 1000 10.000
D −53,215 1,931 0,0011 −53,131 −52,911 −50,97 1000 10.000
L 17,312 10,171 0,0211 −21,431 16,951 23,71 1000 10.000

Age 0,017 0,021 0,0001 −0,015 0,021 0,038 1000 10.000
Sex [male] −0,312 0,295 0,003 −0,773 −0,331 0,121 1000 10.000
Disease [1] −0,215 0,211 0,015 −0,328 −0,231 0,174 1000 10.000
Weight −0,1311 0,0111 0,001 −0,151 −0,1417 −0,1317 1000 10.000
Comp (yes) 0,087 0,0095 0,002 0,065 0,081 0,093 1000 10.000
Test (1) 0,137 0,131 0,021 −0,021 0,136 0,141 1000 10.000
Sps −0,016 0,003 0,003 −0,6171 −0,015 −0,0139 1000 10.000
Pul −0,0121 0,002 0,0001 −0,0729 −0,012 −0,011 1000 10.000
OSAT −0,117 0,011 0,0002 −0,018 −0,013 0,011 1000 10.000

Table 5: Estimated posterior means and %95 intervals.

Variables Model 1 Model 2 Model 3 Model 4 Model 5
Group

C −3,017 (−4,121; 7,016) −2,981 (−3,115; 6,812) −2,17 (−2,29; 5,61) −4,21 (−5,51; 9,82) −3,81 (−6,61; 3,43)
D −52,911 (−53,131; −50,97) −48,17 (−52,16; −46,13) −37,4 (−48,1; −29,8) −41,4 (−53,1; −26,1) −43,5 (−51,4; −31,5)
L 16,931 (−21,431; 23,71) 15,81 (−21,03; 21,74) 10,71 (−5,03; 15,2) 13,15 (−4,81; 27,16) 17,51 (−3,85; 21,12)

Age 0,021 (−0,025; 0,039) 0,018 (−0,074; 0,041) 0,17 (−0,43; 0,48) 0,07 (−0,29; 0,61) 0,11 (−0,41; 0,23)
Sex −0,331 (−0,773; 0,121) −0,365 (−0,443; 0,141) −0,91 (−1,21; 0,78) −0,45 (−1,54; 1,131) −0,71 (−1,13; 1,45)
Disease −0,231 (−0,328; 0,174) −0,261 (−0,317; 0,161) −0,98 (−1,67; 0,71) −0,631 (−1,27; 0,617) −0,73 (−1,11; 0,62)
Weight −0,1417 (−0,151; 0,1317) −0,1321 (−0,1617; −0,117) −0,67 (−0,87; −0,25) −0,24 (−0,43; 0,12) −0,34 (−0,84; −0,17)
Comp 0,081 (0,065; 0,093) 0,076 (0,051; 0,113) 0,162 (0,101; 0,312) 0,151 (0,09; 0,27) 0,101 (0,06; 0,17)
Test 0,136 (−0,221; 0,141) 0,121 (−0,114; 0,151) 0,671 (−1,21; 0,83) 0,541 (−1,51; 1,19) 0,337 (−1,17; 0,98)
Sps −0,015 (−0,0171; −0,0139) −0,013 (−0,031; −0,009) −0,065 (−1,11; −0,03) −0,047 (−1,76; −0,04) −0,018 (−0,29; −0,03)
Pul −0,012 (−0,0729; −0,011) −0,015 (−0,021; −0,008) −0,023 (−0,045; −0,012) −0,014 (−0,21; −0,04) −0,091 (−1,21; −0,02)
OSAT −0,013 (−0,018; 0,011) −0,021 (−0,033; 0,016) −0,156 (−0,211; 0,06) −0,11 (−0,35; −0,04) −0,17 (−0,29; −0,13)
Sed-level (1, 𝑡 − 1) [Sed1]

Sed2 5,43 (3,98; 6,83) 4,91 (3,71; 5,61)
Sed3 5,65 (2,68; 7,26) 4,73 (3,86; 5,12)
Sed4 5,21 (3,12; 5,93) 5,13 (4,67; 5,37)
Sed5 5,85 (3,29; 6,81) 4,88 (4,21; 5,17)
Sed6 5,43 (4,71; 4,81) 5,13 (4,91; 5,61)

Sed-level (2, 𝑡 − 1) [Sed1]
Sed2 5,13 (4,81; 5,61) 5,41 (4,71; 5,91)
Sed3 5,29 (4,61; 5,79) 5,16 (4,51; 5,56)
Sed4 5,41 (4,71; 4,81) 5,23 (4,91; 5,61)
Sed5 5,35 (4,91; 5,81) 5,44 (5,01; 5,96)
Sed6 5,25 (4,12; 5,93) 5,23 (4,67; 5,37)

Sed-level (3, 𝑡 − 1) [Sed1]
Sed2 5,29 (4,87; 5,65) 5,96 (5,26; 6,36)
Sed3 5,17 (4,67; 5,81) 5,91 (5,31; 6,31)
Sed4 5,27 (4,71; 5,67) 5,77 (5,27; 6,28)
Sed5 5,13 (4,55; 5,87) 5,85 (5,11; 6,51)
Sed6 5,31 (4,71; 5,81) 5,33 (4,91; 5,61)
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Table 6: The DIC values for model comparisons.

Effect Model DIC DIC∗

log [𝑃 (Sed6) /𝑃 (Sed1)]

1 28,71 72,17
2 30,81 63,15
3 30,76 62,17
4 30,14 63,28
5 30,95 63,17

log [𝑃 (Sed5) /𝑃 (Sed1)]

1 26,16 74,85
2 29,64 67,61
3 29,71 66,75
4 29,67 66,81
5 29,17 66,37

log [𝑃 (Sed4) /𝑃 (Sed1)]

1 26,73 75,11
2 28,95 67,91
3 28,72 67,54
4 28,67 67,17
5 28,81 67,18

log [𝑃 (Sed3) /𝑃 (Sed1)]

1 25,03 73,71
2 28,75 67,55
3 28,19 68,01
4 28,63 67,85
5 28,85 67,47

log [𝑃 (Sed2) /𝑃 (Sed1)]

1 26,25 72,19
2 29,37 65,16
3 29,85 64,18
4 29,67 65,93
5 29,17 65,41

∗Shows the DIC value at times 2 and 3.

The quantities 𝐷(𝜃) and 𝐷(𝜃) are easily computed from an
MCMC simulation chain.

3. Application to Sedation Data

Apart of the data was used by [23].They compared the effects
of Midazolam, Diazepam, Luminal, and Cardiac Cocktail
in terms of sedation level. Also 127 children who received
MRI and CT were included in this study. Group M (𝑛 =

30) received Midazolam, Group D (𝑛 = 31) received
Diazepam, Group L (𝑛 = 32) received Luminal, and Group
C (𝑛 = 34) received Cardiac Cocktail. Systolic Blood
pressures, Pulse rates, the number of breathe, and oxygen
saturation were monitored. The other measurements, which
may affect the sedation level, such as weight, disease status,
test status, complication status, age, and adaptation status,
were also recorded. Descriptions of predictor values used in
the analysis are given in Table 2.

Models in Table 1 were constructed according to the
assumption that sedation levels are distributed as a multi-
nomial random variables with the six possible categories as
in Table 3. Sedation levels were maintained in the range of
Ramsey Scale from 1 to 6 for the 15th minute, 30th minute,
and 60th minute. The Ramsay Sedation Scale was given in
Table 3.

The models were constructed according to the assump-
tion that sedation levels are distributed as multinomial
random variables with the six possible categories. Since there
is little information available about the parameters, we choose
noninformative prior distributions for the parameters. For
regression parameters 𝛽 ∼ Normal(0, 103) and 𝛾 ∼

Normal(0, 103), we assume that the random effects 𝛼
𝑖
are

drawn from a multivariate normal distribution with zero
mean and a variance-covariance matrix Σ. Noninformative
uniformpriorswere determinated for the individual elements
of Σ. Σ

11
and Σ

22
were given uniform (0, 100) priors and

Σ
12

= Σ
21
was assigned uniform (−√Σ

11
Σ
22
, √Σ
11
Σ
22
) prior.

Gibbs sampler was run for 10.000 iterations with the first
1000 as burn-in. Convergence for the posterior distributions
of all models was achieved. We set up five multinomial
models with six possible sedation levels for each model in
Table 1. Therefore 30 models were constructed. Posterior
calculations were calculated for all models. As an example
posterior summaries for the effect on log[𝑃(Sed6)/𝑃(Sed1)]
using model 1 are represented in Table 4.

It is easy to say from Table 4 that there are associations
between the response and some explanatory variables. The
explanatory variable group D, weight, comp, SPS, and PUL
have significant effect on log[𝑃(Sed6)/𝑃(Sed1)]. We have
the similar posterior results for all thirty models. Estimated
posterior means and %95 intervals for the effects of all
explanatory variables in Table 2 on the log of the probability
of a patient being in Sed6 relative to the probability of being
in Sed1 from models 1, 2, 3, 4, and 5 were obtained. They
are given in Table 5. The variable Sed-lev.(𝑡 − 1) refers to
the sedation levels of the patient in the previous time. The
corresponding effect in the model is averaged over the 2 steps
between times. The variable Sed-lev.(𝑠, 𝑡 − 1) refers to the
previous sedation levels at time 𝑠 for 𝑠 = 2, 3.

From Table 5, we can say that the explanatory variable
group D, weight, comp, SPS, and PUL have significant effect
on log[𝑃(Sed6)/𝑃(Sed1)] for models 1, 2, 3, 4, and 5. We also
certainly state that there is relationship between the current
sedation level and the sedation level at the previous time of
measurements for all models.

For model comparisons, DIC values for all effect for each
model were calculated.The DIC values were given in Table 6.

Firstly, Deviance Information Criteria (DIC) value was
obtained at three times for all models with different effect.
Table 6 compares the models when the deviance is obtained
at three times. Model 2 and Model 4 are log models and
essentially condition time 1 and model 1 explains time 1, with
model 1 which explain time 1. We also calculate the DIC∗ at
times 2 and 3.Therefore we focus on prediction of these times
only.

4. Conclusions

Results in Table 6 show that the DIC for model is smaller
than the DIC for the other models. Model 1 which contains a
random effects term for each patient and sedation level over
time shows better performance than the other models.

Model 2, which includes a transition variable, shows
the similar performance with models 3, 4, and 5. If we are
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concerned with the prediction of times 2 and 3 only, model
comparisons results in Table 6 show that the DIC∗ formodels
2, 4, and 5 is smaller than model 1. Models 2, 4, and 5 provide
better understanding of the effect of the changes over the
three waves than Model 1. For this aim, we prefer to consider
models 2, 3, 4, and 5.

For models 4 and 5, Table 6 shows that there is a
significant difference between the transitions in sedation
levels for times 1 to 2, and from times 2 to 3.Therefore wemay
prefer models 4 and 5 to the other models for the transitions.

We say that an important characteristic of hierarchical
models is that each parameter referring to a specific group
from the corresponding parameters of the other group.

Using Bayesian approachmakes hierarchical model more
flexible than classic hierarchical models. That is why they
describe the data better. Bayesian hierarchical approach
simplifies the interpretation and computation of the model.
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