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Abstract The labeling and identification of long-range axonal inputs from multiple sources

within densely reconstructed electron microscopy (EM) datasets from mammalian brains has been

notoriously difficult because of the limited color label space of EM. Here, we report FluoEM for the

identification of multi-color fluorescently labeled axons in dense EM data without the need for

artificial fiducial marks or chemical label conversion. The approach is based on correlated tissue

imaging and computational matching of neurite reconstructions, amounting to a virtual color

labeling of axons in dense EM circuit data. We show that the identification of fluorescent light-

microscopically (LM) imaged axons in 3D EM data from mouse cortex is faithfully possible as soon

as the EM dataset is about 40–50 mm in extent, relying on the unique trajectories of axons in dense

mammalian neuropil. The method is exemplified for the identification of long-distance axonal input

into layer 1 of the mouse cerebral cortex.

DOI: https://doi.org/10.7554/eLife.38976.001

Introduction
The dense reconstruction of neuronal circuits has become an increasingly realistic goal in the neuro-

sciences thanks to developments in large-scale 3D EM (Denk and Horstmann, 2004; Bock et al.,

2011; Hayworth et al., 2015; Kasthuri et al., 2015; Xu et al., 2017) and circuit reconstruction tech-

niques (Saalfeld et al., 2009; Boergens et al., 2017). First locally dense neuronal circuits have been

mapped using these techniques (Helmstaedter et al., 2013; Kasthuri et al., 2015; Berck et al.,

2016; Wanner et al., 2016). However, in mammalian nervous systems, any given local neuronal cir-

cuit receives numerous synaptic inputs from distant neuronal sources. In most layers of the mamma-

lian cortex, for example, the fraction of distal input synapses in a dense local circuit is estimated to

comprise 70–90% of all synapses (Stepanyants et al., 2009). Similarly, subcortical structures as the

striatum or amygdala (Figure 1a) receive the vast majority of their inputs from distal projection sour-

ces. Uncovering the synaptic logic of such multi-source circuits together with the local dense neuro-

nal connectivity requires the identification of multiple input sources in the same connectomic

experiment. Since 3D EM is still limited to volumes that do not routinely encompass entire mamma-

lian brains, the origin of a large fraction of input synapses remains thus unidentified in current high-

resolution connectomic experiments in mammals.

At the same time, the labeling of multiple neuronal populations and their axonal projections by

fluorescent dyes visible in LM is routine (Livet et al., 2007; Mao et al., 2011; D’Souza et al., 2016).

Combining light-microscopic fluorescent labels in axons from multiple sources with large-scale 3D

EM would be ideal. Such direct correlative light- and electron microscopy (CLEM) has been success-

ful for high-resolution subcellular label localization (Agronskaia et al., 2008; Murphy et al.,

2011; Liv et al., 2013) and synaptic identification (Micheva and Smith, 2007; Rah et al., 2013), but
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Figure 1. FluoEM applications and concept. (a) Most local circuits in mammalian brains can be mapped densely

by modern 3D EM (gray neurons), but the source of a majority of the relevant input axons remain unidentified

(colored), because the projections arise from distal brain regions (see sketch on the left). Examples show upper

layers of cortex, Amygdala and Striatum with dominant input from other cortices (Cx), Thalamus (Thal.),

Hippocampus (HC), Substantia Nigra (SNi). Deciphering the connectomic logic of these inputs within a densely

imaged neuronal circuit requires parallel axonal labels in a single EM experiment. Mapping color-encoded

information on multiple axonal origins from LM data into 3D EM data useable for connectomic reconstruction in

mammalian nervous tissue is the goal of the presented method. (b) A brain tissue sample containing fluorescently

labeled axons is volume imaged first using confocal laser scanning microscopy (LM) and then using 3D electron

microscopy (EM). The fluorescently labeled axons (red and green) contained in the LM dataset are then matched

to the corresponding axons in the EM dataset (black and white) solely based on structural constraints (see b-d),

without chemical label conversion or artificial fiducial marks. (c) Coarse LM-EM volume registration based on

intrinsic fiducials such as blood vessels (blue) and somata (yellow) can be routinely achieved at a registration

precision lalign of about 5 –10 mm (Bock et al., 2011; Briggman et al., 2011). (d) The path length drecon over which

fluorescently labeled axons (green and red) in a volume LM dataset are clearly reconstructable depends mostly on

the labeling density in the respective fluorescence channel. Blue, blood vessels (B.v.). (e) Axons (grey) traversing a

common bounding box (blue) of extent lalign become increasingly distinguishable with increasing distance from

the common origin. After a distance dunique, a given axonal trajectory is unique, that is no other axon from the

center bounding box is still closer than lalign . Since 3D EM allows the reconstruction of all axons traversing a given

bounding box, dunique can be determined (see Figure 2). If axons can be reconstructed at the LM level for a path

length drecon (c) that is similar to or larger than the typical axonal uniqueness length dunique (d), the FluoEM

approach can in principle be successful.

DOI: https://doi.org/10.7554/eLife.38976.002
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can so far not be combined with 3D EM at both resolution and scale allowing for dense large-scale

circuit mapping in mammalian neuropil.

Similarly, en-bloc immunolabeling in conjunction with EM is limited to thin tissue slices (Faulk and

Taylor, 1971; Pallotto et al., 2015). Approaches to interlace EM and LM imaging on alternating tis-

sue slices, though successfully applied in invertebrates (Shahidi et al., 2015), impede dense EM-

based circuit reconstruction in mammalian nervous tissue. Rather, methods to obtain electron-dense

labels in a subset of neurons have been developed over the decades based on induced axonal

degeneration (Gray and Hamlyn, 1962; Colonnier, 1964; White, 1978), introduction of HRP

(Hersch and White, 1981; Hamos et al., 1985; Horikawa and Armstrong, 1988; Anderson et al.,

1994a; Anderson et al., 1994b; Markram et al., 1997; da Costa and Martin, 2011) or fluoro-

phores (Maranto, 1982; Grabenbauer et al., 2005; Knott et al., 2009) into a subset of neurons

which could be utilized to create electron contrast via enzymatic or photo-oxidative DAB polymeriza-

tion. More recent improvements enabled the genetically targeted expression of electron-dense

labels in diverse cellular compartments, potentially allowing to encode multiple label classes in a sin-

gle EM experiment (Shu et al., 2011; Martell et al., 2012; Atasoy et al., 2014; Lam et al., 2015;

Joesch et al., 2016). However, generating multiple electron-dense label classes in the very same

experiment while ensuring ultrastructural preservation is challenging and to our knowledge has been

accomplished in Drosophila (Lin et al., 2016) but so far not in mammals. Furthermore, the number

of cellular compartments usable for such axonal identification may be rather limited.

Methods to directly co-register light microscopic labels in axons and dendrites with 3D EM data

(Bishop et al., 2011; Maco et al., 2013; Gala et al., 2017) have been restricted to local volumes of

up to 10 mm on a side, using LM-burnt fiducial marks visible in EM; these do not scale to the large

volumes required for neuronal circuit reconstruction (sized hundreds of micrometers per dimension,

that is at least 1000-fold larger). Direct co-alignment between fluorescently labeled cell bodies and

EM data has been routinely applied (Bock et al., 2011; Briggman et al., 2011; Lee et al., 2016;

Tsang et al., 2018), but provides LM-to-EM alignment only at a coarse scale that does not allow for

the identification of single axons.

Apart from the experimental limitations currently hampering the use of multi-color labels in large

3D EM data, current computational approaches are challenged when attempting submicron registra-

tion precision of neurites in volumes required for connectomics (~106 mm3 or larger). Previously pro-

posed multi-modal graph-based neurite registration (Serradell et al., 2012; Fua and Knott, 2015;

Serradell et al., 2015) can in principle be used for LM-to-EM morphological matching, but did not

yet scale to graphs of thousands or tens of thousands of nodes as required for connectomics.

Thus, a method that could directly employ the full multi-color space of LM in large 3D tissue sam-

ples while enabling dense EM-based circuit reconstruction would be ideal. Here, we report FluoEM,

a set of experimental and computational tools to achieve this goal. Instead of directly attempting

alignment of LM-labeled axons to the EM dataset at the nanometer scale, we exploit the availability

of locally dense neurite reconstructions in current volume EM. Here, the alignment problem can be

re-formulated as identifying the most likely axon (out of all axons, reconstructed in EM) that best

explains an LM-imaged axonal fluorescence signal. We show that this is a well-constrained problem

based on the actual geometry of axonal fibers in nerve tissue from mouse cerebral cortex. We report

the experimental methods allowing for subsequent correlative imaging of samples in LM and EM

and the computational tools to register the labeled LM axons to their EM correspondences. We

exemplify our method for long-range inputs to layer 1 of mouse cortex.

Results
The FluoEM workflow (Figure 1b) comprised the following steps: acquisition of a 3D fluorescence-

LM dataset from a given piece of tissue; 3D imaging of that very same piece of tissue in the electron

microscope; reconstruction of the fluorescently labeled axons in the LM data; reconstruction of

locally all axons in small subvolumes of the EM data; computational determination of the most likely

EM axons that explain the LM signal.

In a first step, we used blood vessels as intrinsic fiducials in the neuropil to obtain a coarse co-reg-

istration between LM and EM (Figure 1b). Coarse LM-EM registration based on cell bodies and

blood vessels has been successfully performed before (Bock et al., 2011; Briggman et al., 2011)

and is expected to yield an alignment precision lalign of about 5–10 mm (Figure 1c). We next had to
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Figure 2. FluoEM proof-of-principle measurements. (a–c) Measurement of the length drecon over which axons in LM

fluorescence data are faithfully reconstructable (see Fig. 1d). (a) Experimental timeline: Injection of a fluorescent-

protein (FP) expressing adeno-associated virus at postnatal day 28 (AAV.eGFP into M1 cortex, AAV.tdTomato into

S2 cortex of a wild-type C57BL/6j mouse); transcardial perfusion, fixation, sample extraction from cortical L1 at

postnatal day 46 followed by confocal volume imaging. (b) Rendering of a subvolume of the three-channel

confocal image stack showing axonal long-range projections from M1 cortex (green), S2 cortex (red) as well as

stained blood vessels (blue). (c) Histogram of the reconstructable pathlength (drecon) for the fluorescently stained

long-range axons (red, green) in the example LM dataset (b) based on two independent expert annotations (light

and dark colors; median drecon of 28 mm and 33 mm (green channel, n = 115 and 88) and 88 mm and 107 mm (red

channel, n = 56 and 47) for the two annotators, respectively). Dashed lines: cumulative axon fraction per annotator

and channel. Note that annotators were explicitly asked to stop reconstructions whenever any ambiguity or

uncertainty occurred, thus biasing these reconstructions to shorter length. (d–k), EM-based measurements of the

length dunique over which the trajectory of axons becomes unique in several cortical layers. (d) Renderings of three

Figure 2 continued on next page
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determine the typical length of faithful 3D axon reconstruction drecon in fluorescence data

(Figure 1d). Then, the problem of matching EM axons to LM data can be phrased as follows

(Figure 1e): Given all axons that traverse a cube of edge length lalign in the EM data, will the trajec-

tory of these axons become unique on a length scale dunique that is smaller than or comparable to the

LM-reconstruction length drecon: dunique (lalign) � drecon? In other words: What is the travel length dunique

after which all axons from a center cube of size lalign will have no other of these axons closer

than lalign?

In order to understand whether this approach could work, we had to measure drecon in LM data

with realistic labeling density and determine dunique for a realistic lalign in EM data. These measure-

ments are reported next, followed by a proof-of-principle co-registration experiment and results

from the virtual labeling of axons in EM data.

Reconstruction length and axon uniqueness
We first performed a fluorescence imaging experiment (Figure 2a–c) in which we injected adeno-

associated viruses expressing fluorescent markers into the primary motor cortex (M1; virus express-

ing the green marker eGFP) and the secondary somatosensory cortex (S2; virus expressing the red

marker tdTomato) of a 28-day-old mouse, followed by transcardial perfusion and tissue extraction at

46 days of age. Using a confocal laser scanning microscope, we then acquired a dataset sized (828

� 828 � 75) mm3 at a voxel size of (104 � 104 � 444) nm3 from layer 1 of a part of cortex in which

both of these projections converged (located to lateral parietal association cortex (LPtA),

Figure 2b). We then 3D-reconstructed all axons traversing a (40 � 40 � 48) mm3 bounding box in

this LM image dataset using our annotation tool webKnossos (Boergens et al., 2017) and measured

the length over which the axons were faithfully reconstructable as judged by expert annotators (for

Figure 2 continued

3D EM datasets in layers 1, 2/3 and 4 of mouse cortex. (e) Skeleton reconstructions in the L1 3D EM dataset of all

220 axons (black) that traversed a center bounding box (blue) of edge length lalign = 5 mm. (f) Determination of the

uniqueness length dunique for a given axon (black) by counting the number of other axons (gray) that were within the

same seeding volume (blue box) and remain within a distance of no more than lalign from the reference axon for

increasing distances d from the center box. dunique was defined as the Euclidean distance from the center box at

which no other axon persistently was at less than lalign distance from the reference axon (red: at least one

neighboring axon, blue: no more neighboring axon). (g) Axonal uniqueness length dunique in cortical L1 for all

n = 220 axons from the center bounding box (see e). Number of neighboring axons for each axon (black) and the

combined fraction of unique axons (blue) over Euclidean distance from the bounding box center. Note that at

d90unique= 35 mm the trajectory of 90% of all axons has become unique (dashed blue line). For three of 220 axons, one

or two other axons remained in lalign proximity within the dataset (red triangles). (h,i) Axonal uniqueness length in

two additional 3D EM datasets from L2/3 (h, n = 207 axons) and L4 (i, n = 128 axons), labels as as in g. (j) Box plot

of uniqueness length per axon for cortical layers 1-4 (from g-i). Boxes indicate (10th, 90th)-percentiles, whiskers

indicate (5th, 95th)-percentiles, red crosses indicate outliers. (k) Effect of the coarse alignment precision lalign on

axonal uniqueness length d90unique (resampled for smaller lalign = 1, 2, 3, 4 mm, see Materials and methods).

DOI: https://doi.org/10.7554/eLife.38976.003

The following source data and figure supplement are available for figure 2:

Source data 1. Axonal uniqueness analysis for cortical layer 1 (Figure 2g).

DOI: https://doi.org/10.7554/eLife.38976.005

Source data 2. Axonal uniqueness analysis for cortical layer 2/3 (Figure 2h).

DOI: https://doi.org/10.7554/eLife.38976.006

Source data 3. Axonal uniqueness analysis for cortical layer 4 (Figure 2i).

DOI: https://doi.org/10.7554/eLife.38976.007

Source data 4. Axonal uniqueness summary boxplot (Figure 2j).

DOI: https://doi.org/10.7554/eLife.38976.008

Source data 5. Axonal uniqueness dependence on alignment error (Figure 2k).

DOI: https://doi.org/10.7554/eLife.38976.009

Figure supplement 1. Axonal uniqueness length dunique for different cortical layers corrected for numbers of

contained axons.

DOI: https://doi.org/10.7554/eLife.38976.004
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this we asked the annotators to stop reconstructing whenever they encountered a location of any

ambiguity, the loss of axon continuity or an unclear branching). The reconstruction length drecon per

axon was 70 ± 44 mm (mean ± s.d., n = 46 axons) for the green and 134 ± 62 mm (n = 42 axons) for

the red fluorescence channel. Ninety-five percent of axons were reconstructable above 20 mm

length, some for up to 200 mm (Figure 2c, independent reconstruction by two experts).

We then measured the length dunique over which the trajectory of axons in cortex becomes unique,

assuming a macroscopic alignment precision of lalign = 5 mm (Figure 2d–k). For this, we acquired a

3D EM dataset sized (130 x 110 x 85) mm3 at a voxel size of (11.24 x 11.24 x 30) nm3 from layer 1 of

LPtA cortex (Figure 2d,e) using SBEM (Denk and Horstmann, 2004) and reconstructed all n = 220

axons that traversed a cubic bounding box of size (5 x 5 x 5) mm3 in the center of the dataset

(Figure 2e, blue box). We then analyzed for each axon how many of the other 219 axons were still

within lalign proximity at a Euclidean distance d from the center cube (Figure 2f). For a given axon,

the uniqueness length was then computed as the distance after which no other axon was in

the lalign-surround. Figure 2g shows the number of remaining axons after distance d for a dense

reconstruction of axons in L1 of mouse cortex. The uniqueness length per axon was 22 ± 10 mm

(mean ± s.d., range 7 – 78 mm, n = 220 axons); after 31, 35, 41 and 69 mm, 85%, 90%, 95% and 98%

of axons had no other axon in their proximity, respectively. We repeated this analysis in two addi-

tional 3D EM datasets obtained from layers 2/3 and 4 of mouse somatosensory cortex (datasets

2012-09-28_ex145_07x2 and 2012-11-23_ex144_st08x2, KM Boergens & MH, unpublished, Figures

2h,i). Here, uniqueness lengths per axon were 21 ± 9 mm (mean ± s.d., range 7 – 62 mm, n = 214,

L2/3) and 17 ± 8 mm (mean ± s.d., range 6 – 55 mm, n = 128, L4), with 90% of axons unique after

d90unique= 35 mmin L2/3 and d90unique= 32 mm in L4 (Fig. 2j, d90uniquewas indistinguishable between layers 1,

2/3 and 4, Figure 2—figure supplement 1).

Importantly, when comparing d90unique in layer 1 as determined in 3D EM data to the reconstruction

lengths drecon obtained in the fluorescence datasets (Figure 2c), we find that about 45% (green chan-

nel) and about 80% (red channel) of the faithfully LM-reconstructed axonal stretches were at least of

length d90unique. Since for a first LM-EM co-registration a set of the longest LM-reconstructable axons

can be used, these data strongly suggested that the FluoEM approach for matching-based co-align-

ment between LM and EM reconstructed axons could in principle be successful. Furthermore, we

expected the uniqueness length d90unique to depend on the macroscopic alignment precision lalign

achieved by the blood-vessel-based coarse pre-registration of the LM and EM datasets (Figure 2k).

When re-analyzing our dense axonal reconstructions in the 3D EM dataset from L1 for smaller lalign,

we find that the uniqueness length strongly decreased for smaller lalign (to d90unique = 5 mm at

lalign = 1 mm; d90unique ¼ d90recon(eGFP) = 11 mm at lalign = 2 mm; d90unique ¼ d90recon(tdTomato) = 20 mm

at lalign = 3 mm).

Correlated LM and 3D EM dataset acquisition
We then set out to perform correlated 3D LM-EM imaging for the application of FluoEM (Figure 3).

For this, we continued the experiment described above (Figure 2a) and acquired an additional fluo-

rescence channel to image blood vessels (during perfusion, the rinsing solution was supplemented

with DiD, a lipophilic dye for blood vessel staining with fluorescence in the far red spectrum, around

650 nm). Then we applied a slightly modified version of our standard volume EM staining protocol

(Hua et al., 2015) to the tissue block (see Materials and methods), embedded and mounted the

sample and imaged it using SBEM (Denk and Horstmann, 2004) (Figure 3a). We first acquired EM

images with a large field of view (dataset dimensions (1500 � 1000 � 10) mm3) at lower resolution of

(270 � 270 � 200) nm3 to identify the location of the LM-imaged dataset relative to the EM imaged

sample (Figure 3b,c). For this, we used the pattern of superficial blood vessels as coarse

alignment fiducials (Figure 3d,e). We then acquired a high-resolution 3D EM dataset sized

(130 � 110 � 85) mm3 at a voxel size of (11.24 � 11.24 � 30) nm3 in a region previously imaged

using LM with suitable fluorescent labeling density (Figure 3c,g). In both the high-resolution EM

dataset and the corresponding LM volume we then reconstructed the blood vessels (Figure 3h,i)

and annotated their branch points as control points for fitting a coarse affine transformation ATBV
from the LM to the high-resolution EM dataset (Figure 3h–n, n = 7 control points). To estimate the

precision of this coarse alignment, we measured its residuals (Figure 3o; 2.7 ± 1.1 mm, mean ± s.d.,
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n = 7, median = 2.7 mm). Since this coarse alignment precision was well in the range previously

assumed for the analysis of axonal uniqueness (lalign » 5 mm, Figure 3g–k), we then attempted a first

LM-to-EM matching.
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blood vessel bifurcation (asterisk indicates cp6, see h-k) and the overlay (n) of the affine transformed LM blood vessel segmentation with EM. Arrows

indicate registration residual, a measure of the coarse alignment precision lalign. (o) Alignment precision lalign reported as residuals of control point

alignment along dataset depth (denoted with z) (mean: 2.7 ± 1.1 mm, median: 2.7 mm) after affine transformation ATBV.

DOI: https://doi.org/10.7554/eLife.38976.010

The following source data is available for figure 3:

Source data 1. Blood vessel based affine registration error (Figure 3o).

DOI: https://doi.org/10.7554/eLife.38976.011
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LM-to-EM axon matching
We chose an axon next to a blood vessel in the LM data (Figure 4a). The axon was skeleton-recon-

structed at the LM level (Figure 4b) using webKnossos (Boergens et al., 2017). We then trans-

formed this LM reconstruction (path length of 105 mm) to the EM dataset using the coarse

transformation ATBV based on blood vessel correspondence as determined before (Figure 4c). Evi-

dently, based solely on this coarse transformation, an identification of the corresponding axon at the

EM level was impossible (Figure 4d). Rather, we then defined a cubic region sized (5 mm)3 in the EM

data next to the blood vessel at which the LM reconstruction had been seeded (Figure 4e,f) and

reconstructed all axons that traversed that region in the EM dataset (Figure 4g, n = 193 axons). We

then used a spherical search kernel with 5 mm radius (Figure 2f) to determine which of the 193 EM-

reconstructed axons were within that surround of the transformed LM-reconstructed axon along all

of its trajectory (Figure 4h,i). Beyond a distance of 42 mm along the transformed LM axon, only one

candidate EM-reconstructed axon remained persistently within the search kernel (Figure 4i). So, in

fact, for this example fluorescent axon, we had found a corresponding axon at the EM level that

matched its trajectory.

But how could we be sure that this EM axon was the one that had given rise to the fluorescence

signal at the LM level? We first investigated the detailed morphology of this axon and identified axo-

nal varicosities in the EM data. We then reconstructed the varicosities visible in the LM data and

overlaid both (Figure 4j). The similarity was visually striking (distance between LM and EM varicosi-

ties, 0.7 mm ± 0.6 (mean ± s.d., n = 11); distance between LM and random EM varicosity distribu-

tions: 4.9 mm ± 2.1, (mean ± s.d., n = 11 varicosities, n = 105 draws, p < 10�5, Randomization test,

Figure 4—figure supplement 1)). With this, we had found the EM axon that most likely explained

the fluorescence signal reconstructed in the LM dataset (Figure 4k).

We then continued to match other fluorescent axons given this first matched axon (Figure 5). For

this, we chose an axon in the LM data in proximity to the previously matched axon and selected an

LM varicosity close to the axonal apposition as a seed point for the correspondence search in the

EM data (Figure 5a). Since each matched axon provided additional registration constraints beyond

the initial blood-vessel-based constraints, we could now use each matched axon to further refine an

elastic-free-form LM-to-EM transformation using the matched varicosities, branchpoints and other

prominent structural features of the axons seen in both LM and EM (Figure 4b,k). The iteratively

refined registration together with the usage of varicosities as search criteria allowed us to substan-

tially reduce the work load for matching subsequent fluorescent axons to their EM counterparts

(Figure 5b–e; in this example 34 axons were within a (2 � 2 � 3) mm3 search volume around the LM-

varicosity, but only six of these had a varicosity). While the first match involved the reconstruction of

193 axons, the subsequent matches were successful after only several or even one reconstruction

attempt and a few minutes of reconstruction time (Figure 5e). The fact that all subsequent matches

were successful (see varicosity correspondence as shown in Figure 5f) implies that the previous

matches were correct (since the probability of finding a correctly matched axon by chance after sev-

eral chance matches is virtually zero). Using this strategy, we matched a total of 38 axons (27 in the

red fluorescence channel, 11 in the green channel), using a total of 284 control points (7.5 ± 3.8 cps

per axon (mean ± s.d), Figure 5g).

To quantify the improved registration precision obtained from the iteratively constrained LM-to-

EM axon matches, we measured the residual registration error of both affine and free-form registra-

tion (constrained by a random subset of 250 control points) on 30 other control points. Compared

to the affine registration, the residual registration error was reduced by one third from 725 ± 408 nm

(mean ± s.d) to 487 ± 290 nm (mean ± s.d, Figure 5h; Figure 5—figure supplement 1), thus about

six-fold smaller than in the blood vessel based coarse pre-alignment obtained before (cf. Figure 3o;

see Figure 5i for dependence on control point number).

To test whether we could perform a close-to-complete matching of LM-to-EM reconstructions for

a certain depth range of the fluorescence dataset we matched all clearly visible fluorescently labelled

axons at a depth of 17–20 mm in the red (tdTomato) channel (n = 27 axons, total path length of

3 mm). We then computed a segmentation of the LM data and measured the fraction of the seg-

mentation voxels overlapping with the EM-matched reconstructions (Figure 5j–n). We found that in

fact about 90% (86 ± 3%, mean ± s.d, n = 7 LM image planes) of the fluorescent voxels were

explained by the matched EM axons in this depth range (Figure 5o).
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In summary, investing a total of 195 work hours (178.8 hr for the first axon; 16.6 hr for the remain-

ing axons) we obtained the EM equivalents of 38 fluorescently labeled axons in two fluorescence

channels (total axonal path length of 4.6 mm). The total reported time included LM-to-EM matching

(181.1 hr), full axon reconstruction in EM (4.8 hr) and control point placement in LM and EM (9.5 hr).

Since the matching of the first axon consumed most invested time, we checked whether by using
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Figure 4. Initial LM-to-EM axon matching. (a,b) LM image plane showing an axon (green) overlaid with its LM-based skeleton reconstruction (ax1LM,

black) and a nearby blood vessel (B.v., blue) bifurcation (a, https://wklink.org/1399). Dashed rectangle, region magnified in (b, https://wklink.org/5406).

(c,d) EM image plane showing the blood vessel (B.v.) corresponding to the vessel shown in (a,b) overlaid with the coarse affine transformation (see

Figure 3) of the LM-based axon reconstruction ax1LM
AT; magnified in d. Note that ax1LM

AT does not match the ultrastructural features at high-

resolution EM (d) due to the limited precision of ATBV. (e,f), EM plane overlaid with ax1LM
AT (as shown in c) with bounding box for dense axon

reconstruction (light blue) of edge length lalign = 5 mm; demagnified in f, dashed rectangle denotes region shown in e. (g) Skeleton reconstructions of

all n = 193 ax1EM candidates (light grey) traversing the search bounding box (as in e-f), https://wklink.org/5897 (h) Reconstructed ax1EM candidates (light

grey) and the transformed fluorescent axon skeleton ax1LM
AT (black). Five candidate EM reconstructed axons with the most similar trajectories as

ax1LM
AT highlighted in different colors. (i) Number of EM-reconstructed axons persistently within the lalign neighborhood of the LM-based template

axon ax1LM
AT. Note that at a distance of 43 mm from the seed center (e-h), only one possible ax1EM candidate (green) remains. (j) Overlay of ax1LM

AT

and the most likely ax1EM candidate reconstruction. Axonal varicosities (filled circles) were independently annotated in LM and EM. Note the strong

resemblance of the varicosity arrangements indicating that ax1EM is the correctly matched EM equivalent of the LM signal (see Figure 4—figure

supplement 1) for statistical analysis). (k) EM plane with overlaid ax1EM skeleton (dark green) and volume annotation of the corresponding EM axon

ultrastructure (transparent green), https://wklink.org/3268.

DOI: https://doi.org/10.7554/eLife.38976.012

The following source data and figure supplement are available for figure 4:

Source data 1. Axonal uniqueness analysis for initial axon match (Figure 4i).

DOI: https://doi.org/10.7554/eLife.38976.014

Figure supplement 1. Similarity of matched varicosity patterns between LM and EM.

DOI: https://doi.org/10.7554/eLife.38976.013
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Figure 5. Iterative LM-to-EM axon matching. (a) Initial axon match ax1LM and nearby axon ax2LM with a varicosity in the proximity, both reconstructed in

LM, https://wklink.org/4334. (b) Matched axon ax1EM (light green) and trajectory of axon 2 (ax2LM
T) reconstructed at LM and transformed to EM (dashed

red line) using a transformation T that was constrained using structural features of the initially matched ax1 (eight control points), https://wklink.org/

3305. (c) Search volume sized (2 � 2� 3 ) mm3 (blue box) around the varicosity of ax2LM
T (see a-b) containing 34 candidate axons (gray) but only six with

candidate varicosities (colored circles). One candidate axon had a similar trajectory as ax2LM
T (right inset), identifying it as the correct match (see also

varicosity pattern in f). (d) Varicosity in EM of axon ax2EM (red shading, see search template in b), https://wklink.org/3820. (e) Reconstruction effort in

terms of number of reconstructed axons (black) and time (grey) required to perform 38 iterative LM-to-EM axon matches. Total effort including full EM-

based axon reconstruction and control point placement in LM and EM (dashed grey). (f) Overlay of EM (light colors) and affine transformed LM (dark

colors) axon reconstructions of six exemplary matched axon pairs with locations of axonal varicosities (independently reconstructed at LM and EM level,

respectively). Note the similarity of axon trajectory and varicosity positions, also for the 30th matched axon. EM axons were offset by 6 mm for visibility,

see g for actual overlap quality. (g) Overlay of EM-reconstructed axon skeletons (black) with the matched LM-reconstructed skeletons transformed using

a free-form transformation iteratively constrained by control points (CPs, blue circles) obtained from each consecutive axon match (shown

transformation used a random subset of 250 (of 284) CPs). (h) Residual registration error of the match shown in g computed as the Euclidean distances ||

cpEM – cpLM
FT || between n = 30 randomly picked CP pairs that had not been previously used to constrain the registration. Sample mean (blue line) and

standard deviation (blue shading). (i) Average residual registration error (mean ± s.d., computed as in h) in dependence of the number of randomly

chosen control points (CPs) used to constrain the transformation (n = 10 bootstrapped CP sets, each). (j–n) Locally complete LM-to-EM matching of

fluorescently labeled axons. One example image plane of LM dataset (at 18 mm depth) shown with EM-matched fluorescence signal fraction (blue) and

yet unmatched segments (orange). To compute the matched fluorescence signal fraction, the raw LM data (k) was binarized and segmented (l, see

Materials and methods), overlaid with the EM-matched LM axon skeleton reconstructions (m) and only those segments overlapping with skeletons were

Figure 5 continued on next page
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the distribution of varicosities along EM and LM axons also for the initial match the time investment

could be further reduced. In fact, when asking a second independent expert to perform the first LM-

to-EM axonal match by also using varicosities as a search criterion, the invested total time was only

30.3 min for the initial match (7.5 min for EM-to-LM matching, 6.8 min full axon reconstruction in

EM, 16.0 min control point placement in LM and EM). While this reduction in matching effort is well

applicable to settings in which axonal varicosities can be detected, the more general but more labo-

rious FluoEM approach of locally dense axonal reconstruction is expected to be applicable to other

settings (for example transit axons that rarely form synapses). Together, we conclude that FluoEM is

effective and efficient for LM-to-EM registration.

Comparison of axon and synapse detection in LM and EM
The axons matched between the LM and EM volumes provided a dataset to calibrate in hindsight,

how well axonal trajectories and branches can be reconstructed and how faithfully synapses can be

detected in fluorescence LM data (Figure 6).

We first asked a different expert annotator to reconstruct the previously matched axons in the

LM dataset, this time without an explicit bias to stop reconstruction at uncertain locations (cf.

Figure 2c), and without knowledge of the matched EM axon’s shape or trajectory. We then com-

pared these axonal reconstructions performed in the LM dataset with the corresponding EM trajec-

tories of the axons, which we considered the ground truth for the detection of branchpoints, the

determination of the axonal morphology and the presence of presynaptic boutons (Figure 6a–f). We

found that while a large fraction of axons were reconstructed faithfully at the LM level (27 of 38

axons, 71%), in 29% of cases the LM reconstruction contained an error (Figure 6f). The largest frac-

tion of errors was related to incorrectly terminated reconstructions (‘stop’, 38%, Figure 6b,f), fol-

lowed by an incorrect continuation of the LM-reconstructed axon at locations where multiple

fluorescent axons overlapped (31% of errors, Figure 6c,f). Furthermore, missed (23%) and added

(8%) branches occurred (Figure 6d,e,f).

Together, this data illustrates that at the chosen labeling density, fluorescence-based axon recon-

struction in cortex is error-prone. Labeling density was 1.2 ± 0.2% (mean ± s.d., n = 115 planes) for

the tdTomato channel and 1.4 ± 0.4% (mean ± s.d., n = 115 planes) for the eGFP channel; error rates

evaluated separately for axons in each channel were 30% of axons (tdTomato) and 27% of axons

(eGFP), respectively.

We then identified 255 axonal varicosities in the LM data and investigated their ultrastructure at

the EM level based on the successfully matched axonal counterparts (Figure 6a,g–o). As the exam-

ples indicate (Figure 6g–m), many varicosities in the LM in fact correspond to presynaptic boutons

(63%, n = 161 of 255, Figure 6h,k,l). A substantial fraction of LM-varicosities, however, are without

evidence for a presynaptic specialization and instead contain only mitochondria (n = 54,

Figure 6g,j), or are hollow thickenings (n = 39, Figure 6i) or myelinated (n = 1, Figure 6m). Notably,

while the inference of synaptic boutons from LM varicosities was dependent on the size of the LM

Figure 5 continued

counted as matched (n). (o) Matched signal fraction (in fraction of matched voxels) over dataset depth. For a range of 17–20 mm depth (black line,

arrow), about 90% of the fluorescent voxels were explained by matched EM axons.

DOI: https://doi.org/10.7554/eLife.38976.015

The following source data and figure supplement are available for figure 5:

Source data 1. Reconstruction effort (Figure 5e).

DOI: https://doi.org/10.7554/eLife.38976.017

Source data 2 Axon based affine and free-form registration error (Figure 5h).

DOI: https://doi.org/10.7554/eLife.38976.018

Source data 3. Averaged axon based affine and free-form registration error depending on control point numbers (Figure 5i).

DOI: https://doi.org/10.7554/eLife.38976.019

Source data 4. Matched LM signal fraction (Figure 5o).

DOI: https://doi.org/10.7554/eLife.38976.020

Figure supplement 1. Deformations of axons in LM vs EM data.

DOI: https://doi.org/10.7554/eLife.38976.016
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Figure 6. Calibration of axons and synapses in 3D fluorescent data using FluoEM, and reproduction experiment. (a) Examples of axonal trajectories and

axonal varicosities in 3D LM data (Maximum-intensity projection from 42 image planes at 17–35 mm depth; dataset and color code as in Figure 3). (b–f)

Post-hoc comparison of axonal reconstructions in LM data and their EM counterparts as identified by FluoEM, which were considered ground truth.

Examples of LM reconstruction errors (b–e) and their prevalence (f). Note that while about 70% of axons were correctly reconstructed at the LM level,

for about 30%, reconstruction errors such as missed branches or incorrect continuations occurred. Direct links to example locations in the dataset for

viewing in webKnossos: b, https://wklink.org/1500 and https://wklink.org/8693; c, https://wklink.org/2441 and https://wklink.org/8447; d, https://wklink.

org/5600 and https://wklink.org/4519; e, https://wklink.org/1977 and https://wklink.org/6578. (g–m) Validation of presynaptic bouton detection in

fluorescence data: Examples of axonal varicosities imaged using LM (top row) and EM (bottom row). EM was used to determine synaptic (bouton) vs.

non-synaptic varicosities. Size of varicosity reported as sphere-equivalent diameter (see Materials and methods). Direct links to example locations in the

dataset for viewing in webKnossos: g, https://wklink.org/3721 and https://wklink.org/8170; h, https://wklink.org/6118 and https://wklink.org/7611; i,

https://wklink.org/7447 and https://wklink.org/3702; j, https://wklink.org/9694 and https://wklink.org/6772; k, https://wklink.org/4867 and https://wklink.

org/0276; l, https://wklink.org/7809 and https://wklink.org/2224; m, https://wklink.org/7269 and https://wklink.org/5832. (n) Relation between the sphere

equivalent diameter of axonal varicosities imaged in EM vs. LM for synaptic (red, bouton) and non-synaptic (black) varicosities. (o) Likelihood of

varicosities to be synaptic (red) vs. non-synaptic (black) over LM varicosity sphere equivalent diameter, computed from the respective (prevalence-

weighted, kernel density estimated) probability densities (dashed, see Materials and methods). (p–r) Second FluoEM experiment from upper cortical L1

in S1 cortex (p: LM dataset subvolume corresponding to (q); q: EM high-res dataset with dimensions) and (r) reconstruction effort for LM-to-EM

matching of axons (labels as in Figure 5e).

Figure 6 continued on next page
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varicosity (Figure 6n) with larger varicosities more likely synaptic, there was no LM varicosity size

range that allowed unequivocal inference of a synapse from the LM morphology (Figure 6n,o).

Reproduction experiment
Finally, in order to assure the reproducibility of FluoEM, we conducted a second correlated imaging

experiment in layer 1 of mouse S1 cortex (LM dataset sized (1027 � 820 � 84) mm3, EM dataset

sized (155 � 135 � 50) mm3, Figure 6p–q), in which we successfully matched 15 axons between LM

and EM as a proof of principle. The total time investment (Figure 6r) for the second matching exper-

iment was 10 hr, which included LM-to-EM axon matching (1.3 hr), full EM-based axon reconstruc-

tion (2.4 hr) and LM-EM control point placement (6.5 hr).

Discussion
We report FluoEM, a set of experimental and computational tools for the virtual labeling of multiple

axonal projection sources in connectomic 3D EM data of mammalian nervous tissue. At its core is

the notion that dense EM circuit reconstruction allows to reformulate the alignment between data

obtained at micrometer resolution (LM) to data obtained at nanometer resolution (EM) to the best-

matching between a sparse subset of labeled axons (LM) and all possible axons (EM). We find that in

mammalian neocortex, densely reconstructed axons have unique trajectories on a spatial scale that

is compatible with currently achievable 3D EM dataset sizes, allowing the FluoEM concept to be suc-

cessfully applied. With this, FluoEM allows the enriching of EM-based connectomes in mammalian

neuropil with the large range of multi-color encoded information already successfully expressed in

axons at the light-microscopic level.

One key prerequisite for FluoEM is the uniqueness of axonal trajectories in dense neuropil. We

have so far determined the uniqueness length for several layers of the mouse cerebral cortex (Fig-

ure 2), where this length is consistently below 40 mm (90th percentile, see Figure 2), thus in a range

that can be faithfully reconstructed at the LM level (Figure 2a–c). For a broad range of cortical and

subcortical nervous tissue (basal ganglia, thalamus, hypothalamus, nuclei of the brain stem etc.) in

which locally dense circuits coexist with incoming projection axons from distant sources, FluoEM can

be applied on the spatial scales described here. Cases in which dense neuropil contains highly aniso-

tropic axons (for example axon bundles in the white matter of mammalian brains) will likely imply a

longer scale on which axonal trajectories become unique, and therefore require longer reconstruc-

tion lengths in the fluorescence data.

We have developed FluoEM using a particular 3D EM imaging technique, SBEM (Denk and

Horstmann, 2004). Since FluoEM only relies on the underlying geometry of axonal trajectories,

which we have shown to be unique on scales achievable with all current 3D EM techniques

(Figure 2g–k), FluoEM is not restricted to the combination with SBEM. Rather, other 3D EM imaging

approaches, especially FIB-SEM (Heymann et al., 2006; Knott et al., 2008; Hayworth et al., 2015;

Xu et al., 2017) and ATUM-SEM (Schalek et al., 2011; Kasthuri et al., 2015) that provide faithful

axonal reconstructions over at least about 40–50 mm extent in three dimensions will be useable for

the presented approach.

While FluoEM in principle allows the identification of as many axonal projection sources in a single

connectomic experiment as can be encoded at the light-microscopic level, it is practically limited by

the number of fluorescence channels that can be acquired in sequence without exerting damage to

Figure 6 continued

DOI: https://doi.org/10.7554/eLife.38976.021

The following source data is available for figure 6:

Source data 1. Relation between sphere equivalent diameter in LM and EM for synaptic and non-synaptic axonal varicosities (Figure 6n).

DOI: https://doi.org/10.7554/eLife.38976.022

Source data 2. Sphere diameter dependent synaptic and non-synaptic varicosity likelihood (Figure 6o).

DOI: https://doi.org/10.7554/eLife.38976.023

Source data 3. Reconstruction effort reproduction experiment (Figure 6r).

DOI: https://doi.org/10.7554/eLife.38976.024
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the tissue. In our experiments, tissue exposed to 2 hr of continuous LM imaging with acquisition of

three parallel fluorescence channels was still well usable for subsequent 3D EM circuit reconstruction.

To acquire more fluorescence channels without increasing the local photon dose in the tissue, one

can exploit the fact that in FluoEM, it is not necessary to image the axons of interest in their entirety

at the LM level. Rather, it is sufficient to LM-image volumes of 40–50 mm in extent, as long as all

axons of interest pass through that volume, and to reconstruct the complete axons in EM. Therefore,

a setting in which the volume of interest is split into several subvolumes, in each of which a limited

number of fluorescence channels is acquired, could multiplex the color range of FluoEM (Figure 7a–

b) without increasing the exposure time in the LM step.

In LM imaging of mammalian nervous tissue, labeling density of axons poses a notorious limita-

tion as long as axonal trajectories were to be reconstructed from the LM data (labeling more than

about 1 in 1000 to 10,000 axons impedes reconstruction (Helmstaedter, 2013); and LM reconstruc-

tion errors may increase substantially with increased labeling density, see Figure 6b–f). With

FluoEM, labeling density is only limited by the need to follow axons over the uniqueness length (Fig-

ures 2 and 3). Since this depends on the overall alignment precision (Figure 2k), a setting in which

one fluorescence channel contains sparsely labeled axons to provide an accurate pre-alignment (see

Figure 5g,h), and the other fluorescence channels are densely labeled is a possible solution, in which

LM-reconstructable stretches of axons as short as 5 mm would be sufficient for co-registration

(Figures 2k and 5h). For the experiment described here, we titrated the labeling density by adjust-

ing the injection volume while keeping the virus titer constant (see Materials and methods). Depend-

ing on the distance and connectivity of the projection sources to the FluoEM target area this

parameter might need to be adjusted. An extreme example of sparse labeling could be the parallel

intracellular injection of two or more (neighboring) neurons in one part of cortex (Figure 7c) and the

investigation of their convergent projections in other parts of the brain (Figure 7c); in this case,

FluoEM could be used to study the synaptic output logic of multiple identified neurons at single-cell

and single-synapse level.

Finally, the reconstruction work load in FluoEM requires a quantitative discussion. In settings

where axonal varicosities can be used as additional constraints on the matching (Figure 5a–d), the

LM-to-EM match consumed about 20–30 min per axon (including the full EM reconstruction of the

axon and the placement of control points). With this, a full matching of a sparsely stained volume

a

b

c
LM

FluoEM

~ 50 µm ~ 10 - 100 mm

FluoEM

volumes

whole cell

filling

Figure 7. Possible extensions of FluoEM (a,b) Color multiplexing strategy to increase color space without

increasing photon dose in FluoEM. If labeled axons traverse a large volume, then 3D LM imaging can be split into

subvolumes of minimal dimension about 50 mm (given by drecon and dunique, see Figure 2) (a), and axon identity can

be propagated into the remaining volume via EM reconstruction (b) using the FluoEM approach. (c) Instead of

identifying input projections in dense 3D EM by fluorescence labeling, the output connectivity of (multiple)

fluorescently labeled neurons in convergent target regions could be studied using FluoEM (see sketch).

DOI: https://doi.org/10.7554/eLife.38976.025
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sized (1 � 1 � 0.1) mm3, for example a large area of layer one in the mouse neocortex, would thus

likely consume about 5300 work hours in FluoEM (using webKnossos (Boergens et al., 2017), see

Materials and methods for estimates). While this is a considerable time investment, it favorably com-

pares to other resource investments in biomedical imaging. Furthermore, with the development of

increasingly reliable automated approaches for the reconstruction of axons and synapses at the EM

level (Berning et al., 2015; Dorkenwald et al., 2017; Staffler et al., 2017; Januszewski et al.,

2018), a further speedup of FluoEM is conceivable in which partially automated matching contrib-

utes. In mammalian circuits where axons may not show local diameter variations that can be used for

co-registration, the FluoEM approach using dense axonal reconstruction (Figure 2) is applicable.

Together, the presented methods overcome the major hurdle of limited color space for identify-

ing multiple axonal input sources in parallel in large-scale and dense electron microscopic recon-

struction of mammalian neuronal circuits.

Materials and methods

Key resources table

Reagent type Designation
Source or
reference Identifiers Additional information

Strain, strain
background
(Adeno-associated virus)

AAV1.CAG.FLEX.EGFP
.WPRE.bGH

Penn Vector core AllenInstitute854 Lot: V3807TI-R-DL

Strain, strain
background
(Adeno-associated virus)

AAV1.CAG.FLEX.tdTomato
.WPRE.bGH

Penn Vector core AllenInstitute864 Lot: V3675TI-Pool

Strain, strain
background
(Adeno-associated virus)

AAV1.CamKII0.4.Cre.SV40 Penn Vector core Lot: CS0302

Chemical
compound, drug

1,1’-Dioctadecyl-3,3,3’,3’
-Tetramethylindodicarbocyanine

Invitrogen/Thermo
Fisher

D7757

Chemical
compound, drug

Paraformaldehyde Sigma Aldrich/Merck P6148

Chemical
compound, drug

Glutaraldehyde Serva 23116

Chemical
compound, drug

Sodium Cacodylate Serva 15540

Chemical
compound, drug

Osmium Tetroxide Serva 31253

Chemical
compound, drug

Ferrocyanide
(Potassium hexacyanoferrate
trihydrate)

Sigma Aldrich/Merck 60279

Chemical
compound, drug

Thiocarbohydrazide Sigma Aldrich/Merck 223220

Chemical
compound, drug

Uranyl acetate Serva 77870

Chemical
compound, drug

Lead (II) nitrate Sigma Aldrich/Merck 467790

Chemical
compound, drug

L-Aspartic acid Serva 14180

Commercial
assay or kit

Spurr low viscosity embedding kit Sigma Aldrich/Merck EM0300

Animal experiments
All experimental procedures were performed according to the law of animal experimentation issued

by the German Federal Government under the supervision of local ethics committees and according

to the guidelines of the Max Planck Society. The experimental procedures were approved by Regier-

ungspräsidium Darmstadt, V54 - 19c20/15 F126/1015.

Drawitsch et al. eLife 2018;7:e38976. DOI: https://doi.org/10.7554/eLife.38976 15 of 26

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.38976


Virus injection
Young adult (p28) male wild-type mice (C57BL/6 j) were anesthetized with isoflurane (induction: 4%,

maintenance: 2%) in medical oxygen and fixed in a stereotaxic frame (Model 1900, Kopf Instruments,

USA). The core body temperature was maintained at 37˚C using a feedback-controlled heating pad

(DC Temperature Control System, FHC, USA). Systemic analgesia was provided by subcutaneous

injection of 2 mg/kg Meloxicam (Metacam, Boeringer-Ingelheim, Germany) and 100 mg/kg Metami-

zol (Metamizol WDT, WDT, Germany) prior to surgery. Local anesthesia was provided by injecting

16.7 mg/kg Ropivacaine (Naropin, AstraZeneca, Switzerland) under the scalp. To anterogradely label

projections originating from M1 and S2 cortex, adeno-associated viruses expressing eGFP (AAV1.

CAG.FLEX.EGFP, 2.4 � 1013 GC/ml, Penn Vector Core, USA) and tdTomato (AAV1.CAG.FLEX.tdTo-

mato, 1.5 � 1013 GC/ml, Penn Vector Core, USA) were injected using freshly pulled 1.5 mm borosili-

cate glass capillaries at the following coordinates: 1.0 mm anterior of bregma, 1.0 mm lateral of the

midline, 0.7 mm below the cortical surface (M1) and 0.6 mm posterior of bregma, 4.1 mm lateral of

the midline, 1.3 mm below the cortical surface (S2). Both AAV.FP solutions were mixed in a 2:1 ratio

with AAV.Cre solution (AAV1.CamKII0.4.Cre, 4.8 � 1013 GC/ml, Penn Vector Core, USA) prior to

injection. At each site approximately 50 nl were injected using a pressure injection system (PDES,

NPI, Germany).

Transcardial perfusion
Three weeks after virus injection, mice were subcutaneously injected with 0.1 mg/kg Buprenorphine

(Buprenovet, Recipharm, France) and 100 mg/kg Metamizol. General aneasthesia was introduced

with 4% isoflurane and maintained with 3% isoflurane in medical oxygen. Mice were transcardially

perfused with 10–15 ml flushing solution containing a lipophilic far-red fluorescent dye for blood ves-

sel labeling (150 mM Sodium Cacodylate, 5 mM 1,1’-Dioctadecyl-3,3,3’,3’-Tetramethylindodicarbo-

cyanine (DiD, Thermo Fisher, USA), pH 7.4) followed by 50–60 ml fixative solution (80 mM Sodium

Cacodylate, 2.5% Paraformaldehyde, 1.25% Glutaraldehyde, 0.5% CaCl2, pH 7.4) using a syringe

pump (PHD Ultra, Harvard Apparatus, USA) at a flow rate of 10 ml / min. After perfusion, mice were

decapitated and the connective tissue around the skull was removed. The head was immersed in fix-

ative solution for approximately 24 hr at 4˚C.

Sampling
After extracting the brain from the skull and placing it in a dish filled with storage buffer (150 mM

Sodium Cacodylate, pH 7.4) coronal vibratome (HM650V, Thermo Fisher Scientific, USA) sections of

100–150 mm thickness were made until the target position along the rostro-caudal axis was reached

at 1.6 mm posterior of bregma. A coronal slab of 1 mm thickness was then cut off the remaining

brain from which a cylindrical sample containing cortical layers 1–5 was extracted from 1.3 mm lat-

eral of the midline using a medical 1.5 mm biopsy punch (Integra, Miltex, USA).

Confocal imaging
Prior to confocal imaging, the fixed brain tissue sample was washed for 30 min in storage buffer con-

taining a mild reducing agent (150 mM Sodium Cacodylate, 2 mM reduced Glutathion, pH 7.4) and

then transferred into a storage buffer-filled imaging chamber (Cover Well, Grace Bio-Labs, USA).

Using an inverted Confocal Laser Scanning Microscope (LSM 880, Zeiss, Germany) and a 40x water

objective (C-Apochromat 40x/1.2 W Korr FCS M27, Zeiss, Germany), a three-channel (eGFP labeled

axons, tdTomato labeled axons, DiD labeled blood vessels) image stack of dimensions (828 �

828 � 75) mm3 was acquired at a voxel size of (104 � 104 � 444) nm3 in a single scanning track using

488 nm and 561 nm laser lines.

EM staining
Immediately after imaging the sample was removed from the imaging chamber and immersed in 2%

OsO4 aqueous solution (Serva, Germany) in cacodylate buffer (150 mM, pH 7.4). After 90 min the

solution was replaced by 2.5% ferrocyanide (Sigma-Aldrich, USA) in cacodylate buffer (150 mM, pH

7.4) and incubated for another 90 min. The solution was subsequently exchanged for 2% OsO4 in

cacodylate buffer (150 mM, ph 7.4) and incubated for another 45 min. The sample was then washed

first for 30 min in cacodylate buffer and then for another 30 min in ultrapure water. Next, the sample
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was incubated in 1% thiocarbohydrazide (Sigma-Aldrich, USA) at 40˚C for 45 min and washed twice

in ultrapure water for 30 min each before immersing it in 2% unbuffered OsO4 aqueous solution.

After 90 min the sample was again washed twice for 30 min each in ultrapure water and subse-

quently immersed in 1% uranyl acetate (Serva, Germany) aqueous solution at 4˚C overnight. On the

next day, the sample (still immersed in uranyl acetate solution) was heated to 50˚C in an oven (Uni-

versal Oven Um, Memmert, Germany) for 120 min. After two washing steps with ultrapure water last-

ing 30 min each, the sample was incubated in a 20 mM lead aspartate (Sigma-Aldrich, USA) solution

(adjusted to pH 5 with 1N KOH) at 50˚C for 120 min. The sample was then washed twice in ultrapure

water again for 30 min each. Unless specified otherwise all steps were carried out at room

temperature.

EM embedding
After concluding the staining procedure the sample was dehydrated by immersing it for 30 min each

at 4˚C in a graded ethanol (Serva, Germany) series of 50% ethanol in ultrapure water, 75% ethanol in

ultrapure water and 100% ethanol, respectively. The sample was then immersed three times in ace-

tone (Serva, Germany) 30 min each at room temperature. After completing the dehydration steps,

the sample was infiltrated with a 1:1 mixture of acetone and Spurr’s resin (Sigma Aldrich, USA) with

a component ratio of 4.1 g ERL 4221, 0.95 g DER 736 and 5.9 g NSA and 1% DMAE at room tem-

perature for 12 hr on a 45 degree rotator in open 2 ml reaction tubes (Eppendorf, Germany). Infil-

trated samples were then incubated in pure resin for 6 hr, placed in embedding molds and cured in

a preheated oven at 70˚C for 48–72 hr.

EM stack acquisition
The embedded sample was trimmed with a diamond-head milling machine (EM Trim, Leica, Ger-

many) to a cube of approximately (1.5 � 1 � 1) mm3 dimension and mounted on an aluminium stub

with epoxy glue (Uhu Plus Schnellfest, Uhu, Germany) in tangential orientation, so that the pia mater

was located at the top of the block face. The thin layer of resin covering pia was carefully removed

with a diamond-knife ultramicrotome (UC7, Leica, Germany). The smoothed tissue block was then

gold-coated (ACE600, Leica, Germany) and placed in a custom-built SBEM microtome (courtesy of

W. Denk) mounted inside the chamber of a scanning electron microscope (FEI Verios, Thermo Fisher

Scientific, USA). Microtome movements and image acquisition were controlled using custom-written

software packages interfacing with motor controllers and the microscope software’s API. A low-reso-

lution image stack of dimensions (1500 � 1000 � 10) mm3 was acquired at a pixel size of (270 � 270)

nm2 and a cutting thickness of 200 nm. After correspondences with the confocal image stack were

successfully identified, a high resolution image stack sized (130 � 110 � 85) mm3 was acquired at a

pixel size of (11.24 � 11.24) nm2 and a cutting thickness of 30 nm (Figure 3).

Image post-processing
The LM image stack (Figure 2a–c, Figure 3) consisted of 16 � 153 (xy x z) image tiles (2048 � 2048

pixels each) acquired at eight bit color depth for each of the three color channels, resulting in 29 GB

of uncompressed data. The 2448 image tiles were stitched into a global reference frame using the

Zen software package (Zeiss, Germany). The LM image volume was then rotated so that the orienta-

tion of the superficial blood vessel pattern coarsely matched the orientation of the blood vessel pat-

tern visible in the EM overview images. The images were then converted into the Knossos

(Helmstaedter et al., 2011) format and transferred to a data-store hosted at the Max Planck Com-

pute Center in Garching from which they can be accessed via our online data viewer webKnossos

(Boergens et al., 2017, webknossos.org).

The EM image stack acquired was comprised of 20 � 2768 (xy x z) image tiles (3072 � 2048 pix-

els each) with eight bit color depth, resulting in 326 GB of uncompressed data. The 55360 resulting

tiles were stitched into a global reference frame using custom written Matlab software based on the

approach described in Briggman et al. (2011). However, instead of cross-correlation we used SURF

feature detection to estimate relative shift vectors and their confidence. We then used a weighted

least-squares approach to retrieve a robust globally optimal solution given these parameters. The

EM data was then also converted into the Knossos format and transferred to a data-store hosted at
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the Max Planck Compute Center in Garching from which they can be accessed via our online data

viewer webKnossos.

Measurement of LM axon reconstructable pathlength (drecon)
For estimating the distribution of the reconstructable pathlength drecon3 in the LM data, a (40 x 40 x

48) mm3 bounding box was placed in a subvolume of the dataset with representative labeling density

and all visible axons traversing this bounding box were skeleton-reconstructed independently by

two expert annotators using webKnossos. Then the path-lengths of the resulting skeleton represen-

tations were measured by calculating the cumulative sum of the Euclidian distances between all con-

nected nodes and a histogram over the distances was computed (Figure 2c).

Measurement of EM axon uniqueness pathlength (dunique)
To measure the uniqueness distance dunique of cortical axons in different cortical depths, a rectangular

bounding box of edge length lalign was placed at the center of each dataset and all axons traversing

this bounding box were reconstructed, resulting in a set of axon skeletons. To measure dunique for a

given axon axi a marching sphere with radius r » lalign was placed iteratively around each node nki

and all neighboring axons axj with at least one of their nodes nlj residing within the sphere so that

nki � nlj

















 � r were identified, resulting in a binary neighbor vector indicating the presence (true) or

absence (false) of each putative neighboring axon at each sphere (node) location. The results were

then sorted according to the Euclidian distance between the respective sphere (node) location and

the bounding box origin. Whenever a value of the distance sorted neighbor vector changed from

true to false at consecutive distances d and d þ 1 the respective distance d was considered the

dropout distance for a given neighbor axon axj. We define dunique and d90unique as the Euclidean distan-

ces from the origin for which all or 90% neighboring axons have dropped out, respectively

(Figure 2f,g–i).

Coarse LM-EM alignment
Based on the characteristic pattern of large superficial blood vessels visible both in the LM data and

the low-resolution EM data (Figure 3d,e) a coarse correspondence was visually established between

the two datasets. An approximate bounding box was applied to the LM dataset defining the sub-

volume corresponding to the acquired high resolution EM dataset. Subsequently, all blood vessels

were traced using webKnossos. Based on characteristic blood vessel bifurcations, seven pairs of

blood vessel skeleton nodes were defined as corresponding control point pairs CP ¼ CPEM ; CPLMð Þ

with CPEM ¼ cp1EM ; cp
2

EM ; . . . ; cp
7

EM

� 	

and CPLM ¼ cp1LM ; cp
2

LM ; . . . ; cp
7

LM

� 	

used to constrain a three-

dimensional affine transformation ATBV (Figure 3h,o).

Affine registration
Given a set of control point pairs and an initial scaling vector resulting from the ratio between the

nominal LM and EM voxel sizes we computed an initial affine transformation using Horn’s quater-

nion-based method (Horn, 1987). We then iteratively optimized the scaling vector by minimizing the

mean squareds residual registration error. We then applied the resulting transformation to the nodes

of skeleton reconstructed LM blood vessels or axons to obtain affine transformed skeletons regis-

tered to their corresponding structures in EM reference space.

Free-from registration
Given a set of control point pairs and an initial scaling vector we first computed the optimal affine

registration as described above. We then used a b-spline interpolator based approach (Lee et al.,

1997; Rueckert et al., 1999) to compute an optimal free-form registration given a set of control

points, an initial b-spline knot spacing and a number of bisecting mesh refinement steps. We found

a combination of 32 mm initial spacing and four refinement steps to give us an optimal compromise

between registration precision and robustness. We then applied the resulting deformation grid to

the nodes of skeleton reconstructed LM axons to obtain free-form transformed skeletons registered

to their corresponding structures in EM reference space.
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Initial axon matching
As a candidate for the initial axon matching an axon ax1LM in spatial vicinity of a blood vessel bifurca-

tion was picked and reconstructed in the LM dataset using webKnossos. The previously constrained

affine transformation was then used to transform ax1LM into the EM reference space so that

ATBV ax1LMð Þ ! ax1ATLM . Because ax1LM was chosen close to one of the corresponding blood vessel

bifurcations, it was possible to estimate the local affine transformation error by applying the same

transformation to the blood vessel skeletons and measuring the offset at the closest bifurcation.

Based on this offset, a local translative correction ATBV
trans was defined and used to locally correct the

offset of the first axon candidate: ATBV
trans ax1ATLM

� �

! ax1AT
0

LM : A bounding box was then defined around

a node n 2 N ax1AT
0

LM

� �

close to the blood vessel bifurcation and all axons traversing this bounding

box were reconstructed. The true corresponding axon ax1EM amongst all of these possible axon can-

didates was selected by the marching sphere method (see Materials and methods: measurement of

EM axon uniqueness pathlength, Figure 2, Figure 4i) followed by a validation based on varicosity

patterns (Figure 4j).

Iterative axon matching and free-form transformation
After successfully matching a given axon we used its varicosities and branchpoints as additional con-

straints to update our registration, thereby increasing local registration precision substantially. By

applying these updates and carefully choosing an axon in the spatial vicinity of a previously matched

as the next matching candidate, we were able to reduce the search volume from (5 mm)3 to (2–3

mm)3 depending on the distance of the seed point on the candidate axon to the closest previously

matched constraint and the general registration precision in that area. Furthermore, by using a vari-

cosity as a seed point around which the search volume would be centered we were able to even fur-

ther reduce the number potential EM candidates to only such axons displaying such a structural

feature within the reduced search volume (Figure 5a–d). Only if we did not succeed in finding the

match within the small bounding box, its volume was incrementally increased until the match was

found. Using this method, we were able to identify the match for every axon we attempted.

Time investment for axon matching
To assess the work hour investment when using FluoEM we recorded the total time required to find

a given LM-to-EM match using the internal time tracking in webKnossos. The work load for full EM-

based axon reconstruction was estimated using the average tracing speed in orthogonal webKnos-

sos tracing mode (Boergens et al., 2017) multiplied by the respective axon path length. For the

control point placement, we estimated an average time investment of 2 min per control point. In our

experience, this is a conservative estimate, since control point placement can be substantially accel-

erated when using transformed axon skeletons containing for example varicosity or branchpoint

annotations from one modality as a guiding template for the other modality. Control point manage-

ment and the handling of corresponding axon skeletons was carried out using the SkelReg Matlab

class, which is an important part of the FluoEM software package provided here (see https://gitlab.

mpcdf.mpg.de/connectomics/FluoEM; copy archived at https://github.com/elifesciences-publica-

tions/FluoEM).

Registration error measurements
The residual registration error of the blood vessel-based affine registration was measured by apply-

ing the affine transformation ATBV to the nodes of the LM blood vessel skeleton representations and

measuring the Euclidean distances between the EM control points CPEM and the transformed LM

control points CPAT
LM located on the respective skeletons. In this case we used the same

n CPresidualð Þ ¼ 7 control point pairs to constrain the transformation and measure the residuals

(Figure 3o).

The residual registration error of the axon-based affine registration was measured by applying

the affine transformation AT to the nodes of the LM axon skeleton representations and measuring

the Euclidean distances between the EM control points CPEM and the transformed LM control points

CPAT
LM located on the respective skeletons. We randomly picked n CPresidualð Þ ¼ 30 control point pairs,
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none of which had been used before to constrain the transformation, to measure the residuals

(Figure 5h).

The residual registration error of the axon-based free-form registration was measured by succes-

sively applying the affine transformation AT followed by the free-form transformation FT to the

nodes of the LM axon skeleton representations and measuring the Euclidean distances between the

EM control points CPEM and the transformed LM control points CPFT
LM located on the respective skel-

etons. We randomly picked n CPresidualð Þ ¼ 30 control point pairs, none of which had been used

before to constrain the transformation, to measure the residuals (Figure 5h).

To measure the effect the number of control points exerts on the residual registration error we

randomly picked n CPconstrainð Þ ¼ 5; 10; 25; 50; 75; 100; 150; 200; 250½ � control points from a popula-

tion of n CPtotalð Þ ¼ 284 control points and computed the registration. We then randomly picked an

additional n CPresidualð Þ ¼ 30 control points none of which were used in the step before for constrain-

ing the registration. We repeated this procedure 10 times for each number of control point pairs

and reported the average and standard deviation of the respective sample residual mean

(Figure 5i).

Varicosity diameter measurements
We define axon varicosities as roughly ellipsoid-shaped local diameter increases for EM and as

roughly ellipsoid-shaped local signal width and/or intensity increases for LM. The equivalent sphere

diameters d reported for the varicosities were calculated based on measured volumes V using

d ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3V=4p3

p

. EM varicosity volumes VEM were measured by first computing an over-segmentation

using SegEM (Berning et al., 2015), manually collecting segments belonging to a given varicosity

and summing the number of voxels multiplied by the respective voxel volume. LM varicosity volumes

were obtained by manually annotating the three principal axes of the ellipsoid-shaped varicosities,

extracting the intensity profiles along these axes and fitting Gaussian functions to them. Finally, VLM

was estimated as the ellipsoid volume resulting from the three full-width half-maximums of these

Gaussians relative to the local baseline intensity (Figure 6g–n).

Bouton and non-bouton likelihood estimation for varicosities
To estimate the likelihood of varicosities to be a synaptic bouton or not given its equivalent sphere

diameters, we performed a kernel density estimation (bandwidth 100 nm) on the distribution of

equivalent sphere diameters for the LM varicosities and weighted the estimated probability densities

with the relative prevalence of the bouton vs non-bouton class (Figure 6o, dashed lines). The result-

ing bouton and non-bouton probabilities were then normalized to the sum of these probabilities to

obtain the bouton and non-bouton likelihood (Figure 6o, solid lines), respectively.

Comparison of axon detection in LM and EM
To test the reliability of axon reconstruction in LM we asked an expert annotator to again reconstruct

all 38 axons that had been successfully matched before (by another expert), without knowledge of

their shape or trajectories. To initialize these reconstructions, we randomly selected a central skele-

ton node and its two direct neighbors from each axon (only nodes of node degree two were consid-

ered). The expert annotator was then instructed to complete the LM axon reconstructions based on

these initial locations using webKnossos; the expert was asked to reconstruct faithfully but also to

attempt a full axonal reconstruction (thus relieving the bias towards split reconstructions applied in

the calibrations of Figure 2c). The resulting reconstructions were then compared to the EM skele-

tons by visual inspection, and errors counted (Figure 6a–f).

FluoEM for larger volumes: extrapolation
In a (130 � 110 � 70) mm3 volume, we matched 38 axons constituting approximately 36% of the total

fluorescence signal in both color channels. Assuming an average matching time effort of 5 min per

axon, an average EM reconstruction time of 10 min per axon and an average control point place-

ment time of 15 min per axon, a total time effort of 19 hr would be required to match the volume

with 36% coverage. To achieve 100% coverage for the matched volume, 19 hr x (100% / 36%) » 53

hr would be necessary. Thus, in order to match a volume of (1000 � 1000 � 100) mm3 (comprising
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e.g. a substantial patch of cortex L1) one can estimate the time effort to be approximately 53 hr x

(1000 mm / 130 mm) x (1000 mm / 110 mm) x (100 mm / 70 mm) » 5300 hr.

Statistical tests
All statistical tests were performed using MATLAB.

To test whether the observed differences in d90unique (Figure 2j,k) between L1, L2/3 and L4 are

caused by the varying numbers of traversing axons encompassed in the (5 mm)3 bounding boxes (L1:

n = 220 axons, L2/3: n = 207 axons, L4: n = 128 axons), we repeatedly (n = 30 draws) bootstrapped

random subsamples of 128 axons from the L1 and L2/3 bounding box axon samples (without

replacement) and measured d90unique. In both cases (L1: p = 0.54, L2/3: p = 0.14), the bootstrapped

axon sets were indistinguishable from d90unique of the L4 bounding box axon sample (one sample

t-tests, see Figure 2—figure supplement 1).

To validate the initial axon match, we compared the similarity of the measured varicosity distribu-

tions on the LM axon and EM candidate axon (Figure 4j). To determine the probability of finding a

matching varicosity pattern by chance, we performed a randomization test in which we repeatedly

(n = 100,000 draws) assigned the measured number of EM varicosities (n = 11) to random positions

(nodes) on the EM skeleton. We then calculated the mean Euclidian distance between the measured

varicosity positions on the affine transformed LM axon and the (either measured or randomly drawn)

positions on the EM axon and found it is unlikely (p = 10�5) to find a match as good or better as the

match based on the actually measured varicosity positions (Figure 4—figure supplement 1).

Data and software availability
The fluorescence dataset and the 3D EM high-resolution and low-resolution datasets from L1 (Fig-

ures 2–6) are publicly available at demo.webknossos.org:

Low resolution EM dataset: https://demo.webknossos.org/datasets/FluoEM_2016-05-23_FD0144-

2_st001_v1/view

High resolution EM dataset: https://demo.webknossos.org/datasets/FluoEM_2016-05-26_

FD0144-2_v2s2s/view

Full field of view LM dataset: https://demo.webknossos.org/datasets/FluoEM_2016-06-02-

FD0144_2_Confocal/view

Alternatively, direct short-links to the 3D datasets are provided in the figure legends and can be

used to directly jump to the position and field of view as displayed in the respective figure panel.

The raw data for the reproduction experiment (Figure 6p–r) is available upon reasonable

request.

All software routines are publicly available under the MIT license at fluoEM.brain.mpg.de

and https://gitlab.mpcdf.mpg.de/connectomics/FluoEM (copy archived at https://github.com/elifes-

ciences-publications/FluoEM).
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