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Abstract
Objective
To perform a longitudinal analysis of clinical features associated
with neurofibromatosis type 1 (NF1) based on demographic and
clinical characteristics and to apply a machine learning strategy to
determine feasibility of developing exploratory predictive models of
optic pathway glioma (OPG) and attention-deficit/hyperactivity
disorder (ADHD) in a pediatric NF1 cohort.

Methods
Using NF1 as a model system, we perform retrospective data analyses using a manually curated
NF1 clinical registry and electronic health record (EHR) information and develop machine
learning models. Data for 798 individuals were available, with 578 comprising the pediatric
cohort used for analysis.

Results
Males and females were evenly represented in the cohort. White children were more likely to
develop OPG (odds ratio [OR]: 2.11, 95% confidence interval [CI]: 1.11–4.00, p = 0.02)
relative to their non-White peers. Median age at diagnosis of OPG was 6.5 years (1.7–17.0),
irrespective of sex. Males were more likely than females to have a diagnosis of ADHD (OR:
1.90, 95% CI: 1.33–2.70, p < 0.001), and earlier diagnosis in males relative to females was
observed. The gradient boosting classificationmodel predicted diagnosis of ADHDwith an area
under the receiver operator characteristic (AUROC) of 0.74 and predicted diagnosis of OPG
with an AUROC of 0.82.

Conclusions
Using readily available clinical and EHR data, we successfully recapitulated several important and
clinically relevant patterns in NF1 semiology specifically based on demographic and clinical
characteristics. Naivemachine learning techniques can be potentially used to develop and validate
predictive phenotype complexes applicable to risk stratification and disease management in NF1.

Neurofibromatosis type 1 (NF1) is one of the most common monogenic disorders, occurring
in 1 of every 3,000 births. Caused by germline mutations in the NF1 gene (OMIM: 613113),
NF1 is a fully penetrant disorder; however, it is marked by extreme clinical variability, with
highly discordant clinical phenotypes. At present, it is not possible at the time of diagnosis to
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predict which patients with NF1 will develop specific clinical
manifestations such as optic pathway glioma (OPG) or neuro-
behavioral problems (e.g., attention-deficit/hyperactivity disorder
[ADHD]) in the future. This high degree of clinical heterogeneity
hampers accurate predictive assessment relevant to precision
medicine and limits clinicians’ ability to focus medical resources
on individuals with NF1 at the highest risk for specific compli-
cations. As a result, diseasemonitoring and surveillance guidelines
are inconsistently implemented across the NF1 population.1,2

Our ability to implement proactive approaches to the care of
individuals with NF1 requires a delineation of potential risk
factors for specific disease phenotypes. In this regard, recent
studies have used clinical data to link age,3 sex,3,4 comorbid
diagnoses,5 and NF1 coding variants6-8 to important NF1-
related outcomes. As an initial step toward developing clin-
ically actionable predictive algorithms in NF1, we used
informatics-based approaches to perform a longitudinal
analysis of NF1 clinical features stratified across de-
mographic characteristics. In addition, we determined the
feasibility of developing an informatics-based exploratory
predictive model of OPG and ADHD in a pediatric cohort by
applying machine learning strategies to a manually curated
NF1 clinical registry and existing electronic health record
(EHR) data.

Methods
Patients and Data Description
This study was performed using retrospective clinical data
extracted from 2 sources within the Washington University
Neurofibromatosis (NF)Center. First, data were extracted from
an existing longitudinal clinical registry that was manually cu-
rated using clinical data obtained from patients followed in the
Washington University NF Clinical Program at St. Louis
Children’s Hospital. All individuals included in this database had
a clinical diagnosis of NF1 based on current National Institutes
of Health Consensus Development Conference diagnostic cri-
teria9 and had been assessed over multiple visits from 2002 to
2016 for the presence of clinical features associated with NF1.
Data points in this registry included demographic information,
such as age, race, and sex, in addition to NF1-related clinical
features and associated conditions, such as café-au-lait macules,
skinfold freckling, cutaneous neurofibromas, Lisch nodules,
OPG, hypertension, ADHD, and cognitive impairment. These
data were maintained in a semistructured format containing
textual and binary fields, capturing each individual’s data over
multiple clinical visits. From these data, clinical features and
phenotypes were extracted using datamanipulation, imputation,
and text mining techniques. Data obtained from this NF1
clinical registry were converted to data tables, which captured
each patient visit and the presence/absence of specific clinical
features at each visit. Clinical features that were once marked as
present were assumed to be present for all future visits, and
missing data were assumed absent for that specific visit. Cate-
gorical variables are reported as frequencies and proportions

and compared using odds ratios (ORs). Continuously distrib-
uted traits, adhering to both conventional normality assump-
tions and homogeneity of variances, are reported as mean and
standard deviations and compared using analysis of variance
methods. Nonparametric equivalents were used for data with
nonnormative distributions.

Clinical Feature Extraction From Clinical
Registry and EHR
The NF1 Clinical Registry comprised string-based clinical fea-
ture values, such as ADHD,OPG, and asthma. From these data,
we extracted 27 unique clinical features in addition to longitu-
dinal data on the development of NF1-related clinical features
and associated diagnoses. For each clinical feature, age at initial
presentation and/or diagnosis was computed, and median age
of occurrence was calculated for each sex. The exact age of
presentation and/or diagnosis could not be definitively ascer-
tained for any feature that was present at a child’s initial clinic
visit. As such, we computed the age of diagnosis only for clinical
features for which we have at least one visit documenting fea-
ture absence before the manifestation of that feature.

Diagnosis codes from the EHR-derived data set were also
extracted. Diagnosis codes were recorded as 15,890 unique
International Classification of Diseases, Ninth Revision/Tenth
Revision (ICD-9/10) codes. Given the large number of ICD-
9/10 codes, a consistent, concept-level roll up of relevant
codes to a single phenotype description was created by
mapping the extracted ICD-9/10 values to phenome-wide
association codes called Phecodes,10,11 which have been
demonstrated to better align with clinical disease compared
with individual ICD codes.12

Machine Learning Analyses
Using a combination of clinical features obtained from the NF1
Clinical Registry and EHR-derived data sets, we developed pre-
dictionmodels using a gradient boosting platform for identifying
patients with specific NF1-related diagnoses to establish the
usefulness of clinical history and documentation of clinical
findings in predicting the phenotypic variability of NF1. Initial
analyses used a state-of-the-art classification algorithm, gradient
boosting model, which uses a tree-based algorithm to produce a
predictivemodel from an ensemble of weak predictivemodels. A
gradient boosting model was selected as it supports identifying
the importance of features used in the final prediction model.
Subsequent analyses used training each model for 3 different
feature sets: (1) demographic features for all patients, including
race, sex, and family history of NF1 (5 features); (2) clinical
features associated with NF1 (27 features) extracted from the
NF1 Clinical Registry; and (3) diagnosis codes extracted from
the EHR data, which were reduced to 50 Phecodes. Four-fold
cross-validation was then applied for the 3 models, and com-
parisons for the prediction accuracies of each model were de-
termined.Apositivepredictive value, F1 score, and the areaunder
the receiver operator characteristic (AUROC)curvewere used as
evaluation metrics. Scikit Learn, a machine learning library in
Python, was used to implement all analyses.13
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Standard Protocol Approvals, Registrations,
and Patient Consents
The NF1 Clinical Registry is an existing longitudinal clinical
registry that was manually curated using clinical data
obtained from patients followed in the Washington Univer-
sity NF Clinical Program at St. Louis Children’s Hospital. All
individuals included in this database have a clinical diagnosis
of NF1 based on current National Institutes of Health cri-
teria and have provided informed consent for participation in
the clinical registry. All data collection, usage, and analysis for
this study were approved by the Institutional Review Board
at the Washington University School of Medicine.

Data Availability
Anonymized data not published within this article will be
made available by request from any qualified investigator.

Results
Prevalence Analysis
Data for 798 individuals were available in the NF1 Clinical
Registry, in which the majority of individuals were under the
age of 18 years, likely reflecting the clinical referral bias of
pediatric patients to the Washington University NF Clinical
Program. Consistent with an absence of any notable sex predi-
lections for the diagnosis of NF1, males and females were evenly
represented in the database, and themajority of individuals in the
database were White, similar to the demographics of the catch-
ment area of St. Louis Children’s Hospital (81.8% vs 82.8%, χ2 =
0.068, p = 0.79) (Table 1).17 Table 1 includes the distribution of
race for the non-White individuals (18.2%) comprising of
American Indian or AlaskaNative, Asian, Black, NativeHawaiian
or other Pacific Islander and Others.

Among the pediatric patients included in the NF1 Clinical
Registry (n = 578), White children were more likely to de-
velop OPG relative to non-Whites (OR: 2.11, 95% confi-
dence interval [CI]: 1.11–4.00, p = 0.02), as previously
reported (Table 2).14,15 White children were more likely to
have Lisch nodules than their non-White peers (OR: 1.75,
95% CI: 1.15–2.67, p = 0.009), consistent with previous
studies demonstrating a greater likelihood of developing
Lisch nodules in individuals with light irides compared with
those with dark irides.16 Of interest, White children were less
likely to exhibit skinfold freckling than their non-White peers
(OR: 0.28; 95% CI: 0.09–0.03, p = 0.04), a finding not pre-
viously reported. Finally, non-White children were less likely to
harbor T2 hyperintensities on neuroimaging in the basal ganglia
(OR: 1.95, 95% CI: 1.10–3.45, p = 0.02) and cerebellum (OR:
2.15, 95% CI: 1.20–3.85, p = 0.01) compared with Whites.

To complement these findings, a similar analysis was performed
using data from theNF1Clinical Registry, revealing an elevated
male-to-female sex ratio for the diagnosis of ADHD (OR: 1.90,
95%CI: 1.33–2.70, p< 0.001). This likely reflects important sex
differences related to the clinical presence of impulsivity and

hyperactive behaviors among males relative to females in the
context of NF1.17 Furthermore, females were more likely to
have a diagnosis of scoliosis compared with males in the NF1
Clinical Registry (OR: 1.77, 95% CI: 1.17–2.66, p = 0.01),
consistent with the female predominance observed in idio-
pathic (non-NF1) juvenile scoliosis.18

Cutaneous neurofibromas were the most common tumor
manifestation in this cohort, reported in 59% of both females
and males with NF1. Slightly more than 200 of 578 children
with NF1 (35%) presented with a plexiform neurofibroma,
which is in accordance with previously reported frequencies
(16%–40%).19 Studies have shown that individuals with NF1
have an 8–13% lifetime risk of developing malignant pe-
ripheral nerve sheath tumors (MPNSTs); however, the mean
age of diagnosis of MPNSTs is typically older than 25 years.20,21

Because adult data were excluded from analysis, the prevalence
of MPNST in this cohort was low (1.2%). Despite MPNST
diagnosis being more prevalent in females (6 females compared
with 1 male; p = 0.08), no significant sexual dimorphism for was
observed in this cohort, similar to previous reports.22,23

Finally, more children in the NF1 Clinical Registry were found
to have a maternal family history of NF1 compared with a pa-
ternal family history of NF1 (28.3% vs 17.3%, χ2 = 15.5, p <
0.001), despite the expected equal distribution of maternal and
paternal inheritance in familial NF1.24 Although a prominent
maternal parent-of-origin bias has been observed for familialNF1
microdeletion syndrome,25 other studies have failed to demon-
strate a parent-of-origin effect for NF1 as a whole.24,26

Age-Based Analysis
Of 578 patients, 438 (76%) patients were included in the age-
based analysis as they had multiple clinical visits. The mean
interval between 2 consecutive visits in our data set was 470

Table 1 Demographics From Neurofibromatosis Type 1
Clinical Registry

All patients
(n = 798)

<18 y
(n = 578)

Female (%) 415 (52.0) 278 (48.1)

Race: White (%) 653 (81.8) 470 (81.2)

Race: non-White, total (%) 145 (18.2) 108 (18.8)

Race: non-White, American Indian or
Alaska Native (%)

1 (0.1) 1 (0.2)

Race: non-White, Asian (%) 15 (1.9) 14 (2.4)

Race: non-White, Black (%) 91 (11.4) 62 (10.7)

Race: non-White, Native Hawaiian or
other Pacific Islander (%)

1 (0.1) 1 (0.2)

Race: non-White, Other (%) 37 (4.6) 30 (5.2)

Mean age at visit (SD) 13.0 (11.0) 8.9 (4.6)

Mean number of visits (SD) 3.6 (2.8) 4.0 (2.8)
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days (SD: 310, median: 378 days). All 438 patients presented
to their initial clinic visit with café-au-lait macules, thus
precluding estimates of a median age at onset (Figure, A;
Table 3). As previously noted, skinfold freckling is apparent
in most children by age 8–9 years, whereas Lisch nodules are
detected in 50% of affected individuals by the early teens.
Scoliosis was most likely to present during early adolescence,
with a median age at onset of 12.5 years, without a signifi-
cance difference in age at onset between sexes. The median
age at ADHD diagnosis was 9.1 years (3.1–17.9), and an
earlier diagnosis was observed in males (8.6 years vs 9.4
years; p = 0.42).

With respect to tumor development, the median age at
diagnosis of OPG was 6.5 years (1.7–17.0), irrespective of

sex. Of interest, endocrinologic issues were significantly
more likely to present earlier in female children (3.7 years
vs 11.3 years, p = 0.013), perhaps reflecting a greater
proportion of symptomatic OPG in females, which results
in precocious puberty or other hormonal derange-
ments.27 Cutaneous neurofibromas increase as a function
of age, whereas plexiform neurofibromas are usually
detected during the first decade of life in both males and
females with NF1. Seven children, 1 male and 6 females,
in our cohort were diagnosed with MPNST. The male
child was diagnosed at age 5.9 years, and the median age
of diagnosis for the female children was 15.7 years. This is
consistent with previous pediatric case reports that
demonstrate early age of MPNST diagnosis in males with
NF1.28,29

Table 2 Prevalence of Clinical Features Associated With NF1 in the Pediatric Cohort, Stratified by Sex and Race

Total Male Female

p Value

White Non-White

p ValueN = 578 (%) n = 300 (%) n = 278 (%) n = 470 (%) n = 108 (%)

CALM 571 (98.6) 295 (98.3) 275 (98.9) 0.55 462 (98.3) 107 (99.1) 0.56

Skinfold freckling 529 (91.4) 272 (90.7) 257 (92.4) 0.44 427 (90.9) 105 (97.2) 0.04

Lisch nodules 349 (60.3) 172 (57.3) 177 (63.7) 0.12 299 (63.6) 54 (50.0) 0.009

OPG 108 (18.7) 57 (19.0) 51 (18.3) 0.84 98 (20.9) 12 (10.6) 0.02

Scoliosis 118 (20.4) 48 (16.0) 70 (25.2) 0.01 103 (21.9) 16 (14.2) 0.10

Orbital dysplasia 4 (0.7) 1 (0.3) 3 (1.1) 0.28 4 (0.9) 0 (0.0) 0.62

Long bone dysplasia or pseudarthrosis 33 (5.7) 16 (5.3) 17 (6.1) 0.69 27 (5.7) 6 (5.3) 0.94

Cutaneous neurofibroma 338 (58.4) 170 (56.7) 168 (60.4) 0.36 280 (59.6) 60 (53.1) 0.44

Plexiform neurofibroma 202 (34.9) 105 (35.0) 97 (34.9) 0.98 165 (35.1) 37 (32.7) 0.87

MPNST 7 (1.2) 1 (0.3) 6 (2.2) 0.08 6 (1.3) 1 (0.9) 0.76

GH deficiency 7 (1.2) 6 (2.0) 1 (0.4) 0.07 7 (1.5) 0 (0.0) 0.39

Precocious puberty 30 (5.2) 21 (7.0) 9 (3.2) 0.05 25 (5.3) 6 (5.3) 0.88

Heart murmur 24 (4.1) 11 (3.7) 13 (4.7) 0.54 21 (4.5) 3 (2.7) 0.45

Hypertension 14 (2.4) 8 (2.7) 6 (2.2) 0.69 12 (2.6) 2 (1.8) 0.67

ADHD 194 (33.5) 121 (40.3) 73 (26.3) <0.001 166 (35.3) 31 (27.4) 0.19

Depression 14 (2.4) 6 (2.0) 8 (2.9) 0.49 10 (2.1) 4 (3.5) 0.34

Learning disability 262 (45.3) 147 (49.0) 115 (41.4) 0.06 219 (46.6) 45 (39.8) 0.35

T2H: basal ganglia 134 (23.1) 73 (24.3) 61 (21.9) 0.5 119 (25.3) 16 (14.2) 0.02

T2H: brainstem 68 (11.7) 30 (10.0) 38 (13.7) 0.17 60 (12.8) 9 (8.0) 0.2

T2H: cerebellum 135 (23.3) 73 (24.3) 62 (22.3) 0.56 121 (25.7) 15 (13.3) 0.01

T2H: optic pathway 22 (3.8) 9 (3.0) 13 (4.7) 0.29 20 (4.3) 2 (1.8) 0.24

T2H: other 183 (31.6) 95 (31.7) 88 (31.7) 0.99 161 (34.3) 24 (21.2) 0.02

First-degree relative with NF1: father 100 (17.3) 53 (17.7) 47 (16.9) 0.81 79 (16.8) 22 (19.5) 0.38

First-degree relative with NF1: mother 164 (28.3) 84 (28.0) 80 (28.8) 0.84 131 (27.9) 33 (29.2) 0.58

Bold: statistically significant p value < 0.05.
Abbreviations: ADHD = attention-deficit/hyperactivity disorder; CALM = café-au-lait macules; GH = growth hormone; MPNST = malignant peripheral nerve
sheath tumor; NF1 = neurofibromatosis type 1; OPG = optic pathway glioma; T2H = T2-hyperintensity.
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Prediction Analysis Using Clinical Features
Exploratorypredictionanalyseswereperformed for thediagnosis of
ADHD and OPG, 2 common NF1 clinical phenotypes. Both di-
agnoses were present in greater than 18% of children in the cohort
and exhibited variable ages at onset and trends that indicated a
propensity for sexual and racial dimorphism.Models for predicting
plexiform neurofibroma were included for comparison purposes.
The generated prediction models performed well, and the

performance increased with the addition of clinical features (Table
4). The Gradient Boosting classification model predicted the
clinical diagnosis of ADHDwith anAUROCof 0.74 and predicted
the diagnosis of OPG with an AUROC of 0.82. For the OPG
gradient boosting classification model, the most important de-
mographic feature was White race, female sex, and a maternal
history of NF1. The presence of precocious puberty, T2 hyper-
intensities within the cerebellum, basal ganglia, and other locations,

Figure Age- and Sex-Based Prevalence of Clinical Features in Children With Neurofibromatosis Type 1

The Y-axis shows the percentage of childrenwhopresentedwith a particular clinical feature as a function of age (years). ADHD=attention-deficit/hyperactivity
disorder; MPNST = malignant peripheral nerve sheath tumor; OPG = optic pathway glioma.
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as well as the presence of Lisch nodules, plexiform, and dermal
neurofibromas were the most predictive clinical features, whereas
the most important EHR-derived codes included kyphoscoliosis
and scoliosis, amblyopia, and other dyschromia. For the ADHD
model, the most important demographic feature was male sex
and a family history of NF1 irrespective of the parent. Themost
important clinical features included the presence of a learning
disability, scoliosis, Lisch nodules, plexiform, and dermal neu-
rofibromas. The most predictive EHR-derived codes included
other benign neoplasm of connective and other soft tissues. For
the exploratory model of plexiform neurofibromas, the
AUROC was 69%, in which the most important demographic
feature was white race, female sex, andmaternal history of NF1.
The most important clinical feature was dermal neurofibromas,
Lisch nodules, and learning disability. The most predictive
EHR-derived codes included other dyschromia, astigmatism,
and disorders of optic nerve and visual pathways.

Discussion
Previous studies aimed at determining prognostic markers
for NF1 have identified only a small number of demographic

and clinical characteristics relevant to risk stratification for
NF1-related medical complications.4 The primary challenge
encountered in these studies is that the associations between
the identified prognostic determinants and patient outcomes
are generally weak from a quantitative perspective, which
significantly limits their applicability for clinical decision
making. Similarly, although there is extant literature aimed at
dissecting the genetic basis of phenotypic heterogeneity in
NF1,6-8,30 the translation of such sequencing-based disease
staging/monitoring into prognostic models has been limited.
Together, NF1 can be accurately and reproducibly di-
agnosed in children, but subsequent disease management of
affected patients is not informed by empiric or widely un-
derstood prognostic features. This challenge is emblematic
of the broader challenge of informing and delivering pre-
cision medicine, wherein sufficiently granular and tailored
evidence either does not exist or has not been studied in
systematic ways. As such, identifying computational ap-
proaches whereby evidence can be generated based on
existing data sets, wherein NF1 can be systematically and
reproducibly diagnosed and where subsequent disease sur-
veillance and management can be made less variable and

Table 3 Median Age of Neurofibromatosis Type 1–Associated Features—Individuals With >1 Clinical Visit

Total,
N

Total, median age, y
(range)

Male,
n

Male, median age, y
(range)

Female,
n

Female, median age, y
(range)

p
Value

Long bone dysplasia/
pseudarthrosis

29 5.2 (1.2–17.4) 15 6.4 (1.4–17.4) 14 5.1 (1.2–14.9) 0.90

Heart murmur 10 5.6 (1.4–17.8) 6 6.2 (1.4–17.2) 4 4.7 (2.2–17.8) 0.92

Endocrine issues 12 6.0 (3.0–15.6) 6 11.3 (6.0–15.6) 6 3.7 (3.0–8.4) 0.01

OPG 67 6.4 (1.7–17.0) 32 6.5 (1.7–17.0) 35 5.6 (1.9–15.3) 0.25

Skinfold freckling 310 6.5 (0.8–17.8) 159 6.4 (0.8–17.6) 151 6.5 (1.0–17.8) 0.96

Cognitive impairment 64 7.2 (1.8–16.0) 43 6.9 (1.8–16.0) 21 7.3 (1.9–15.3) 0.64

Lisch nodules 216 8.2 (1.0–17.9) 106 7.7 (1.0–17.8) 110 8.5 (1.2–17.9) 0.91

Plexiform neurofibroma 113 8.6 (1.4–17.8) 53 6.0 (1.8–17.6) 60 9.5 (1.4–17.8) 0.11

Learning disability 165 8.8 (2.2–17.8) 93 9.0 (2.7–17.6) 72 8.5 (2.2–17.8) 0.58

Precocious puberty 17 8.9 (3.1–17.6) 12 9.6 (3.1–17.6) 5 8.9 (4.8–11.8) 0.67

Dermal neurofibromas 212 9.0 (0.8–17.8) 101 7.8 (0.8–17.6) 111 9.2 (1.7–17.8) 0.56

ADHD 124 9.1 (3.1–17.9) 72 8.6 (3.1–17.9) 52 9.4 (3.8–17.5) 0.42

Hypertension 7 11.3 (2.2–16.7) 4 11.2 (2.2–16.7) 3 14.0 (11.2–15.3) 0.60

GH deficiency 7 12.0 (7.0–15.4) 6 10.5 (7.0–15.4) 1 13.2 (13.2–13.2) 0.80

Scoliosis 69 12.5 (2.2–17.6) 26 12.7 (2.2–17.6) 43 12.3 (3.8–17.3) 0.68

Autoimmune systems 7 13.8 (3.3–17.2) 4 15.0 (3.3–17.2) 3 12.3 (7.3–14.0) 0.60

MPNST 6 14.3 (4.8–16.8) 1 5.9 (5.9–5.9) 5 15.7 (4.8–16.8) 0.56

Depression 7 14.9 (12.8–15.7) 3 13.5 (12.8–14.8) 4 15.3 (14.9–15.7) 0.05

Of 578 patients, 438 (76%) individuals in the data set hadmultiple clinical visits. Themean interval between 2 consecutive visits in the data set was 470 d (SD:
310, median: 378 d). Bold: statistically significant, p value < 0.05.
Abbreviations: ADHD = attention-deficit/hyperactivity disorder; GH = growth hormone; MPNST = malignant peripheral nerve sheath tumor; OPG = optic
pathway glioma.
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more precise, is an ideal test case for the methods that will
inform and enable precision medicine writ large.

We hypothesize that one of the primary reasons for the failure
of current approaches to identify clinically useful prognostic
factors for NF1 is the reliance on conventional and re-
ductionist pair-wise association testing in which dyads of
clinical features and outcomes are iteratively tested for
quantitatively significant associations in a population of pa-
tients. Fortunately, there are an increasing number of ma-
chine learning and multiscale modeling techniques that can
provide investigators and clinicians with the tools needed to
quickly generate hypotheses concerning the relationship
between entities found in heterogeneous collections of sci-
entific data—for example, exploring potential linkages be-
tween a gene, phenotype, and disease management
protocols, thus enabling the forward engineering of prog-
nostic and therapeutic strategies based on knowledge gen-
erated via basic science studies.31-34

First, the demographics of the current cohort accurately
reflects that of the greater referral population, sub-
stantiating the absence of a sex or racial predilection in
children with NF1. Second, we could effectively reproduce
the racial discordance previously reported for OPG14;
however, we also explored previously unknown racial dif-
ferences in the development of other NF1-related clinical
features, including pigmentary abnormalities and T2
hyperintensities. Although further work will be required to
define the basis for racial disparities in T2 hyperintensities,
we and others have reported a reduced incidence of glio-
mas in non-White patients compared with Whites,35-38

even among those with NF1.14 Because gliomas and T2
hyperintensities can be difficult to distinguish without
applying strict radiographic criteria,39 it is possible that

some of these brain lesions were actually low-grade glio-
mas. These findings suggest that race may serve as an im-
portant predictive factor for a variety of different NF1-
related features. Further investigation into the racial dif-
ferences observed in NF1 is warranted. Third, our data
analysis revealed a clear female predominance for the de-
velopment of scoliosis in NF1, which is a well-established
association in juvenile idiopathic scoliosis,18 but it is
poorly recognized in the context of NF1. Fourth, although
there was sexual dimorphism for OPG, a finding that has
been reproduced many times in the NF1 literature,3,40,41

we found an earlier age at onset of endocrinologic abnor-
malities in females, supporting previous studies demon-
strating a greater risk for precocious puberty and vision
loss in young females with NF1.3,27 Fifth, the earlier de-
velopment of MPNSTs in male children with NF1 is dif-
ficult to interpret because of the limited sample size but
warrants further evaluation.

Studying the influence of age and demographic characteris-
tics on the development of NF1 clinical features has the
potential to inform more personalized approaches to the
identification of symptom complexes and ultimately the
clinical management of children with NF1. As such, the ap-
plication of modern computational approaches42,43 to NF1
facilitated the development of exploratory predictive models
with variable performance to identify patients with OPG,
ADHD, and plexiform neurofibromas using demographic,
clinical features, and EHR data recorded before the clinical
manifestation of the feature. The variability in model per-
formance demonstrated herein for diagnosis of OPG and
ADHD is most reasonably explained by differences in dis-
ease presentation, diagnostic methodology, and differences
in clinical expertise of the NF1 clinician. We anticipate that
these models would enable evidence-based, precision

Table 4 Cross-Validation Performance Results for PredictingOPG, ADHD, and PlexiformNeurofibromas AmongChildren
With Neurofibromatosis Type 1

Outcome Features F1 score AUROC Sensitivity Specificity PPV

OPG Demographic 0.48 ± 0.1 0.46 ± 0.08 0.61 ± 0.21 0.38 ± 0.14 0.48 ± 0.1

Demographic + clinical 0.74 ± 0.06 0.82 ± 0.05 0.75 ± 0.11 0.73 ± 0.04 0.74 ± 0.04

Demographic + clinical + EHR 0.79 ± 0.04 0.82 ± 0.06 0.78 ± 0.06 0.78 ± 0.07 0.78 ± 0.05

ADHD Demographic 0.6 ± 0.06 0.6 ± 0.07 0.69 ± 0.05 0.52 ± 0.1 0.59 ± 0.05

Demographic + clinical 0.68 ± 0.01 0.74 ± 0.04 0.66 ± 0.08 0.71 ± 0.06 0.69 ± 0.06

Demographic + clinical + EHR 0.67 ± 0.03 0.74 ± 0.05 0.67 ± 0.05 0.68 ± 0.08 0.68 ± 0.06

Plexiform neurofibromas Demographic 0.45 ± 0.04 0.45 ± 0.05 0.37 ± 0.16 0.55 ± 0.22 0.46 ± 0.05

Demographic + clinical 0.59 ± 0.03 0.62 ± 0.03 0.57 ± 0.06 0.61 ± 0.08 0.59 ± 0.06

Demographic + clinical + EHR 0.64 ± 0.06 0.69 ± 0.08 0.62 ± 0.07 0.66 ± 0.09 0.65 ± 0.1

Bold: best performing model.
Abbreviations: ADHD = attention-deficit/hyperactivity disorder; AUROC = area under the receiver operating characteristic; EHR = electronic health record;
OPG = optic pathway glioma; PPV = positive predictive value.
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medicine approaches to the management and treatment of
individuals diagnosed with NF1 (where such approaches
currently do not exist) and further be applicable to other
cancers in which the intersection of complex clinical and
pleiotropic disease phenotypes must be understood to pre-
dict and understand oncogenesis.

As with all studies using EHR data, 1 inherent limitation of
this study relates to the quality and completeness of the EHR
data, as well as the racial composition of our clinic population.
Nonetheless, this is the first study to use high dimensional
clinical phenotypes extracted from electronically collected
and heterogeneous clinical records to develop prediction
models for features associated with NF1. Together, future
application of these methodologies to the study of NF1 is
expected to advance the diagnosis and care of patients and
develop predictive models for subphenotyping and proactive
management of NF1, thus representing an opportunity to use
precision medicine paradigms in disease states in which the
current evidence base precludes such an approach.
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TAKE-HOME POINTS

NF1 can be accurately and reproducibly diagnosed
in children, but subsequent diseasemanagement of
affected patients is not informed by empiric or
widely understood prognostic features.

Longitudinal analysis and exploratory predictive
models developed and validated for clinical fea-
tures associated with NF1 enable evidence-based,
precisionmedicine approaches to themanagement
and treatment of individuals diagnosed with NF1.

Using retrospective data analysis, we successfully
recapitulated several clinically relevant patterns in
NF1 semiology.

The machine learning model developed using EHRs
and curated clinical data predicted the diagnosis of
ADHD with an AUROC of 0.74 and predicted
diagnosis of OPG with an AUROC of 0.82.
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